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Abstract
In this paper, we present a novel spatial reconstruction scheme, called AENO, that results 
from a special averaging of the ENO polynomial and its closest neighbour, while retaining 
the stencil direction decided by the ENO choice. A variant of the scheme, called m-AENO, 
results from averaging the modified ENO (m-ENO) polynomial and its closest neighbour. 
The concept is thoroughly assessed for the one-dimensional linear advection equation and 
for a one-dimensional non-linear hyperbolic system, in conjunction with the fully discrete, 
high-order ADER approach implemented up to fifth order of accuracy in both space and 
time. The results, as compared to the conventional ENO, m-ENO and WENO schemes, 
are very encouraging. Surprisingly, our results show that the L

1
-errors of the novel AENO 

approach are the smallest for most cases considered. Crucially, for a chosen error size, 
AENO turns out to be the most efficient  method of all five methods tested.

Keywords  Hyperbolic equations · High-order ADER · ENO/m-ENO/WENO · Novel 
reconstruction technique AENO/m-AENO

Mathematics Subject Classification  35L50 · 65M08

1  Introduction

Circumventing Godunov’s theorem [8] is a 60-year old challenge to numerical mathemati-
cians concerned with the development of high-order methods for solving hyperbolic equa-
tions. The invention of total variation diminishing (TVD) methods in the 1970s and 1980s 
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[11, 16, 23, 29, 43] represented an important step forward in facing the challenge. How-
ever such methods, even if very effective in practice, are limited to, at most, second-order 
accuracy for smooth solutions. Currently, the alternative approaches relying on non-linear 
spatial reconstruction pioneered by Harten and others [12, 13], such as ENO, m-ENO and 
WENO [14, 15, 26–28] have become the dominant approach. Unlike TVD methods, how-
ever, ENO, m-ENO and WENO based methods cannot guarantee the absence of spurious 
oscillations for scalar problems. However, these methods guarantee that such oscillations 
vanish in the limit of mesh refinement. This is not the case for linear methods, for which, 
no matter how fine the mesh is, the amplitude of the oscillations will remain unchanged. 
The initially popular ENO method has, in recent years, been largerly discarded by most 
researchers and practitioners. The reconstruction scenery is currently dominated by the 
WENO approach, in a variety of forms. See for example [5, 31] and [6].

In this paper, we propose a novel spatial reconstruction method that is akin to both ENO 
and WENO. The method, called AENO, results from averaging two polynomials, the clas-
sical ENO polynomial and its closest neighbour, while the search for the stencil remains 
commanded by ENO. A variant of the scheme, called m-AENO, results from averaging 
the modified ENO (m-ENO) polynomial of Shu [26] and its closest neighbour; m-AENO 
is equivalent to AENO for 2nd and 3rd order of accuracy. Here, the reconstruction schemes 
are applied in conjunction with the fully discrete high-order ADER approach [4, 7, 30, 
34, 40]. See [36] for an up-to-date review of ADER and references to the many contribu-
tions to its development. Schemes of up to 5th order of accuracy in space and time are 
implemented and tested, first for the linear advection equation and then for a non-linear 
hyperbolic system, namely the blood flow equations. For both problems, we first carry out 
experiments to compare numerical solutions with exact solutions for short and long evolu-
tion times. Results for three reconstruction methods are compared, namely ENO, m-ENO, 
WENO and the novel AENO and m-AENO schemes. Then we carry out a convergence rate 
study for both types of problems, the linear advection equation and the blood flow equa-
tions. Overall, the results are encouraging. For most problems, all five reconstruction meth-
ods give comparable results. Surprisingly, our results show that the L1-errors of the novel 
AENO/m-AENO schemes are the smallest, for most cases considered.

The rest of this paper is structured as follows. In Sect. 2 we review the fully discrete 
ADER methodology to solve hyperbolic equations, first for the linear scalar case and then 
for non-linear systems. In Sect. 3 we briefly introduce necessary background on the ENO 
reconstruction method. In Sect.  4 we describe the new spatial reconstruction technique 
AENO and its variant m-AENO; in Sect. 5 we show results for the linear advection equa-
tion. In Sect. 6 we apply the methods to the blood flow equations and in Sect. 7 we draw 
conclusions.

2 � Review of the ADER Methodology for Hyperbolic Equations

Here, we briefly review the ADER approach to construct one-step, fully discrete high-order 
Godunov methods for solving hyperbolic balance laws, whose building block is the gen-
eralized Riemann problem, a piece-wise smooth data Cauchy problem including stiff or 
non-stiff source terms, rather than the conventional piece-wise constant data homogeneous 
Riemann problem. In this section we review the ADER methodology as applied to one-
dimensional systems of hyperbolic balance laws. We first deal with the scalar linear case.
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2.1 � ADER for the Scalar Linear Case

Before proceeding, we recall the finite volume framework for a general scalar balance law.

2.1.1 � The Finite Volume Framework

Consider the one-dimensional balance law

solved by a finite volume method, with space-time volumes

Exact integration of (1) on V in (2) gives

with definitions

and

2.1.2 � ADER for Linear Advection‑Reaction

The ADER method [38] departs from the finite volume formula (3), understood as resulting 
from approximations to the integrals in (4). The one-step updating formula (3) updates the 
cell average qn

i
 to qn+1

i
 , for which definitions for the numerical flux f

i+
1

2

 and the numerical 
source si are required. The rest of the presentation of the ADER approach will be carried 
out with (1) as the linear advection-reaction equation, in which f (q) = �q and s(q) = �q , 
with � a constant wave propagation speed and � constant reaction rate satisfying � ⩽ 0.

2.1.3 � The ADER Flux and the Generalized Riemann Problem

To determine the numerical flux f
i+

1

2

 in (3) we compute a high-order accurate approxi-
mation to the flux integral in (4), which in turn requires a high-order approximation to 
the integrand q(x

i+
1

2

, t) . This is achieved by solving, approximately, the following gener-
alized Riemann problem

(1)�tq + �xf (q) = s(q),

(2)V = [x
i−

1

2

, x
i+

1

2

] × [tn, tn+1].

(3)qn+1
i

= qn
i
−

Δt

Δx
[f
i+

1

2

− f
i−

1

2

] + Δtsi,

(4)

qn
i
=

1

Δx ∫
x
i+

1
2

x
i−

1
2

q(x, tn)dx,

f
i+

1

2

=
1

Δt ∫
tn+1

tn

f (q(x
i+

1

2

, t))dt,

si =
1

Δt

1

Δx ∫
tn+1

tn
∫

x
i+

1
2

x
i−

1
2

s(q(x, t))dxdt

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(5)Δx = x
i+

1

2

− x
i−

1

2

, Δt = tn+1 − tn, xi =
1

2
(x

i−
1

2

+ x
i+

1

2

).
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in which the polynomials pi(x) and pi+1(x) are reconstruction polynomials of arbitrary 
degree K. To solve (6) we adopt here the Toro-Titarev [41] method, which starts from the 
LeFloch-Raviart expansion [18] for the approximate solution

The leading term of the expansion. The leading term q(0, 0+) in (7) results from solving 
the conventional piece-wise-constant data Riemann problem

in which the initial condition consists of the boundary extrapolated values pi(0) from the 
left and pi+1(0) from the right. The position of the interface x

i+
1

2

 corresponds to 0, in local 
coordinates.

The higher-order terms of the expansion. To compute the higher-order terms in (7) 
one requires the determination of the time derivatives �(k)t q(0, 0+) . In the first version of 
ADER [38] it was proposed to apply the Cauchy-Kovalevskaya procedure to the govern-
ing equation in (6). Just for a moment let us assume the linear homogenous case in (6) 
( � = 0 ). Then, the Cauchy-Kovalevskaya procedure gives

In fact, it is easily shown that for an arbitrary positive integer k,

Similarly, for the inhomogeneous case with non-zero source term in (6), it can also be 
shown that the time derivatives can still be expressed as functions of spacial derivatives, 
as follows:

Now the pending problem is that of determining �(l)
x
q(0, 0+) in (7), for which a useful step 

is the construction of evolution equations for the spatial derivatives. For the homoge-
nous case, it can be easily shown that �(l)

x
q(x, t) obeys the same evolution equation as q(x, t), 

that is

(6)

PDE: 𝜕tq + 𝜆𝜕xq = 𝛽q,

IC: q(x, 0) =

⎧
⎪⎨⎪⎩

pi(x) if x < 0,

pi+1(x) if x > 0,

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(7)q
i+

1

2

(�) = q(0, 0+) +

K∑
k=1

[
�
(k)
t q(0, 0+)

]
�k

k!
.

(8)

PDE: 𝜕tq + 𝜆𝜕xq = 0,

IC: q(x, 0) =

�
pi(0) if x < 0,

pi+1(0) if x > 0,

⎫⎪⎬⎪⎭

(9)�tq + ��xq = 0, �tq = −��xq, �
(2)
t q = �2�(2)

x
q.

(10)�
(k)
t q = (−1)k�k�(k)

x
q.

(11)�
(k)
t q(x, t) =

k∑
n=0

[
k!

(k − n)!n!
�n(−�)k−n

]
�(k−n)
x

q(x, t).
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The next problem is to explore the possibility of formulating initial value problems for 
(12). In fact this is possible if we find suitable initial conditions. If for each computational 
cell we have a spatial polynomial representation pi(x) for q(x, tn) , via a spatial reconstruc-
tion technique for example, then it is possible to pose classical Riemann problems for 
spatial derivatives as follows:

The initial condition for these classical Riemann problems (piece-wise constant data) con-
sists of intercell-boundary extrapolated spatial derivatives of the reconstruction polynomi-
als, pi(x) from the left and pi+1(x) from the right. Solutions of classical Riemann problems 
for the spatial derivatives, as in (13), will give the spatial derivatives �(l)

x
q(0, 0+) in (7), of 

any order l. This in turn determines the time partial derivatives in (11) and hence in (7). We 
have therefore found the complete solution of the homogeneous version of the generalized 
Riemann problem (6), which is given as

The solution for the inhomogeneous case is similar. The numerical flux results from an 
approximation to the flux integral in (4), which is now obtained as

Exact integration gives

Generally, the numerical flux in (15) will require numerical integration of the appropriate 
order. Inserting the numerical flux (16) into the conservative finite volume formula (3) will 
give a numerical approximation of order K + 1 in both space and time. In the presence of 

(12)�t(�
(l)
x
q(x, t)) + ��x(�

(l)
x
q(x, t)) = 0.

(13)

PDE: 𝜕t(𝜕
(l)
x
q(x, t)) + 𝜆𝜕x(𝜕

(l)
x
q(x, t)) = 0,

IC: 𝜕(l)
x
q(x, 0) =

⎧⎪⎨⎪⎩

𝜕(l)
x
pi(0) if x < 0,

𝜕(l)
x
pi+1(0) if x > 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(14)q
i+

1

2

(𝜏) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

pi(0) +

K�
k=1

�
(−1)k𝜆k𝜕(k)

x
pi(0)

� (𝜏)k

(k + 1)!
if 𝜆 > 0,

pi+1(0) +

K�
k=1

�
(−1)k𝜆k𝜕(k)

x
pi+1(0)

� (𝜏)k

(k + 1)!
if 𝜆 < 0.

(15)f
i+

1

2

=
1

Δt ∫
Δt

0

f (q
i+

1

2

(�))d�.

(16)f
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source terms in the governing equations, one must include the source terms when perform-
ing the Cauchy-Kovalevskaya procedure, as these enter in the calculation of the numeri-
cal flux. In addition, one must compute the numerical source to the appropriate order of 
accuracy. This requires an approximation of the source integral in (4) in the entire control 
volume V in (2), for which a high-order approximation to q(x, t) within V is needed. Such 
approximation is found in a manner similar to that of the generalized Riemann problem.

2.2 � ADER for Non‑linear Systems

Consider a general one-dimensional system of hyperbolic balance laws

The vectors � , �(�) and �(�) define conserved variables, fluxes and sources, respectively. 
Assuming the space/time domain to be discretised by finite volumes V in (2), exact integra-
tion of (17) in V gives

with

Numerically, (18)–(19) motivate the construction of finite volume methods to solve (17), in 
which suitable approximations to the integrals (19) determine the numerical flux �

i+
1

2

 and 
the numerical source �i in the approximating formula (18). See Sect. 2.1.2.

2.2.1 � ADER and the Godunov Method

The classical Godunov method [8] results from (18)–(19) by assuming �(�) = � and 
�(x

i+
1

2

, t) = �̃
i+

1

2

(x∕t) to be the similarity solution of the piece-wise constant data, homoge-
neous, Riemann problem

Figure  1, top frame, depicts the initial condition (left) and the structure of the solution 
(right) of (20). In this simplified case the numerical flux �

i+
1

2

 in (18) results from the exact 
integration in (19), namely

(17)�t�(x, t) + �x�(�(x, t)) = �(�(x, t)).

(18)�n+1
i

= �n
i
−

Δt

Δx
(�

i+
1

2

− �
i−

1

2

) + Δt�i,

(19)

�n
i
=

1

Δx ∫
x
i+

1
2

x
i−

1
2

�(x, tn)dx, �
i+

1

2

=
1

Δt ∫
tn+1

tn
�(�(x

i+
1

2

, t))dt,

�i =
1

ΔtΔx ∫
tn+1

tn ∫
x
i+

1
2

x
i−

1
2

�(�(x, t))dxdt.

⎫⎪⎪⎬⎪⎪⎭

(20)
PDEs: 𝜕t� + 𝜕x�(�) = �, x ∈ (−∞,∞), t > 0,

ICs: �(x, 0) =

�
�L = �n

i
if x < 0,

�R = �n
i+1

if x > 0.

⎫
⎪⎬⎪⎭

(21)�God

i+
1

2

=
1

Δt ∫
tn+1

tn
�(�̃

i+
1

2

(0))dt = �(�̃
i+

1

2

(0)).
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For exact and approximate Riemann solvers for the first-order Godunov method see [35].
The ADER extension of Godunov’s method [38] includes three steps. 

i)	 Replacing piece-wise constant data by piece-wise smooth data, as resulting from recon-
struction procedures, for example; see Fig. 1, bottom frame. This leads naturally to the 
generalized Riemann problem 

ii)	 Computing �LR(�) , the time-dependent solution of (22) at the interface, followed by 
evaluation of the numerical flux 

iii)	 Defining a function �i(x, t) within each volume V, followed by evaluation of the numeri-
cal source 

(22)
PDEs: 𝜕t� + 𝜕x�(�) = �(�), x ∈ (−∞,∞), t > 0,

ICs: �(x, 0) =

�
�L(x) if x < 0,

�R(x) if x > 0.

⎫⎪⎬⎪⎭

(23)�
i+

1

2

=
1

Δt ∫
tn+1

tn
�(�LR(�))dt.

(24)�i =
1

ΔtΔx ∫
tn+1

tn ∫
x
i+

1
2

x
i−

1
2

�(�i(x, t))dxdt.

Fig. 1   Riemann problems. Top: classical Riemann problem for the first-order Godunov method. Bottom: 
generalised Riemann problem for the ADER method. Left-hand side pictures depict initial conditions for 
the classical (top) and generalized (bottom) Riemann problems, while right-hand side pictures depict the 
respective, emerging wave structures in the x-t plane



783Communications on Applied Mathematics and Computation (2023) 5:776–852	

1 3

Early communications on the ADER methodology include [38] and [25]. For an introduc-
tion to ADER methods see Chaps. 19 and 20 of [35]. The next section deals with solvers 
for the generalised Riemann problem (22).

2.2.2 � Solvers for the Generalized Riemann Problem

Several methods for solving the generalised Riemann problem are currently available. Here 
we limit ourselves to brief descriptions for two of them and give appropriate references for 
other solvers.

The Toro-Titarev solver for the generalized Riemann problem
This solver [41] seeks an approximate solution �LR(�) of (22) expressed as a truncated 

series expansion

following [19]. The leading term is defined as

and is computed by solving a conventional Riemann problem, see (8). The challenge is to 
determine the coefficients �(k)t �(0, 0+) in (25) for the higher-order terms.

A precursor to the Toro-Titarev solver [41] results from a modification of the Ben-Artzi/
Falcovitz second-order GRP solver [1] that departs from �LR(�) = �(0, 0+) + ��t�(0, 0+) , 
with �(0, 0+) defined as in (26). See Chap. 14 of the 1997 edition of [35]. The Cauchy-
Kovalevskaya procedure is then used to determine �t�(0, 0+) , that is

and the solution then reads

The pending problem in (28) is to compute the spatial derivative �x�(0, 0+) . First it is 
noted that for the linear homogeneous case

the following evolution equations for all spatial derivatives are valid:

One can then define the classical Riemann problem for (30), with k = 1 , to find �x�(0, 0+) 
in (28). The numerical flux (23) then follows.

The Toro-Titarev solver for the GRPk [35] departs from the LeFloch-Raviart expansion 
(25) and the Cauchy-Kovalevskaya procedure, leading to

The functionals �(k) are specific to the particular system (17); their arguments are spatial 
derivatives, yet to be found. To determine these, evolution equations are invoked

(25)�LR(�) = �(0, 0+) +

K∑
k=1

[
�
(k)
t �(0, 0+)

]
�k

k!
,

(26)�(0, 0+) = lim
t→0+

�(0, t)

(27)�t� + �x�(�) = �(�) → �t� = −�(�)�x� + �(�)

(28)�LR(�) = �(0, 0+) + �[−�(�(0, 0+))�x�(0, 0+) + �(�(0, 0+))].

(29)�t� + ��x� = �

(30)�t(�
(k)
x
�) + ��x(�

(k)
x
�) = �.

(31)�
(k)
t �(x, t) = �(k)(�(0)

x
�, �(1)

x
�,⋯ , �(k)

x
�).
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Then, simplified classical Riemann problems for spatial derivatives are posed

Strong simplifications have been made to the evolution equations in order to arrive at 
(33); the source terms �(k) have been neglected and the advection term has been linearised 
around the leading term of the expansion (25). The coefficient matrix �(0)

LR
 results from 

evaluating the Jacobian at the leading term of the expansion. The complete solution (25) 
has then been determined and the numerical flux follows from (23). A similar but simpler 
procedure is used to determine the source term in (24), see [41].

The Montecinos-Toro implicit GRP solver
This solver [21, 40] is implicit and can deal with stiff source terms. The key step is the fol-

lowing lemma.
Lemma 1 Let �(x, �) be an analytical function of � . Then

This expression is the implicit counterpart of the explicit Raviart-LeFloch expansion (25). 
Now the implicit Cauchy-Kovalevskaya procedure leads to

As for the Toro-Titarev solver, a key step is to determine the arguments of functionals �(k) 
in (35). For details see [40] for the general case.

Example 1 Second-order scheme. In this special case, see [21] for details, we have

The implicit Cauchy-Kovalevskaya procedure gives

Then, applying the implicit expansion (34) we have

and

Therefore

Finally, the solution �(0, �) = �∗(�) satisfies the non-linear algebraic system

(32)�t(�
(k)
x
�(x, t)) + �(�)�x(�

(k)
x
�(x, t)) = �(k).

(33)

PDEs: 𝜕t(𝜕
(k)
x
�(x, t)) + �

(0)

LR
𝜕x(𝜕

(k)
x
�(x, t)) = �,

ICs: 𝜕(k)
x
�(x, 0) =

�
�

(k)

L
(0) if x < 0,

�
(k)

R
(0) if x > 0.

⎫
⎪⎪⎬⎪⎪⎭

(34)�(x, �) = �(x, 0+) −

∞∑
k=1

(−�)k

k!
�
(k)
t �(x, �).

(35)�
(k)
t �(0, �) = �(k)(�(0, �),⋯ , �(k)

x
�(0, �)).

(36)�t� + �x�(�) = �(�), �(0, �) = �(0, 0+) + ��t�(0, �).

(37)�(0, �) = �(0, 0+) + �
[
−�(�(0, �))�x�(0, �) + �(�(0, �))

]
.

(38)�x�(0, �) = �x�(0, 0+) + ��t(�x�(0, �))

(39)�x�(0, �) = �x�(0, 0+) + ��x
[
−�(�(0, �))�x�(0, �) + �(�(0, �))

]
.

(40)�x�(0, �) = [� − ��(�(0, �))]−1�x�(0, 0+).
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and the numerical flux follows. This gives a second-order, locally implicit method suitable 
for balance laws with stiff source terms.

Other ���k solvers
We have described two schemes to solve the generalized Riemann problem. The first 

solver is explicit, while the second one is implicit, leading to a locally implicit ADER 
method. The implicit method can deal with stiff source terms and the correspond-
ing ADER methods are then able to reconcile stiffness and high accuracy, for smooth 
solutions. These two methods seek the solution right at the interface and extend the 
(explicit) Ben-Artzi/Falcovitz second-order method. Another class of solvers emerges 
from a re-interpretation of the high-order method of Harten et al. [13] that extends the 
MUSCL-Hancock second-order method. In this approach, the initial data is evolved 
in time and interactions at the interface are sought at selected time-integration points 
via classical Riemann problems [2]. The already well-established method of Dumbser 
et al. [4] is a numerical version of the Harten method, see also [2], whereby the data is 
evolved numerically via an implicit space-time discontinuous Galerkin approach. The 
resulting ADER scheme is suitable for stiff source terms, with the additional benefit of 
avoiding the Cauchy-Kovalevskaya procedure. Other recent solvers for the generalized 
Riemann problem are due to Götz and Iske [10], Götz and Dumbser [9], and Dematté 
et al. [3].

We have reviewed the ADER approach to extend Godunov’s method to high order 
of accuracy. Very high-order methods are essential for the following reasons: (i) there 
is a growing trend to use PDEs to understand the physics they embody; (ii) only very 
accurate solutions of PDEs will achieve this and also reveal limitations of mathemati-
cal models (PDEs themselves) and uncertainty on parameters of the problem; (iii) effi-
ciency: given an error deemed acceptable, then high-order methods attain that error, 
if small, much more efficiently than low-order methods on fine meshes, by orders of 
magnitude. For very long time evolution simulations high-order methods are essential.

In the presentation of ADER we assumed that the solution at a time tn in any com-
puting cell was represented by a polynomial resulting from some spatial reconstruction 
procedure. In principle, it can be any kind of reconstruction procedure, centred, biased, 
linear, non-linear. In what follows we review a non-linear reconstruction procedure.

3 � Review of ENO Polynomial Reconstruction Methodology

To circumvent Godunov’s theorem when constructing high-order methods, it is neces-
sary to resort non-linear schemes and hence avoid or reduce spurious oscillations in the 
vicinity of large gradients of the solution. A popular method to do so is the essentially 
non-oscillatory (ENO) reconstruction method of Harten and collaborators [12], which 
we briefly review here. The presentation is succinct and we follow [17] to construct the 
polynomial with the required properties. More popular than ENO is the WENO method, 
which we also use in this paper for comparison, but a review of WENO is omitted as the 
reader can consult the classical references [15, 27, 28]; see also [31]. There is a variant 
of ENO due to Shu [26], called here m-ENO. We omit all details of m-ENO here but 
encourage the reader to consult the original reference.

(41)�∗ = �(0, 0+) + �
[
−�(�∗)[� − ��(�∗)]−1�x�(0, 0+) + �(�∗)

]
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3.1 � ENO Polynomial of Arbitrary Degree

We assume a set of cell integral averages of the unknown q(x, t) denoted as {qj}ij=0 and adopt 
the primitive-function approach [17, 45] to construct an ENO polynomial with samples 
q(xi+1∕2) at the intercell boundaries xi+1∕2 . Recall that a function q(x) is the primitive function 
of f(x), or antiderivative, if

where x−1∕2 is the left most interface.Then, the samples are defined as

That is, the partial sums of cell averages are the samples of the primitive function q(x).
Now the task is to construct the interpolating polynomial P(x) of degree N + 1 passing 

through (xi+1∕2, q(xi+1∕2)) , of one degree higher than the sought reconstruction polynomial 
p(x), with

For convenience, the final sought polynomial p(x) of degree N is written in Taylor form as 
follows:

The coefficients a0, a1,⋯ , aN depend on the stencil of the polynomial. Next, we find the 
Newton divided differences. Recalling from (43)

we have, for example,

Consider the generic cell [x
i−

1

2

, x
i+

1

2

] with intercell boundaries x
i−

1

2

 (left) and x
i+

1

2

 (right). 
The polynomial is built by adding one point at the time, either left or right, to the current 
stencil; each time one adds one degree to the sought polynomial of degree N + 1 . The new 

(42)f (x) =
d

dx
q(x), or q(x) = ∫

x

x−1∕2

f (y)dy,

(43)q(xi+1∕2) =

i∑
j=0

∫
xj+1∕2

xj−1∕2

f (y)dy =

i∑
j=0

Δxjqj.

(44)p(x) =
d

dx
P(x).

(45)p(x) = a0 + 2a1(x − xi) +⋯ + (N + 1)aN(x − xi)
N .

(46)q(x
i+

1

2

) =

i∑
j=0

Δxjqj

(47)

q[x
i−

1

2

, x
i+

1

2

] =
q(x

i+
1

2

) − q(x
i−

1

2

)

x
i+

1

2

− x
i−

1

2

= qi,

q[x
i−

1

2

, x
i+

1

2

, x
i+

3

2

] =
q[x

i+
1

2

, x
i+

3

2

] − q[x
i−

1

2

, x
i+

1

2

]

x
i+

3

2

− x
i−

1

2

=
qi+1 − qi

2Δx
,

q[x
i−

1

2

, x
i+

1

2

, x
i+

3

2

, x
i+

5

2

] =
qi+2 − 2qi+1 + qi

6Δx2
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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point added, to left or to the right, depending on the relative size of divided differences in 
absolute value.

The general algorithm is as follows. Start with the two points l0(i) = i + 1∕2 at the cell 
interface x

i+
1

2

 and l1(i) = i −
1

2
 at the cell interface x

i−
1

2

 . The most left point is l1(i) = i −
1

2
 . 

Then the next point in the sequence is l2(i) . In general the new point to be added is chosen 
recursively as follows.

For m = 1,⋯ ,N,

The reconstruction polynomial P(x) of degree N + 1 is

The coefficients aj of the polynomial (45) are as follows:

with

Therefore the sought polynomial (45) has been determined. For details see for example 
[17].

In what follows we give details for ENO polynomials of second to fourth degree.

3.2 � Piecewise‑Linear ENO Reconstruction

The reconstruction polynomial of degree 1 on the cell [x
i−

1

2

, x
i+

1

2

] is

or

on the stencils

Here

(48)lm+1(i) =

⎧⎪⎨⎪⎩

lm(i) if �q[xlm(i),⋯ , xlm(i)+m+1]� ⩽ �q[xlm(i)−1,⋯ , xlm(i)+m]�,

lm(i) − 1 if �q[xlm(i)−1,⋯ , xlm(i)+m]� > �q[xlm(i),⋯ , xlm(i)+m+1]�.

(49)P(x) =

N+1∑
j=0

ak(x − xi)
j.

(50)aj =

N−j+1∑
k=0

dkjq[xlN+1(i),⋯ , xlN+1(i)+j+k], j = 1,⋯ ,N + 1,

(51)

d0j = 1,

dk0 = (xi − xlN+1(i)+k−1)dk−1,0,

dkj = dk,j−1 + (xi − xlN+1(i)+k+j−1)dk−1,j.

⎫⎪⎪⎬⎪⎪⎭

(52)p1(x) = a0 + 2a1(x − xi)

(53)p1(x) = qi +
qj+1 − qj

Δx
(x − xi)

(54)S0 = (i − 1, i), S1 = (i, i + 1).
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and the coefficients are

As stated in Sect. 2, the ADER method requires the value of the polynomial, as well as its 
spatial derivatives, at the cell interfaces. The sought values of the polynomial at interface 
xi+1∕2 are

3.3 � Piecewise‑Quadratic ENO Reconstruction

The reconstruction on the cell [x
i−

1

2

, x
i+

1

2

] reads

and the relevant stencils are

The choice of the indexes is as follows:

Then

Depending on the chosen indexes we can get three different polynomials. The values at the 
interface are

(55)j =

⎧
⎪⎨⎪⎩

i if �qi+1 − qi� ⩽ �qi − qi−1�,

i − 1 otherwise

(56)a1 =
qj+1 − qj

2Δx
, a0 = qj + 2(xi − xj)a1 = qi.

(57)p1(xi+1∕2) = a0 + a1Δx,
d

dx
p1(xi+1∕2) = 2a1.

(58)p2(x) = a0 + 2a1(x − xi) + 3a2(x − xi)
2

(59)S0 = (i − 2, i − 1, i), S1 = (i − 1, i, i + 1), S2 = (i, i + 1, i + 2).

(60)

j =

⎧
⎪⎨⎪⎩

i if �qi+1 − qi� ⩽ �qi − qi−1�,

i − 1 otherwise.

k =

⎧⎪⎨⎪⎩

j if �qj+2 − 2qj+1 + qj� ⩽ �qj+1 − 2qj + qj−1�,

j − 1 otherwise.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(61)

a2 =
qk+2 − 2qk+1 + qk

6Δx2
,

a1 =
qk+1 − qk

2Δx
+

qk+2 − 2qk+1 + qk

2Δx

�
i − k −

1

2

�
,

a0 = qi −
1

24
(qk+2 − 2qk+1 + qk).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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3.4 � Piecewise‑Cubic ENO Reconstruction

The reconstruction on the cell [x
i−

1

2

, x
i+

1

2

] is

The stencils are

The ENO choice of indexes is as follows:

The coefficients read

The polynomial values at the interface x
i+

1

2

 are

(62)

p2(xi+1∕2) = a0 + a1Δx +
3

4
a2Δx

2,

d

dx
p2(xi+1∕2) = 2a1 + 3a2Δx,

d2

dx2
p2(xi+1∕2) = 6a2.

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(63)p3(x) = a0 + 2a1(x − xi) + 3a2(x − xi)
2 + 4a3(x − xi)

3.

(64)
S0 = (i − 3, i − 2, i − 1, i), S1 = (i − 2, i − 1, i, i + 1),

S2 = (i − 1, i, i + 1, i + 2), S3 = (i, i + 1, i + 2, i + 3).

⎫⎪⎬⎪⎭

(65)

j =

�
i if �qi+1 − qi� ⩽ �qi − qi−1�,
i − 1 otherwise,

k =

�
j if �qj+2 − 2qj+1 + qj� ⩽ �qj+1 − 2qj + qj−1�,
j − 1 otherwise,

h =

⎧⎪⎨⎪⎩

j if �qk+3 − 3qk+2 + 3qk+1 − qk�
⩽ �qk+2 − 3qk+1 + 3qk − qk−1�,

j − 1 otherwise.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(66)

a3 =
qh+3 − 3qh+2 + 3qh+1 − qh

24Δx3
,

a2 =
qh+2 − 2qh+1 + qh

6Δx2
+

qh+3 − 3qh+2 + 3qh+1 − qh

6Δx2
(i − h − 1),

a1 =
qh+1 − qh

2Δx
+

qh+2 − 2qh+1 + qh

2Δx

�
i − h −

1

2

�

+d22
qh+3 − 3qh+2 + 3qh+1 − qh

24Δx3
,

a0 = qi −
a2

4
Δx2.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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3.5 � Piecewise‑Quartic ENO Reconstruction

The reconstruction on the cell [x
i−

1

2

, x
i+

1

2

] is

The stencils are

The ENO choice of indexes is

To determine the coefficients we first set

(67)

p3(xi+1∕2) = a0 + a1Δx +
3

4
a2Δx

2 +
1

2
a3Δx

3,

d

dx
p3(xi+1∕2) = 2a1 + 3a2Δx + 3a3Δx

2,

d2

dx2
p3(xi+1∕2) = 6a2 + 12a3Δx,

d3

dx3
p3(xi+1∕2) = 24a3.

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(68)p4(x) = a0 + 2a1(x − xi) + 3a2(x − xi)
2 + 4a3(x − xi)

3 + 5a4(x − xi)
4.

(69)

S0 = (i − 4, i − 3, i − 2, i − 1, i), S1 = (i − 3, i − 2, i − 1, i, i + 1),

S2 = (i − 2, i − 1, i, i + 1, i + 2), S3 = (i − 1, i, i + 1, i + 2, i + 3),

S4 = (i, i + 1, i + 2, i + 3, i + 4).

⎫⎪⎪⎬⎪⎪⎭

(70)

j =

�
i if �qi+1 − qi� ⩽ �qi − qi−1�,
i − 1 otherwise,

k =

�
j if �qj+2 − 2qj+1 + qj� ⩽ �qj+1 − 2qj + qj−1�,
j − 1 otherwise,

h =

⎧
⎪⎨⎪⎩

j if �qk+3 − 3qk+2 + 3qk+1 − qk�
⩽ �qk+2 − 3qk+1 + 3qk − qk−1�,

j − 1 otherwise,

s =

⎧
⎪⎨⎪⎩

h if �qh+4 − 4qh+3 + 6qh+2 − 4qh+1 + qh�
⩽ �qh+3 − 4qh+2 + 6qh+1 − 4qh + qh−1�,

h − 1 otherwise.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Then the coefficients are

The polynomial values at interface x
i+

1

2

 are

(71)

d23 =Δx
2
��

i − s −
1

2

��
i − s +

1

2

�
+ 2

�
i − s −

3

2

�
(i − s)

+3
�
i − s −

5

2

��
i − s −

1

2

�
+ 4

�
i − s −

7

2

�
(i − s − 1)

�
,

d22 =Δx
2
��

i − s −
1

2

��
i − s +

1

2

�
+ 2

�
i − s −

3

2

�
(i − s)

+3
�
i − s −

5

2

��
i − s −

1

2

��
,

d31 =Δx
3
��

i − s −
3

2

��
i − s −

1

2

��
i − s +

1

2

�

+
�
i − s −

5

2

��
i − s −

1

2

��
i − s +

1

2

�

+2
�
i − s −

5

2

��
i − s −

3

2

�
(i − s)

�
,

d32 = d31 + Δx
�
i − s −

7

2

�
d22.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(72)

a4 =
qs+4 − 4qs+3 + 6qs+2 − 4qs+1 + qs

120Δx4
,

a3 =
qs+3 − 3qs+2 + 3qs+1 − qs

24Δx3

+ 5�x
�
i − s −

3

2

�qs+4 − 4qs+3 + 6qs+2 − 4qs+1 + qs

120Δx4
,

a2 =
qs+2 − 2qs+1 + qs

6Δx2
+

qs+3 − 3qs+2 + 3qs+1 − qs

6Δx2
(i − s − 1)

+ d23
qs+4 − 4qs+3 + 6qs+2 − 4qs+1 + qs

120Δx4
,

a1 =
qs+1 − qs

2Δx
+

qs+2 − 2qs+1 + qs

2Δx

�
i − s −

1

2

�

+ d22
qs+3 − 3qs+2 + 3qs+1 − qs

24Δ3

+ d32
qs+4 − 4qs+3 + 6qs+2 − 4qs+1 + qs

120Δx4
,

a0 = qi −
a2

4
Δx2 −

a4

16
Δx4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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As already pointed out, the evaluation of the polynomial and its derivatives at the cell 
interface x

i+
1

2

 , from the left and the right, is needed for solving the generalized Riemann 
problem to determine the numerical flux. To determine the numerical source we must 
evaluate the volume integral (24), for which one makes use of the polynomial p(x) and its 
derivatives in cell i, at nodes xl of the integration formula used, e.g., a Gauss-Legendre 
quadrature.

We have reviewed the ENO method as implemented in the fully discrete high-order 
ADER methodology. The ENO reconstruction method has been criticised for a number 
of reasons. One of them is the abrupt change of stencil simply due to small changes in the 
divided differences that determine the coefficients of the ENO polynomial. In fact, even 
round-off errors may decide the choice of stencil. Shu [26] addressed this issue by propos-
ing a modified ENO method, called m-ENO here. In the next section, we propose a sim-
ple averaged ENO-type method, in which the classical ENO polynomial is averaged with 
its closest neighbour. A variant m-AENO results from substituting ENO by m-ENO, for 
schemes of 4th and greater order of accuracy. The results are encouraging.

4 � Novel Polynomial Reconstruction: AENO

In this section, we present a non-linear polynomial reconstruction procedure that is akin to 
both the existing ENO and WENO procedures [12–15, 27, 28]. We first present an example 
that motivates this section.

4.1 � A Motivating Example: Second‑Order ADER Method

We begin by considering the simplest, first-degree, polynomial reconstruction

within the cell [x
i−

1

2

, x
i+

1

2

] , at time t = tn . Here xi =
1

2
(x

i−
1

2

+ x
i+

1

2

) is the cell centre and �i 
is the slope of pi(x) , still to be determined. Figure 2 depicts two polynomials of the form 
(74) and the results are respectively determined by choosing the slope thus

(73)

p4(xi+ 1

2

) = a0 + a1Δx +
3

4
a2Δx

2 +
1

2
a3Δx

3 +
5

16
a4Δx

4,

d

dx
p4(xi+ 1

2

) = 2a1 + 3a2Δx + 3a3Δx
2 +

5

2
a4Δx

3,

d2

dx2
p4(xi+ 1

2

) = 6a2 + 12a3Δx + 15a4Δx
2,

d3

dx3
p4(xi+ 1

2

) = 24a3 + 60a4Δx,

d3

dx3
p4(xi+ 1

2

) = 120a4.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(74)pi(x) = qn
i
+ (x − xi)�i



793Communications on Applied Mathematics and Computation (2023) 5:776–852	

1 3

Assume that the slope �i is chosen as the weighted average

It is easy to show that the second-order ADER method with the linear reconstruction (74) 
reproduces the classical second-order schemes of Lax-Wendroff, Warming-Beam and 
Fromm if � in (76) is chosen as follows:

The classical ENO [12] second-order method chooses

In other words, the classical ENO second-order method switches non-linearly between the 
Lax-Wendroff and the Warming-Beam methods, depending on the relative sizes in the 
absolute value of the slopes �

i−
1

2

 and �
i+

1

2

.
A simple third-order method. It is interesting to note that, still in the frame of the 

second-order ADER method, if the weight parameter � is chosen as

then, a third-order accurate method results, in both space and time. Here c is the Cou-
rant number. This scheme was first presented in [33], see Eq. (13.39), and also in [37], 

(75)�i ≡ �
i−

1

2

=
qn
i
− qn

i−1

Δx
; �i ≡ �

i+
1

2

=
qn
i+1

− qn
i

Δx
.

(76)�i =
1

2
(1 + �)�

i−
1

2

+
1

2
(1 − �)�

i+
1

2

, � ∈ [−1, 1].

(77)� =

⎧⎪⎨⎪⎩

−1 ∶ Lax-Wendroff method,

0 ∶ Fromm method,

1 ∶ Warming-Beam method.

(78)𝛥i =

{
𝛥
i−

1

2

if |𝛥
i−

1

2

| ⩽ |𝛥
i+

1

2

|,
𝛥
i+

1

2

if |𝛥
i−

1

2

| > |𝛥
i+

1

2

|.

(79)� =
1

3
(2c − sign(c)),

Fig. 2   Two possible first-degree reconstruction polynomials pL(x) (left) and pR(x) (right) for cell 
[x

i−
1

2

, x
i+

1

2

] . These result from choosing the slope as in (75)
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in the setting of the MUSCL-Hancock method [44]. However, it has been shown that for 
the homogeneous case, the MUSCL-Hancock method is entirely equivalent to the ADER 
method in second-order mode (ADER2), see [20]. We have again verified this in the setting 
of ADER methods. The details of the analysis are omitted.

Figure  3 displays computed results for the linear advection equation, for which a 
Gaussian profile is used as initial condition, where comparison is made with ADER2 
in conjunction with ENO reconstruction (74), (75) and (78). Table  1 shows empiri-
cal convergence rates for the linear advection equation in which it is verified that the 
ADER2 (formally second-order) scheme with reconstruction (74) with (76) and � 
given by (79) is third-order accurate in both space and time. 

The AENO reconstruction method presented in this paper, in fact emerges from 
averaging of two polynomials in the frame of the ENO scheme to choose the recon-
struction stencil. The construction of ADER schemes of up to fifth order in space and 
time, based on averages of the type (76) were constructed by MSc student Andrea San-
tacá in his Master thesis [24]. Additionally, in the present paper we include a variant of 
AENO, called m-AENO, to be explained later.

q
x
t

Fig. 3   Numerical results for the linear advection equation for a Gaussian profile test, comparing ADER2 
with ENO (circles) and ADER2 with AENO slope (76) (squares), with � =

1

3
(2c − sign(c)) . Tout = 100 

units, mesh M = 100 cells and Ccfl = 0.9

Table 1   Empirical convergence 
rates for ADER2 with the 
particular choice of slope 
averaging � =

1

3
(2c − sign(c)) 

in (79)

M L
1
 error L

1
 order L

2
 error L

2
 order L∞ error L∞ order

25 1.7E−02 – 3.5E−02 – 1.2E−01 –
50 3.5E−03 2.3 7.4E−03 2.2 2.7E−02 2.1
100 4.8E−04 2.9 1.0E−03 2.8 4.0E−03 2.8
200 6.2E−05 3.0 1.3E−04 3.0 5.3E−04 2.9
400 7.7E−06 3.0 1.7E−05 3.0 6.6E−05 3.0
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4.2 � A Joining Function for Averaging Two Polynomials

Motivated by the example of the previous Sect. 4.1 we seek an averaging procedure that can 
be applied to two polynomials of arbitrary degree. First we define the function

and � ∈ R , a constant, with |𝜖| < 1 . Consider now the averaging function J(�(x)) joining 
smoothly two constant, real states qL and qR , as follows:

Note the analogy between the weighted average (76) and (81). While in (76) the weight � 
is constant, in (81) �(x) is obviously variable.

Figure  4 shows the weight function �(x) for �2 = 0.2 . For x < 0 the function �(x) 
approaches 1 rapidly, while for x > 0 , �(x) approaches −1 . Note the following properties of 
�(x):

Note also the associated properties of J(�(x)):

(80)�(x) =
−x√
�2 + x2

, x ∈ R,

(81)J(w(x)) =
1

2
[1 + w(x)]qL +

1

2
[1 − w(x)]qR.

(82)

⎧⎪⎪⎨⎪⎪⎩

�(0) = 0,

�(−�) =
1

2

√
2 ≈ 0.72,

�(+�) = −
1

2

√
2 ≈ −0.72.

Fig. 4   Weight function �(x) 
defined by (80) for �2 = 0.2
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Figure 5 shows the distribution of J(�(x)) for qL = 3 , qR = −2 and �2 = 0.2 . It is seen that 
J(�(x)) approaches qL = 3 for x < 0 , while J(�(x)) tends to qR = −2 for x > 0 . Note that 
J(�(x)) is monotone, as

and

Note also that J�(x) → 0 as |�(x)| → ∞ . That is the constant states qL and qR are 
approached asymptotically by J(x). However we note that these states are approached very 
rapidly. Consider a positive integer N, then

For large N,

For example, for N = 10 , N√
1+N2

≈ 0.995 . That is, at a distance of 10� from the origin, J(x) 
attains the constant states with an error of less than 1% . Finally, we note that the use of �2 in 

(83)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

J(�(0)) =
1

2
(qL + qR),

J(�(−�)) =
1

2

�
1 +

1

2

√
2
�
qL +

1

2

�
1 −

1

2

√
2
�
qR,

J(�(+�)) =
1

2

�
1 −

1

2

√
2
�
qL +

1

2

�
1 +

1

2

√
2
�
qR.

(84)J�(𝜔(x)) =
1

2
(qL − qR)𝜔

�(x)

⎧⎪⎨⎪⎩

< 0 if qL > qR,

> 0 if qL < qR

(85)𝜔�(x) =
−𝜖2

(𝜖2 + x2)
3

2

< 0,∀x.

(86)�(N�) =
−N�√

�2 + N2�2
= −

N√
1 + N2

sign(�).

(87)�(N�) ≈ −sign(�) = −1.

Fig. 5   AENO coefficient func-
tion C(�) derived from the join-
ing function J, for coefficients 
CL = 3 (left) and CR = −2 (right) 
and �2 = 0.5 . The resulting 
AENO coefficient CAENO is 
closer to the min

AENO
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the definition of �(x) is convenient, as it permits a precise evaluation of J(x) at a distance � 
from the origin. In particular applications, a translation might be necessary. In this paper 
we use J(x) for averaging two polynomials, through the averaging of their coefficients.

When applying the above averaging function (81) to two states qL and qR we proceed as 
follows. First we define

where TOL is a small positive quantity chosen to avoid division by zero, e.g., TOL = 10−6 . 
Then we redefine

It is easy to see that for the joining function (81) we have

In other words, in the joining function (81) acting on two states qL and qR , the smaller argu-
ment in absolute value receives the larger weight and the larger argument in absolute value 
receives the smaller weight. This averaging procedure will be applied to two polynomials, 
the ENO polynomial and that closest to it, by applying it to each pair of respective coef-
ficients. The coefficients of the ENO polynomial will receive the larger weight, as we shall 
see in the next section.

4.3 � AENO: a Two‑Polynomial Average Method

In Sect.  3 we reviewed the ENO spatial reconstruction method. In Sect.  4.1 we showed 
that averaging of the ENO polynomial with its closest neighbour is capable of producing 
encouraging results. In particular in Sect.  4.1, we showed that for the formally second-
order ADER method there is an averaging for which such formally second-order ADER 
method is actually third-order accurate in both space and time.

In this section, we propose a reconstruction method based on a two-polynomial aver-
aging procedure. Two schemes are proposed. Scheme  1, called AENO, results from a 
weighted average of the classical ENO polynomial and its closest neighbour. Scheme 2, 
called m-AENO, follows a similar approach and results from a weighted average of the 
classical m-ENO polynomial of Shu [26] and its closest neighbour. We first describe 
AENO.

Here we introduce a general averaging procedure as applied to two neighbouring poly-
nomials of arbitrary degree. Assume an Nth degree polynomial p(x) on cell [xi−1∕2, xi+1∕2] 
of the form

(88)s =
|qL|

|qR| + TOL
,

(89)�(s) =
−(s − 1)√
�2 + (s − 1)2

.

(90)
�qL� ⩽ �qR� ⟺ 0 ⩽ s ⩽ 1 ⟹

1

2
[1 + �(s)]qL is given greater weight,

�qL� ⩾ �qR� ⟺ s ⩾ 1 ⟹
1

2
[1 − �(s)]qR is given greater weight.

⎫⎪⎬⎪⎭
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that has been obtained by differentiating a polynomial P(x) of degree N + 1 . By redefining 
the coefficients as

we write

For the sake of simplicity, in what follows the hat is omitted.
Recall that with a reconstruction polynomial of degree N it is possible to construct an 

ADER numerical method of order (N + 1) in both space and time. Then in the context of 
the ENO method, we need N + 1 stencils and following the ENO approach we find a single, 
best polynomial, the ENO polynomial. In the AENO approach, instead of choosing just 
the single ENO polynomial we consider another polynomial, the closest to the ENO poly-
nomial and take an average of these two. Moreover, the search of the stencils for the two 
polynomials is commanded by the conventional ENO approach and the coefficients of the 
ENO polynomial take the largest weight.

Example 2 In the case of a third-order method we just need second-degree polynomials, 
for which we have three possible candidates, namely

In the ENO context we choose one of these polynomials according to the ENO algorithm 
presented earlier. In this example, we need two stages. In the AENO case we perform just 
one step of the algorithm; basically, we choose the direction based on the first-order slope, 
which is either left or right. If the direction is left then we take an average of the coef-
ficients of pL(x) and pM(x) ; otherwise we take an average of the coefficients of pM(x) and 
pR(x) . Suppose the direction is the left one, then the sought polynomial is

with

and

(91)p(x) = a0 + 2a1(x − xi) +⋯ + (N + 1)aN(x − xi)
N

(92)â1 = 2a1,⋯ , âN = (N + 1)aN

(93)p(x) = a0 + â1(x − xi) +⋯ + âN(x − xi)
N .

(94)
pL(x) = a0L + a1L(x − xi) + a2L(x − xi)

2,

pM(x) = a0M + a1M(x − xi) + a2M(x − xi)
2,

pR(x) = a0R + a1R(x − xi) + a2R(x − xi)
2.

⎫⎪⎬⎪⎭

(95)p̃(x) = ã0 + ã1(x − xi) + ã2(x − xi)
2,

(96)

ã2 =
1

2
(1 + 𝜔)a2L +

1

2
(1 − 𝜔)a2M ,

𝜔 = 𝜔(s) =
1 − s√

𝜖2 + (1 − s)2
, s =

�a2L�
�a2M� + TOL

⎫⎪⎪⎬⎪⎪⎭
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The coefficient ã0 is chosen so as to comply with the conservation property, that is

The parameter �2 is a positive constant, while TOL is a small positive tolerance to avoid 
division by zero. In practice we take TOL = 10−6.

Generalization: The AENO procedure is then generalized as follows.

–	 Step 1 ENO-determined stencil. Perform N − 1 steps of the algorithm to choose the sten-
cils: for m = 1,⋯ ,N − 1,

 
	 This step results in two polynomials pL(x) and pR(x) , with coefficients akL and akR , 

respectively.
–	 Step 2 averaging. Take the average of the coefficients of the polynomials pL(x) and pR(x) 

to obtain the coefficients of the AENO polynomial, namely 

 with 

 and 

–	 Step 3 the AENO polynomial. The resulting polynomial is 

The m-AENO scheme follows a similar approach to the AENO scheme presented above. The 
difference is that, instead of relying on the classical ENO polynomial we rely on the classical 
m-ENO polynomial of Shu [26]. Then the m-AENO scheme results from a weighted averaged 
of m-ENO polynomial and its closest neighbour. We omit the details. For background of the 
m-ENO polynomial the reader is referred to the original paper of Shu [26].

(97)

ã1 =
1

2
(1 + 𝜔)a1L +

1

2
(1 − 𝜔)a1M ,

𝜔 =
1 − s√

𝜖2 + (1 − s)2
, s =

�a1L�
�a1M� + TOL

.

⎫
⎪⎪⎬⎪⎪⎭

(98)ã0 = qn
i
−

1

Δx ∫
xi+1∕2

xi−1∕2

[ã1(x − xi) + ã2(x − xi)
2]dx.

(99)lm+1(i) =

⎧⎪⎨⎪⎩

lm(i) if �q[xlm(i),⋯ , xlm(i)+m+1]�
⩽ �q[xlm(i)−1,⋯ , xlm(i)+m]�,

lm(i) − 1 otherwise.

(100)ãk =
1

2
(1 + 𝜔)akL +

1

2
(1 − 𝜔)akR,

(101)� =
1 − s√

�2 + (1 − s)2
, s =

�akL�
�akR� + TOL

(102)ã0 = qn
i
−

1

Δx ∫
xi+1∕2

xi−1∕2

(ã1(x − xi) +⋯ + ãN(x − xi)
N)dx.

(103)p̃(x) = ã0 + ã1(x − xi) +⋯ + ãN(x − xi)
N .
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In the next section, we carry out a thorough assessment of the newly proposed spatial 
reconstruction procedure, as applied to the linear advection equation.

5 � Results for the Linear Advection Equation

Here we assess the performance of ADER with the newly proposed AENO reconstruction 
procedure. For the assessment we compare numerical solutions against the exact solutions 
and against numerical solutions with ENO, m-ENO and WENO, also in conjunction with 
ADER. To this end we consider four test problems, namely IVP1, IVP2, IVP3 and IVP4 
given below

The exact solution in each IVP is given as

5.1 � Solution Profiles for Long‑Time Evolution

The purpose of this section is to illustrate the performance of the new schemes for linear 
IVPs for long-time evolution, which is known to be particularly challenging for low accu-
racy schemes. We compare results to exact solutions and to numerical solutions obtained 
with established reconstruction methods, namely ENO, m-ENO and WENO. To this 
end, we use IVP1 with smooth initial conditions and IVP4 with a combination of smooth 
and discontinuous parts. The second problem IVP4 is a more realistic representation of 

(104)
PDE: �tq + ��xq = 0, x ∈ [0, 30],

IC: q(x, 0) = h(x) = sin
(

2

5
πx
)
.

}
IVP1

(105)
PDE: �tq + ��xq = 0, x ∈ [0, 1],

IC: q(x, 0) = h(x) = sin(2πx).

}
IVP2

(106)
PDE: �tq + ��xq = 0, x ∈ [0, 2],

IC: q(x, 0) = h(x) = sin4(πx).

}
IVP3

(107)

PDE: �tq + ��xq = 0, x ∈ [−1, 1],

IC: q(x, 0) = h(x) =

⎧⎪⎪⎨⎪⎪⎩

exp
�

ln 2(x+0.7)2

0.000 9

�
, − 0.8 ⩽ x ⩽ −0.6,

1, − 0.4 ⩽ x ⩽ −0.2,

1 − �10x − 1�, 0.0 ⩽ x ⩽ 0.2,

(1 − 100(x − 0.5)2)1∕2, 0.4 ⩽ x ⩽ 0.6,

0, otherwise.

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

IVP4

(108)q(x, t) = h(x − �t).
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practical problems for hyperbolic equations that involve both smooth parts as well as 
discontinuities.

Figures 6, 7, 8, 9 and 10 show computed results (symbols) for IVP1 (104) compared 
to the exact solution (line) for the ADER high-order scheme with various reconstruction 
methods, from 2nd to 5th orders of accuracy in both space and time. For the new methods 
AENO and m-AENO we used �2 = 1

2
 . Obviously, for all methods, increasing the order of 

accuracy progressively improves the agreement between the numerical solution and the 
exact solution. The reconstruction method used has a visible effect on the computed solu-
tion; this is patently obvious for 2nd and 3rd orders of accuracy but it is still visible for 
higher orders of accuracy. Long-time evolution also contributes to differentiate between 
methods in terms of accuracy. Judging from the figures, AENO is clearly more accurate 
than both ENO and m-ENO; this is especially clear for 2nd, 3rd and 4th orders of accu-
racy. In fact, the new AENO schemes of this paper compare well with the sophisticated 
WENO; it is even reasonable to state that the new AENO schemes have a small advantage 
over WENO; compare carefully the profiles for 3rd and 4th orders of accuracy. For second 
order, WENO is superior to all other schemes. 

Figures 11, 12, 13, 14 and 15 show computed results for the multiple wave test IVP4 
for a long evolution time Tout = 2 000 units and a coarse mesh of just M = 100 cells. This 
is an exceedingly demanding test problem, as it contains the conflicting requirements of 
high accuracy for smooth parts and high resolution without spurious oscillations in the 
vicinity of discontinuities. Figure  11 shows results for ENO in conjunction with ADER 
for schemes of 2nd to 5th order in space and time. Clearly, for the long chosen output time 
and the coarse mesh used, even the 5th order scheme gives large errors; even higher order 
of accuracy would be required to obtain acceptable results. The challenges of this test are 
representative of practical computational problems involving long time evolution, such as 
in acoustics, seimic waves and tsunamic waves. Figure 12 shows results for m-ENO in con-
junction with ADER for schemes of 2nd to 5th order in space and time. Results are compa-
rable to those of ENO in Fig. 11.

Figure 13 shows results for the new AENO scheme. Compared to the classical ENO 
and m-ENO shown in Figs.   11 and   12, the new AENO scheme is clearly superior; 
this is more evident for 3rd and 4th orders of accuracy. Surprisingly, this observation 
is also true for WENO, comparing Figs. 13 and 15. Only for the 5th order case, AENO 
and WENO are, roughly, comparable; WENO displays some more visible undershoots 
and a spurious oscillation on the right-hand side. Results for the second version of our 
averaged ENO, m-AENO, are shown in Fig. 14. For 2nd and 3rd order accuracy, these 
results are identical to those of AENO. In fact, the schemes ENO and m-AENO are 
identical in these two cases. For 4th and 5th order cases the performance of m-AENO 
is visibly inferior to that of AENO. In fact, m-AENO is also inferior to the classi-
cal ENO, m-ENO and WENO schemes for this test problem and for the 4th and 5th 
order cases. Table 2 shows the errors in the computed solutions for the multi-wave test 
problem.

For the multi-wave test IVP4, it is the discontinuous components of the profile that 
pose the most severe challenge to the numerical methods. This is a recurrent feature of 
high-order methods for hyperbolic equations. To highlight this feature, we carried out 
computations by keeping the square wave only, in the initial condition of IVP4. Results 
are shown in Figs.  16 and  17. Figure  16 shows four frames corresponding to ADER 
schemes of orders 2, 3, 4 and 5. For each order we plot results for all reconstruction 
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Fig. 6   IVP1: long-time evolu-
tion test for IVP1 (104). ADER 
scheme with ENO reconstruction 
for the linear advection equation 
with � = 1 , M = 100 , Tout = 500 
and Ccfl = 0.9

x

x

x

x
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Fig. 7   IVP1: long-time evolu-
tion test for IVP1 (104). ADER 
scheme with m-ENO reconstruc-
tion for the linear advection 
equation with � = 1 , M = 100 , 
Tout = 500 and Ccfl = 0.9

x

x

x

x
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Fig. 8   IVP1: long-time evolu-
tion test for IVP1 (104). ADER 
scheme with AENO reconstruc-
tion for the linear advection 
equation with � = 1 , M = 100 , 
Tout = 500 and Ccfl = 0.9

x

x

x

x
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Fig. 9   IVP1: long-time evolu-
tion test for IVP1 (104). ADER 
scheme with m-AENO recon-
struction for the linear advection 
equation with � = 1 , M = 100 , 
Tout = 500 and Ccfl = 0.9

x

x

x

x
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Fig. 10   IVP1: long-time evolu-
tion test for IVP1 (104). ADER 
scheme with WENO reconstruc-
tion for the linear advection 
equation with � = 1 , M = 100 , 
Tout = 500 and Ccfl = 0.9

x

x

x

x
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Fig. 11   ENO results for IVP4 
(107): ADER scheme with the 
ENO reconstruction for the linear 
advection with � = 1 , M = 100 , 
Tout = 2 000 and Ccfl = 0.9

x

x

x
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Fig. 12   m-ENO results for IVP4 
(107): ADER scheme with the 
m-ENO reconstruction for the 
linear advection with � = 1 , 
M = 100 , Tout = 2 000 and 
Ccfl = 0.9

x

x
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Fig. 13   AENO results for IVP4 
(107): ADER scheme with the 
AENO reconstruction for the 
linear advection with � = 1 , 
M = 100 , Tout = 2 000 and 
Ccfl = 0.9
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x

x

x
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Fig. 14   m-AENO results for 
IVP4 (107): ADER scheme with 
the m-AENO reconstruction for 
the linear advection with � = 1 , 
M = 100 , Tout = 2 000 and 
Ccfl = 0.9
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x

x

x
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Fig. 15   WENO results for IVP4 
(107): ADER scheme with the 
WENO reconstruction for the 
linear advection with � = 1 , 
M = 100 , Tout = 2 000 and 
Ccfl = 0.9

x

x

x

x
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x x

x x

Fig. 16   Square wave results: ADER schemes from 2nd to 5th order with ENO, m-ENO, WENO, AENO 
and m-AENO reconstructions for the linear advection with � = 1 , M = 100 , Tout = 2 000 and Ccfl = 0.9

x x

x x

Fig. 17   Square wave results: ADER scheme with ENO, WENO, AENO and m-AENO reconstructions for 
the linear advection with � = 1 , M = 100 , Tout = 2 000 and Ccfl = 0.9
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schemes, noting that for orders 4 and 5 we have five distinct reconstruction schemes. 
For second-order ADER (ADER-2), WENO gives the best results, whereas for all 
higher-order ADER schemes, AENO gives the best results, by an appreciable margin, 
most evident for 3rd and 4th orders of accuracy. Note the undershoots in the WENO 
results for the 5th order scheme. Figure  17 shows four frames corresponding to four 
reconstruction schemes, including the two new ones of this paper, namely AENO and 
m-AENO. For each reconstruction schemes we see the effect of increasing the order 
of accuracy, from 2 to 5. Note the peculiar behaviour of m-AENO for the 4th order 
scheme. At this stage we note, however, that when it comes to smooth solutions, even 
with large derivatives, the modified AENO scheme, namely m-AENO based on m-ENO, 
performs very well indeed, as we shall see in the convergence rates results in Sect. 5.2. 

5.2 � Convergence Rate Study for the Linear Advection Equation

In this section, we carry out a convergence rate study for the linear advection equation 
through IVP2 (105) and IVP3 (106), for the schemes of 2nd to 5th order of accuracy in 
space and time. We compare the newly presented schemes AENO and m-AENO, with the 
established ENO, m-ENO and WENO reconstruction methods, all of them used with the 
fully discrete ADER approach. IVP2 (105) could be described as a smooth test of the kind 
commonly used in the literature to assess convergence rates. IVP3 (106) also serves the 
same purpose but it is recognised as an exceedingly severe test problem, for which many 
commonly used high-order schemes fail to give the expected rates.

Results for IVP2. Results are shown in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, where 
errors and corresponding orders of accuracy are shown for the three norms L1 , L2 and L∞ . 
Results for IVP2 (105) are shown in Tables 3, 4, 5, 6 and 7. All schemes attain the theoreti-
cally expected convergence rates, for all orders, in the L1 norm. WENO, with the excep-
tion of the second-order scheme, attains the theoretically expected convergence rates also 
in the L2 and L∞ norms. The remaining schemes show poor performance in these norms, 
especially in the L∞ norm. Generally, ENO and m-ENO show comparable performance, 
perhaps with small advantage to ENO. The new AENO scheme does not perform satisfac-
tory in the L2 and L∞ norms; as a matter of fact in these norms AENO is inferior to ENO 
and m-ENO. The new m-AENO scheme improves with respect to AENO for the 5th order 
scheme. 

Figure  18 shows computed L1-errors for IVP2 (105), as the mesh is refined, for the 
ADER scheme with all reconstruction schemes of this paper: ENO, m-ENO, WENO, 
AENO and m-AENO. With the exception of the second-order case, for which WENO is the 

Table 2   L1-errors for multi-wave test IVP4 (107) from the ADER scheme from 2nd to 5th order, in con-
junction with ENO, m-ENO, WENO, AENO and m-AENO reconstructions, as applied the linear advection 
equation with � = 1 , M = 100 , Tout = 2 000 and Ccfl = 0.9

ENO m-ENO WENO AENO m-AENO

ADER-2 6.64E−01 6.64E−01 6.13E−01 6.46E−01 6.46E−01
ADER-3 5.94E−01 5.73E−01 5.72E−01 4.58E−01 4.58E−01
ADER-4 5.00E−01 4.80E−01 5.46E−01 3.06E−01 5.55E−01
ADER-5 3.09E−01 2.65E−01 2.66E−01 2.76E−01 3.87E−01
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Fig. 18   Computed L1-errors 
for IVP2 (105), as the mesh is 
refined, for the ADER scheme 
with reconstructions: ENO, 
m-ENO, WENO, AENO and 
m-AENO, as applied to the linear 
advection with � = 1 , Tout = 0.5 
and Ccfl = 0.9
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Fig. 19   Computed L1-errors 
for IVP3 (106), as the mesh is 
refined, for the ADER scheme 
with reconstructions: ENO, 
m-ENO, WENO, AENO and 
m-AENO, as applied to the linear 
advection with � = 1 , Tout = 4 
and Ccfl = 0.9
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most accurate reconstruction method, the AENO schemes of this paper outperform all the 
other reconstruction methods.

Results for IVP3. As stated previously IVP3 is an exceedingly severe test problem, for 
which many of the commonly used high-order schemes fail to give the expected conver-
gence rates. Results for the schemes of this paper are shown in Tables 8, 9, 10, 11 and 12, 
where errors and corresponding orders of accuracy are shown for the three norms L1 , L2 
and L∞ . 

For the ENO scheme, results are shown in Table 8. The scheme attains the expected 
convergence rates sub-optimally for the second and third order cases in the L1 norm, while 
failing in the L2 and L∞ norms. The 4th order ENO scheme fails to attain the expected rates 
in all three norms, while for the 5th order case computed rates are close to the expected 
ones, but are sub-optimal. In summary, ENO fails the convergence rate test for IVP3. For 
the modified ENO (m-ENO) scheme of Shu [26] we show the computed results in Table 9, 

Table 3   ENO results for IVP2 (105): convergence-rate study for the ADER scheme with the ENO recon-
struction for the linear advection with � = 1 , Tout = 0.5 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 25 6.6E−03 – 9.1E−03 – 2.5E−02 – 0
 50 1.9E−03 1.8 2.9E−03 1.6 1.0E−02 1.3 0.1
 100 4.9E−04 1.9 9.3E−04 1.7 4.0E−03 1.3 0.2
 200 1.2E−04 2.0 2.9E−04 1.7 1.6E−03 1.3 0.8
 400 3.3E−05 1.9 9.4E−05 1.6 6.8E−04 1.3 3.3

ADER-3
 25 2.9E−04 – 3.3E−04 – 5.5E−04 – 0
 50 3.7E−05 3.0 4.1E−05 3.0 6.3E−05 3.1 0.2
 100 4.5E−06 3.0 5.0E−06 3.0 7.6E−06 3.0 0.7
 200 5.4E−07 3.0 6.0E−07 3.1 8.8E−07 3.1 2.7
 400 6.8E−08 3.0 7.6E−08 3.0 1.1E−07 3.0 11.4

ADER-4
 25 7.5E−05 – 1.1E−04 – 3.2E−04 – 0.1
 50 5.1E−06 3.9 9.0E−06 3.6 3.4E−05 3.2 0.5
 100 3.4E−07 3.9 7.3E−07 3.6 3.7E−06 3.2 2.0
 200 2.2E−08 3.9 6.0E−08 3.6 4.1E−07 3.1 8.2
 400 1.5E−09 3.9 5.0E−09 3.6 4.6E−08 3.2 31.3

ADER-5
 25 3.7E−06 – 4.2E−06 – 6.7E−06 – 0.2
 50 1.2E−07 5.0 1.3E−07 5.0 2.0E−07 5.0 0.7
 100 3.6E−09 5.0 4.0E−09 5.0 6.2E−09 5.0 3.1
 200 1.1E−10 5.1 1.2E−10 5.1 1.8E−10 5.1 12.5
 400 3.4E−12 5.0 3.8E−12 5.0 5.5E−12 5.0 49.5
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where significant improvements with respect to ENO are seen; however, computed rates 
are sub-optimal and failure is seen in some cases for the L2 and L∞ norms.

For the new AENO scheme of this paper, results are shown in Table 10. For the lower-
order cases, 2nd and 3rd order, results are satisfactory, but the scheme fails to attain the 
expected convergence rates for the higher-order schemes, 4th and 5th order. For the new 
variant of AENO, called m-AENO, results are shown in Table 11. Note that m-AENO is 
identical to AENO for the second- and third-order schemes, see Table 10 and correspond-
ing comments. The performance of m-AENO for the 4th and 5th order schemes is very 
satisfactory, attaining the expected rates in the L1 and L2 norms, even if sub-optimally for 
the L2 norm. In the 4th order case the scheme does not attain the expected rate in the L∞ 
norm. In summary, m-AENO constitutes a significant improvement over AENO, for the 
higher-order range.

Table 4   m-ENO results for IVP2 (105): convergence-rate study for the ADER scheme with the m-ENO 
reconstruction for the linear advection with � = 1 , Tout = 0.5 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 25 6.6E−03 – 9.1E−03 – 2.5E−02 – 0
 50 1.9E−03 1.8 2.9E−03 1.6 1.0E−02 1.3 0.1
 100 4.9E−04 1.9 9.3E−04 1.7 4.0E−03 1.3 0.2
 200 1.2E−04 2.0 2.9E−04 1.7 1.6E−03 1.3 0.8
 400 3.3E−05 1.9 9.4E−05 1.6 6.8E−04 1.3 3.3

ADER-3
 25 2.9E−04 – 3.3E−04 – 4.6E−04 – 0
 50 3.7E−05 3.0 4.1E−05 3.0 5.7E−05 3.0 0.2
 100 4.5E−06 3.0 5.0E−06 3.0 7.1E−06 3.0 0.7
 200 5.4E−07 3.0 6.0E−07 3.0 8.5E−07 3.0 2.9
 400 6.8E−08 3.0 7.6E−08 3.0 1.1E−07 3.0 11.4

ADER-4
 25 7.5E−05 – 1.1E−04 – 3.2E−04 – 0.1
 50 5.1E−06 3.9 9.0E−06 3.6 3.4E−05 3.2 0.5
 100 3.4E−07 3.9 7.3E−07 3.6 3.7E−06 3.2 2.1
 200 2.2E−08 3.9 6.0E−08 3.6 4.1E−07 3.1 7.9
 400 1.5E−09 3.9 5.0E−09 3.6 4.6E−08 3.2 33.7

ADER-5
 25 1.6E−05 – 2.0E−05 – 4.7E−05 – 0.2
 50 5.5E−07 4.8 8.7E−07 4.5 2.3E−06 4.4 0.8
 100 1.9E−08 4.9 3.6E−08 4.6 1.4E−07 4.0 3.1
 200 6.0E−10 5.0 1.5E−09 4.6 8.3E−09 4.1 11.8
 400 2.0E−11 4.9 6.3E−11 4.5 5.0E−10 4.1 49.2
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Results for the classical WENO scheme in conjunction with the fully discrete ADER 
approach are shown in Table  10. Generally, the WENO results are satisfactory for this 
severe test problem. For the second-order case convergence in the L1 norm is attained, 
being sub-optimal for the L2 norm and failing for the L∞ norm. For the higher-order 
schemes, convergence is attained in all norms, except for the 4th order scheme, where con-
vergence is sub-optimal in the L1 norm and fails in the L2 and L∞ norms. In summary, out 
of the five reconstruction schemes, WENO gives the best convergence rate performance for 
this demanding IVP3 test problem.

Figure  19 shows computed L1-errors for IVP3 (106), as the mesh is refined, for the 
ADER scheme with all five reconstructions methods: ENO, m-ENO, WENO, AENO 
and m-AENO. For the second-order scheme, WENO has the smallest errors, followed by 
AENO and then by ENO. For the third-order schemes, AENO has the smallest error, fol-
lowed by WENO, m-ENO and ENO. For the 4th and 5th order schemes, m-AENO has 

Table 5   AENO results for IVP2 (105): convergence-rate study for the ADER schemes with the AENO 
reconstruction with �2 = 0.5 for the linear advection for � = 1 , Tout = 0.5 , Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2 with �2 = 0.5

 25 6.2E−03 – 8.9E−03 – 2.4E−02 – 0
 50 1.6E−03 1.9 2.8E−03 1.7 9.4E−03 1.3 0.1
 100 4.0E−04 2.0 8.9E−04 1.7 3.6E−03 1.4 0.5
 200 1.0E−04 2.0 2.7E−04 1.7 1.4E−03 1.3 1.8
 400 2.4E−05 2.1 8.5E−05 1.7 5.7E−04 1.3 7.6

ADER-3 with �2 = 0.5

 25 1.7E−04 – 1.9E−04 – 3.5E−04 – 0.1
 50 2.3E−05 2.9 2.7E−05 2.9 5.2E−05 2.7 0.5
 100 3.1E−06 2.9 3.9E−06 2.8 9.7E−06 2.4 1.7
 200 4.0E−07 3.0 6.1E−07 2.7 2.3E−06 2.1 5.1
 400 5.2E−08 3.0 1.0E−07 2.6 5.9E−07 2.0 21.1

ADER-4 with �2 = 0.5

 25 2.5E−05 – 3.8E−05 – 1.3E−04 – 0.2
 50 1.8E−06 3.8 3.4E−06 3.5 1.2E−05 3.4 0.9
 100 1.0E−07 4.1 2.4E−07 3.8 1.2E−06 3.3 3.8
 200 6.0E−09 4.1 2.0E−08 3.6 1.5E−07 3.0 14.5
 400 3.5E−10 4.1 1.5E−09 3.7 1.4E−08 3.4 59.2

ADER-5 with �2 = 0.5

 25 2.2E−06 – 2.8E−06 – 6.6E−06 – 0.3
 50 6.5E−08 5.1 9.9E−08 4.8 3.6E−07 4.2 1.2
 100 1.9E−09 5.1 3.8E−09 4.7 1.9E−08 4.2 4.8
 200 5.5E−11 5.1 1.5E−10 4.6 1.2E−09 4.0 19.4
 400 1.7E−12 5.0 6.2E−12 4.6 6.3E−11 4.2 82.2
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the smallest error, while AENO’s performance deteriorates visibly as the order of accu-
racy increases. This observation is consistent with the convergence rate study for IVP3 
discussed above.

In the next section, we assess the new AENO reconstruction method as applied to a non-
linear hyperbolic system.

6 � Results for the Blood Flow Equations for Arteries

In this section, we assess the methods as applied to a non-linear hyperbolic system. The 
ADER method is implemented with the Toro-Titarev solver [41] for the generalized Rie-
mann problem, as described in Sect.  2.2.2. All three reconstruction methods are imple-
mented in terms of characteristic variables, for all orders of accuracy.

Table 6   m-AENO results for IVP2 (105): convergence-rate study for the ADER schemes with the m-AENO 
reconstruction with �2 = 0.5 for the linear advection for � = 1 , Tout = 0.5 , Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2 with �2 = 0.5

 25 6.2E−03 – 8.9E−03 – 2.4E−02 – 0
 50 1.6E−03 1.9 2.8E−03 1.7 9.4E−03 1.3 0.1
 100 4.0E−04 2.0 8.9E−04 1.7 3.6E−03 1.4 0.5
 200 1.0E−04 2.0 2.7E−04 1.7 1.4E−03 1.3 1.8
 400 2.4E−05 2.1 8.5E−05 1.7 5.7E−04 1.3 7.6

ADER-3 with �2 = 0.5

 25 1.7E−04 – 1.9E−04 – 3.5E−04 – 0.1
 50 2.3E−05 2.9 2.7E−05 2.9 5.2E−05 2.7 0.5
 100 3.1E−06 2.9 3.9E−06 2.8 9.7E−06 2.4 1.7
 200 4.0E−07 3.0 6.1E−07 2.7 2.3E−06 2.1 5.1
 400 5.2E−08 3.0 1.0E−07 2.6 5.9E−07 2.0 21.1

ADER-4 with �2 = 0.5

 25 1.3E−05 – 1.6E−05 – 3.9E−05 – 0.2
 50 9.5E−07 3.8 1.5E−06 3.5 5.4E−06 2.8 0.9
 100 6.2E−08 3.9 1.2E−07 3.7 5.3E−07 3.4 3.5
 200 3.8E−09 4.0 9.4E−09 3.6 6.5E−08 3.0 15.7
 400 2.3E−10 4.0 7.4E−10 3.7 6.9E−09 3.2 61.5

ADER-5 with �2 = 0.5

 25 2.2E−06 – 3.1E−06 – 8.5E−06 – 0.4
 50 6.0E−08 5.2 7.6E−08 5.3 2.1E−07 5.3 1.4
 100 1.7E−09 5.1 2.0E−09 5.2 7.2E−09 4.9 5.4
 200 5.3E−11 5.0 6.0E−11 5.1 2.0E−10 5.2 20.4
 400 1.6E−12 5.0 1.9E−12 5.0 8.7E−12 4.5 82.6



820	 Communications on Applied Mathematics and Computation (2023) 5:776–852

1 3

6.1 � The Governing Equations

Now we extend and test the new spatial reconstruction AENO method to a non-linear sys-
tem of hyperbolic equations, namely the blood flow equations for arteries. The system, in 
general conservation-law form reads

with

(109)�t� + �x�(�) = �(�),

(110)� =

⎡⎢⎢⎣

A

Au

A�

⎤⎥⎥⎦
, �(�) =

⎡⎢⎢⎣

Au

Au2 + �A3∕2

Au�

⎤⎥⎥⎦
, �(�) =

⎡⎢⎢⎣

0

−Ru

0

⎤⎥⎥⎦
.

Table 7   WENO results for IVP2 (105): convergence-rate study for ADER schemes with the WENO recon-
struction for the linear advection with � = 1 , Tout = 0.5 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 25 4.7E−03 – 7.3E−03 – 2.0E−02 – 0
 50 1.2E−03 2.0 2.3E−03 1.7 7.4E−03 1.4 0.2
 100 2.9E−04 2.0 7.0E−04 1.7 2.8E−03 1.4 0.6
 200 6.9E−05 2.1 2.0E−04 1.8 1.1E−03 1.4 2.4
 400 1.6E−05 2.1 6.0E−05 1.8 4.2E−04 1.3 10.3

ADER-3
 25 2.9E−04 – 3.3E−04 – 4.6E−04 – 0.1
 50 3.7E−05 3.0 4.1E−05 3.0 5.7E−05 3.0 0.5
 100 4.5E−06 3.0 5.0E−06 3.0 7.1E−06 3.0 1.3
 200 5.4E−07 3.0 6.0E−07 3.0 8.5E−07 3.0 5.2
 400 6.8E−08 3.0 7.6E−08 3.0 1.1E−07 3.0 20.2

ADER-4
 25 4.4E−05 – 4.8E−05 – 6.8E−05 – 0.2
 50 2.4E−06 4.2 2.7E−06 4.2 3.8E−06 4.2 1.2
 100 1.4E−07 4.1 1.6E−07 4.1 2.3E−07 4.1 3.8
 200 9.0E−09 4.0 1.0E−08 4.0 1.4E−08 4.0 15.4
 400 5.6E−10 4.0 6.2E−10 4.0 8.8E−10 4.0 60.2

ADER-5
 25 3.7E−06 – 4.2E−06 – 5.9E−06 – 0.3
 50 1.2E−07 5.0 1.3E−07 5.0 1.8E−07 5.0 1.3
 100 3.6E−09 5.0 4.0E−09 5.0 5.7E−09 5.0 5.7
 200 1.1E−10 5.1 1.2E−10 5.1 1.7E−10 5.1 22.6
 400 3.4E−12 5.0 3.8E−12 5.0 5.4E−12 5.0 88.6
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The first two equations are statements of conservation of mass and momentum, while the 
third equation represents the advection of a tracer �(x, t) transported with the blood veloc-
ity u(x,  t). Here A(x,  t) is the blood vessel cross-sectional area. In the source term R is 
resistance, which is neglected here. The system is closed with a tube law for arteries, given 
as

(111)p = pext + K(x)

� √
A√
A0

− 1

�
, K =

√
π

1 − �2

E(x)h0(x)√
A0

.

Table 8   ENO results for IVP3 (106): convergence-rate study for the ADER scheme with the ENO recon-
struction for the linear advection with � = 1 , Tout = 4 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 25 1.4E−01 – 1.2E−01 – 2.0E−01 – 0.1
 50 4.6E−02 1.6 4.5E−02 1.4 9.4E−02 1.1 0.2
 100 1.7E−02 1.4 1.8E−02 1.3 4.0E−02 1.2 0.8
 200 5.0E−03 1.8 5.9E−03 1.6 1.7E−02 1.2 3.2
 400 1.4E−03 1.9 1.8E−03 1.7 7.2E−03 1.3 12.7

ADER-3
 25 4.5E−02 – 3.9E−02 – 5.6E−02 – 0.2
 50 8.3E−03 2.5 7.0E−03 2.5 8.9E−03 2.6 0.8
 100 1.4E−03 2.6 1.2E−03 2.6 1.8E−03 2.3 3.0
 200 2.0E−04 2.8 1.8E−04 2.7 3.4E−04 2.4 10.8
 400 4.0E−05 2.3 4.1E−05 2.1 9.5E−05 1.9 42.5

ADER-4
 25 2.5E−02 – 2.2E−02 – 2.8E−02 – 0.5
 50 3.6E−03 2.8 3.4E−03 2.7 5.4E−03 2.4 2.0
 100 6.1E−04 2.6 5.8E−04 2.6 1.2E−03 2.1 7.7
 200 1.4E−04 2.1 1.6E−04 1.8 4.9E−04 1.3 30.8
 400 3.4E−05 2.0 4.5E−05 1.9 1.4E−04 1.8 124.3

ADER-5
 25 1.0E−02 – 8.4E−03 – 1.0E−02 – 0.8
 50 4.5E−04 4.5 3.8E−04 4.5 5.5E−04 4.2 3.1
 100 1.5E−05 4.9 1.3E−05 4.9 2.1E−05 4.7 12.2
 200 5.7E−07 4.7 5.0E−07 4.7 9.8E−07 4.4 48.2
 400 3.1E−08 4.2 3.4E−08 3.9 8.5E−08 3.5 187.9
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Here A0 is the equilibrium cross-sectional area, E is the Young modulus of the vessel wall 
and h0 is the vessel-wall thickness. These three quantities are parameters of the problem 
and in general they vary along the length of the vessel. In (110) we have assumed that all 
parameters of the problem are constant and

where � is the constant density of the blood. We remark that for blood flow in veins, a dif-
ferent tube law applies [39].

We assess the method in terms of two problems. First, we consider a Riemann problem 
with exact solution containing discontinuities. The purpose is to assess the performance of 
the non-linear reconstruction method at discontinuities, expecting absent or much reduced 

(112)� =
K

3�
√
A0

,

Table 9   m-ENO results for IVP3 (106): convergence-rate study for the ADER scheme with the m-ENO 
reconstruction for the linear advection with � = 1 , Tout = 4 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 25 1.4E−01 – 1.2E−01 – 2.0E−01 – 0.1
 50 4.6E−02 1.6 4.5E−02 1.4 9.4E−02 1.1 0.2
 100 1.7E−02 1.4 1.8E−02 1.3 4.0E−02 1.2 0.8
 200 5.0E−03 1.8 5.9E−03 1.6 1.7E−02 1.2 3.2
 400 1.4E−03 1.9 1.8E−03 1.7 7.2E−03 1.3 12.7

ADER-3
 25 4.9E−02 – 4.0E−02 – 5.3E−02 – 0.2
 50 6.7E−03 2.9 5.8E−03 2.8 8.2E−03 2.7 0.7
 100 1.1E−03 2.6 8.8E−04 2.7 1.1E−03 2.9 2.7
 200 1.4E−04 2.9 1.1E−04 3.0 1.5E−04 2.8 10.9
 400 1.8E−05 3.0 1.4E−05 3.0 1.9E−05 3.0 43.1

ADER-4
 25 2.2E−02 – 1.9E−02 – 2.7E−02 – 0.5
 50 2.7E−03 3.0 2.5E−03 2.9 4.2E−03 2.7 2.0
 100 3.9E−04 2.8 3.4E−04 2.9 8.6E−04 2.3 8.1
 200 2.9E−05 3.8 2.9E−05 3.5 7.6E−05 3.5 32.2
 400 2.0E−06 3.8 2.4E−06 3.6 9.5E−06 3.0 129.1

ADER-5
 25 6.4E−03 – 5.5E−03 – 8.4E−03 – 0.8
 50 5.0E−04 3.7 4.9E−04 3.5 7.7E−04 3.4 3.1
 100 4.9E−05 3.4 4.2E−05 3.6 6.7E−05 3.5 12.5
 200 2.2E−06 4.5 2.0E−06 4.4 3.9E−06 4.1 49.3
 400 8.9E−08 4.6 9.0E−08 4.5 2.2E−07 4.2 194.1
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spurious oscillations. The second problem has a smooth exact solution and is used to evalu-
ate the accuracy, expecting to attain the desired convergence rates.

6.2 � Riemann Problem Solution Profiles

Here we assess the methods as applied to a Riemann problem test with the exact solution. 
For this purpose, we solve the homogeneous equations (109)–(110) with initial conditions 
as given in Table 13. The solution of this problem is discontinuous and therefore the objec-
tive of the exercise is to test the expected ENO character of the non-linear reconstruction 
methods. More particularly, to test the newly presented AENO method. We expect good 
resolution of smooth parts of the flow, sharp discontinuities and absence, or much reduced, 
spurious oscillations behind the shock.

Table 10   AENO results for IVP3 (106): convergence-rate study for the ADER schemes with the AENO 
reconstruction with �2 = 0.5 for the linear advection for � = 1 , Tout = 4 , Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2 with �2 = 0.5

 25 1.3E−01 – 1.1E−01 – 1.9E−01 – 0.1
 50 4.1E−02 1.7 4.2E−02 1.4 8.5E−02 1.2 0.5
 100 1.3E−02 1.7 1.5E−02 1.5 3.5E−02 1.3 1.8
 200 3.3E−03 2.0 4.7E−03 1.7 1.4E−02 1.3 7.1
 400 7.9E−04 2.0 1.4E−03 1.7 5.5E−03 1.4 28.6

ADER-3 with �2 = 0.5

 25 2.4E−02 – 2.0E−02 – 2.7E−02 – 0.3
 50 4.9E−03 2.3 4.4E−03 2.2 6.8E−03 2.0 1.3
 100 7.2E−04 2.8 6.2E−04 2.8 1.0E−03 2.7 5.1
 200 8.6E−05 3.1 8.1E−05 2.9 1.4E−04 2.9 20.2
 400 1.1E−05 3.0 1.1E−05 2.8 2.9E−05 2.3 81.0

ADER-4 with �2 = 0.5

 25 2.1E−02 – 1.8E−02 – 2.4E−02 – 0.9
 50 2.5E−03 3.1 2.3E−03 3.0 4.3E−03 2.5 3.5
 100 2.8E−04 3.1 2.8E−04 3.1 5.2E−04 3.0 13.8
 200 5.6E−05 2.3 6.6E−05 2.1 1.4E−04 1.9 54.1
 400 1.6E−05 1.8 2.2E−05 1.6 6.1E−05 1.2 219.1

ADER-5 with �2 = 0.5

 25 4.3E−03 – 3.8E−03 – 5.0E−03 – 1.3
 50 2.2E−04 4.3 1.8E−04 4.4 2.5E−04 4.3 5.2
 100 2.0E−05 3.5 2.3E−05 3.0 5.5E−05 2.2 20.2
 200 6.2E−06 1.7 1.1E−05 1.1 3.8E−05 0.5 80.2
 400 9.0E−06 − 0.5 1.6E−05 − 0.6 5.3E−05 − 0.5 318.9
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Results are shown in Fig. 20 for ENO, Fig. 21 for m-ENO, Fig. 22 for AENO, Fig. 23 
for m-AENO and Fig. 24 for WENO. The results show that the numerical solution approxi-
mates well the exact one for every order of accuracy and the discontinuity is handled well. 
For all orders, no visible spurious oscillations are present, except for WENO, and the 
approximation of the waves improves as the order of accuracy increases. To plotting accu-
racy, all methods give virtually identical results. The new method performs as well as the 
well-established ENO and WENO methods. As already noted, WENO differs slightly from 
ENO, mENO, AENO and m-AENO, in that small spurious oscillations are seen behind the 
shock for the 4th and 5th order methods.

Table 11   m-AENO results for IVP3 (106): convergence-rate study for the ADER schemes with the 
m-AENO reconstruction with �2 = 0.5 for the linear advection for � = 1 , Tout = 4 , Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2 with �2 = 0.5

 25 1.3E−01 – 1.1E−01 – 1.9E−01 – 0.1
 50 4.1E−02 1.7 4.2E−02 1.4 8.5E−02 1.2 0.5
 100 1.3E−02 1.7 1.5E−02 1.5 3.5E−02 1.3 1.8
 200 3.3E−03 2.0 4.7E−03 1.7 1.4E−02 1.3 7.1
 400 7.9E−04 2.0 1.4E−03 1.7 5.5E−03 1.4 28.6

ADER-3 with �2 = 0.5

 25 2.4E−02 – 2.0E−02 – 2.7E−02 – 0.3
 50 4.9E−03 2.3 4.4E−03 2.2 6.8E−03 2.0 1.3
 100 7.2E−04 2.8 6.2E−04 2.8 1.0E−03 2.7 5.1
 200 8.6E−05 3.1 8.1E−05 2.9 1.4E−04 2.9 20.2
 400 1.1E−05 3.0 1.1E−05 2.8 2.9E−05 2.3 81.0

ADER-4 with �2 = 0.5

 25 2.1E−02 – 1.7E−02 – 2.2E−02 – 0.9
 50 2.0E−03 3.4 2.0E−03 3.1 3.2E−03 2.8 3.6
 100 1.5E−04 3.8 1.8E−04 3.5 4.8E−04 2.7 14.4
 200 9.3E−06 4.0 1.5E−05 3.6 5.5E−05 3.1 56.6
 400 5.7E−07 4.0 1.1E−06 3.7 5.2E−06 3.4 224.6

ADER-5 with �2 = 0.5

 25 4.1E−03 – 3.3E−03 – 5.1E−03 – 1.3
 50 2.3E−04 4.2 1.9E−04 4.1 2.6E−04 4.3 5.3
 100 7.2E−06 5.0 6.2E−06 4.9 1.1E−05 4.6 20.7
 200 2.2E−07 5.1 1.9E−07 5.1 3.9E−07 4.8 81.3
 400 6.9E−09 5.0 5.8E−09 5.0 1.6E−08 4.6 321.8
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Table 12   WENO results for IVP3 (106): convergence-rate study for ADER schemes with the WENO 
reconstruction for the linear advection with � = 1 , Tout = 4 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 25 9.4E−02 – 8.8E−02 – 1.6E−01 – 0.2
 50 3.0E−02 1.7 3.2E−02 1.5 6.9E−02 1.2 0.6
 100 8.6E−03 1.8 1.0E−02 1.6 2.5E−02 1.4 2.5
 200 2.1E−03 2.0 3.0E−03 1.8 9.5E−03 1.4 10.6
 400 4.9E−04 2.1 8.3E−04 1.9 3.7E−03 1.4 40.8

ADER-3
 25 5.0E−02 – 4.1E−02 – 5.5E−02 – 0.3
 50 7.4E−03 2.8 6.3E−03 2.7 8.3E−03 2.7 1.2
 100 1.1E−03 2.7 8.9E−04 2.8 1.1E−03 2.9 4.8
 200 1.4E−04 3.0 1.1E−04 3.0 1.4E−04 3.0 19.2
 400 1.8E−05 3.0 1.4E−05 3.0 1.7E−05 3.0 76.5

ADER-4
 25 3.9E−02 – 3.3E−02 – 4.5E−02 – 0.9
 50 3.9E−03 3.3 3.2E−03 3.3 5.1E−03 3.2 3.7
 100 2.9E−04 3.7 3.0E−04 3.4 6.9E−04 2.9 14.7
 200 2.0E−05 3.9 2.8E−05 3.4 9.2E−05 2.9 57.1
 400 1.4E−06 3.8 2.7E−06 3.4 1.2E−05 2.9 226.8

ADER-5
 25 1.2E−02 – 9.6E−03 – 1.4E−02 – 1.4
 50 4.3E−04 4.8 3.4E−04 4.8 3.6E−04 5.3 5.6
 100 1.4E−05 4.9 1.1E−05 4.9 1.2E−05 4.9 21.7
 200 4.4E−07 5.0 3.5E−07 5.0 3.7E−07 5.0 85.4
 400 1.4E−08 5.0 1.1E−08 5.0 1.2E−08 5.0 338.5

Table 13   Riemann problem test. 
Initial condition for the classical 
Riemann problem for the blood 
flow equations for arteries. 
The left column defines the 
quantities on the left and right 
of the initial discontinuity. Here 
A0 = 3.135 3 × 10−4 m2

Variables Initial value

AL 2A0

uL 0
�L 1
AR A0

uR 0
�R 0.2
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Fig. 20   ENO results for a Riemann problem for blood flow. Numerical solutions from 2nd to 5th order 
ADER with ENO reconstruction are compared with the exact solution. Computational parameters are: 
M = 100 , Tout = 0.012 and Ccfl = 0.9
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Fig. 21   m-ENO results for a Riemann problem for blood flow. Numerical solutions from 2nd to 5th 
order ADER with m-ENO reconstruction are compared with the exact solution. Computational parameters 
are: M = 100 , Tout = 0.012 and Ccfl = 0.9
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Fig. 22   AENO results for a Riemann problem for blood flow. Numerical solutions from 2nd to 5th order 
ADER with AENO reconstruction are compared with the exact solution. Computational parameters are: 
M = 100 , Tout = 0.012 , Ccfl = 0.9 and � = 0.5
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Fig. 23   m-AENO results for a Riemann problem for blood flow. Numerical solutions from 2nd to 5th order 
ADER with m-AENO reconstruction are compared with the exact solution. Computational parameters are: 
M = 100 , Tout = 0.012 , Ccfl = 0.9 and � = 0.5
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Fig. 24   WENO results for a Riemann problem for blood flow. Numerical solutions from 2nd to 5th order 
ADER with WENO reconstruction are compared with the exact solution. Computational parameters are: 
M = 100 , Tout = 0.012 and Ccfl = 0.9
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6.3 � Efficiency Assessment on a Riemann Problem Test

A criterion of fundamental importance in assessing the performance of numerical methods 
is the cost/benefit relation. In other words, accuracy against cost, or equivalently error 
against cost. This is conventionally achieved by computing the solution to a test prob-
lem with the exact solution on a sequence of successively refined meshes Mk , and comput-
ing the corresponding errors Ek on a given norm. Associated to each pair (Mk,Ek) there 
is a computing cost CPUk . Then, one usually fits a least-square line to the set of points 
(CPUk,Ek) on log-log axes. The procedure is performed for each method to be assessed, 
which produces a graph of several straight lines, one for each method, as shown in Fig.  25.

For the efficiency exercise here, we choose the Riemann problem, with the exact solu-
tion, given in Table 14.

Results are shown in Fig.  25 for third-order schemes for all reconstruction meth-
ods. The top frame shows results for the error in cross-sectional area A, while the bot-
tom frame shows results for the error in velocity u. We have used the sequence of meshes 
M = 25, 50, 100, 200, 400, 800, 1 600 ; see symbols. Then, as is customary in the literature, 
we have fitted least square straight lines for each scheme. From the results, it is clearly seen 
that as the mesh is refined, the CPU cost increases and the error decreases. The straight 
lines corresponding to the schemes diverge as the error decreases. It is seen that for a given 
cost, the smallest error is obtained from the newly proposed AENO scheme, while the larg-
est error is given by the WENO scheme. The error lines from the remaining schemes lie in 
between AENO and WENO.

To assess the error/cost relation we fix an error and draw the corresponding horizontal 
line. For example, in Fig.  25 we first choose a constant error denoted by EAENO

1 600
 , this is 

the error of the AENO scheme for the finest mesh used with M = 1 600 cells. Then the 
intercept of this horizontal line with the least square line corresponding to AENO gives 
the CPU cost. For the cross-sectional area we obtain 12 827 s for AENO and 54 648 s for 
WENO. This means that AENO is 4.3 times more efficient than WENO.

Obviously, for even smaller errors, this difference in efficiency will increase. By extrapo-
lating to smaller errors, assuming straight lines, we gain a clearer idea of the difference in 
efficiency of all methods assessed. Extrapolating the straight lines to the chosen small errors 
of E = 10−8 for area A and of E = 10−4 for velocity u we obtain estimates for the cost of the 
schemes; see corresponding arrows in Fig. 25. From the given numbers in Fig.  25 it is seen 
that the efficiency gain of AENO over WENO is 9.7 for area, while for velocity, bottom plot, 
this gain is 9.13. In other words, for small errors, the AENO reconstruction method is esti-
mated to be one order of magnitude more efficient than WENO.

6.4 � Convergence‑Rate Study

To carry out an empirical convergence rate study we consider the method of manufactured 
solutions. First we prescribe a smooth vector-value function �̃(x, t) [22] given as follows:

(113)�̃(x, t) =

[
Ã + ãsin(2πx)cos(2πt)

−ãcos(2πx)sin(2πt)

]
,
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Fig. 25   Efficiency plot for a Riemann problem for blood flow. Numerical solutions for 3rd order ADER 
with ENO, m-ENO, WENO and AENO reconstructions for meshes M = 25, 50, 100, 200, 400, 800, 1 600 ; 
see symbols. For the finest mesh used ( M = 1 600 ), AENO is seen to be 4.3 times more efficient than 
WENO, for area A. For extrapolated lines to the small error E = 10−8 for area, AENO is seen to be one 
order of magnitude more efficient than WENO
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with

After inserting (113) into (109) we obtain a new system of balance laws, namely

The function �̃(x, t) in (113) is the exact solution of the new balance law (115). We remark 
that for this test we considered the equations without the passive scalar.

Convergence rates are calculated with respect to the cross-sectional area A(x,  t) 
and flow q(x, t) = A(x, t) u(x, t) . Results are shown in Tables 15, 16, 17, 18, 19, 20, 21, 
22, 23 and 24. The overall results differ somehow from those for the linear advection 
equation. Now, essentially, the expected convergence rates are reached for all orders in 
all three norms, by all three reconstruction methods. In the linear advection case, the 
AENO method reached the expected rate only in the L1 norm, being sub-optimal in the 
L2 norm; the expected rate in the L∞ norm was not reached.

Regarding errors, Figs. 26 and 27 show a comparison of L1 errors for all three meth-
ods for all orders and all meshes. Figure 26 shows results for the second (top) and third 
(bottom) order methods. For the second-order case all three reconstruction schemes 
give essentially equivalent results. For the third-order schemes, surprisingly, ENO 
exhibits smaller errors than AENO. Figure 27 shows results for the fourth (top) and fifth 

(114)A0 = 3.135 3 × 10−4 m2, Ã = A0, ã = A0 × 10−1.

(115)𝜕t�̃ + 𝜕x�(�̃) = �(�̃) + �new(x, t).

Table 14   Riemann problem for 
efficiency test. Initial condition 
for the classical Riemann 
problem for the blood flow 
equations for arteries. Here 
A0 = 3.14 × 10−4 m2 ; length 
of domain = 0.5 m; position of 
initial discontinuity = 0.25 m

Variables Initial value

AL 10 × 10−4 m2

uL 0
�L 1
AR 1 × 10−4 m2

uR 0
�R 0
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Fig. 26   L1-errors for the blood flow equations. Computed errors for cross-sectional area A for the 2nd and 
3rd order ADER schemes with ENO, m-ENO, AENO and WENO 
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Fig. 27   L1-errors for the blood flow equations. Computed errors for cross-sectional area A for the 4th and 
5th order ADER schemes with ENO, m-ENO, AENO, m-AENO and WENO 
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Table 15   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the ENO reconstruction. Rates are calculated for the cross-sectional area A. Computational 
parameters are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.1E−06 – 4.5E−06 – 6.0E−06 – 0
 16 1.0E−06 2.0 1.1E−06 2.0 1.6E−06 1.9 0.1
 32 2.6E−07 2.0 2.9E−07 2.0 4.9E−07 1.7 0.4
 64 6.5E−08 2.0 7.3E−08 2.0 1.2E−07 2.0 2.3
 128 1.6E−08 2.0 1.8E−08 2.0 3.1E−08 2.0 14.7

ADER-3
 8 6.1E−08 – 8.0E−08 – 1.2E−07 – 0.1
 16 1.1E−08 2.4 1.4E−08 2.6 2.4E−08 2.3 0.3
 32 1.0E−09 3.5 1.1E−09 3.6 1.6E−09 3.9 1.1
 64 1.4E−10 2.8 1.6E−10 2.8 2.7E−10 2.6 5.0
 128 1.5E−11 3.2 1.7E−11 3.3 2.5E−11 3.4 26.3

ADER-4
 8 9.7E−08 – 1.1E−07 – 1.4E−07 – 0.2
 16 4.2E−09 4.5 4.8E−09 4.5 7.9E−09 4.2 0.7
 32 2.6E−10 4.0 3.1E−10 4.0 6.1E−10 3.7 2.6
 64 1.4E−11 4.2 1.8E−11 4.1 5.0E−11 3.6 11.2
 128 9.3E−13 3.9 1.0E−12 4.2 1.9E−12 4.7 51.9

ADER-5
 8 2.2E−09 – 2.5E−09 – 3.7E−09 – 0.5
 16 1.2E−10 4.2 1.5E−10 4.0 2.9E−10 3.7 1.9
 32 5.5E−12 4.4 6.4E−12 4.6 1.2E−11 4.6 7.6
 64 2.6E−13 4.4 2.9E−13 4.4 4.8E−13 4.6 31.3
 128 8.3E−15 5.0 9.2E−15 5.0 1.5E−14 5.1 129.5
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(bottom) order methods. For the fourth-order schemes, all results are virtually coinci-
dent. For the fifth-order case, the AENO schemes give the smaller errors.

6.5 � Shock/Turbulence Interaction Problem

Here we assess the performance of the methods for a blood-flow analogue of the so-called 
shock/turbulence interaction problem for gas dynamics proposed in [14]. A variation of 

Table 16   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the ENO reconstruction. Rates are calculated for the flow Au. Computational parameters are: 
Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
  8 5.5E−06 – 6.0E−06 – 8.1E−06 – 0
 16 9.5E−07 2.5 1.1E−06 2.4 1.9E−06 2.1 0.1
 32 1.9E−07 2.3 2.2E−07 2.4 4.0E−07 2.3 0.4
 64 4.3E−08 2.1 5.2E−08 2.1 1.1E−07 1.9 2.3
 128 1.1E−08 2.0 1.2E−08 2.1 2.6E−08 2.1 14.7

ADER-3
 8 1.6E−06 – 1.9E−06 – 2.6E−06 – 0.1
 16 2.1E−07 2.9 2.4E−07 2.9 3.4E−07 2.9 0.3
 32 2.7E−08 3.0 3.0E−08 3.0 4.3E−08 3.0 1.1
 64 3.4E−09 3.0 3.8E−09 3.0 5.4E−09 3.0 5.0
 128 4.3E−10 3.0 4.7E−10 3.0 6.7E−10 3.0 26.3

ADER-4
 8 5.9E−07 – 6.8E−07 – 9.7E−07 – 0.2
 16 2.8E−08 4.4 3.0E−08 4.5 4.1E−08 4.6 0.7
 32 1.7E−09 4.1 2.0E−09 4.0 3.7E−09 3.5 2.6
 64 9.9E−11 4.1 1.1E−10 4.1 2.7E−10 3.8 11.2
 128 5.7E−12 4.1 6.3E−12 4.2 1.1E−11 4.6 51.9

ADER-5
 8 1.7E−07 – 1.8E−07 – 2.3E−07 – 0.5
 16 5.3E−09 5.0 5.7E−09 5.0 7.9E−09 4.8 1.9
 32 1.6E−10 5.0 1.8E−10 5.0 2.6E−10 5.0 7.6
 64 4.9E−12 5.0 5.4E−12 5.0 7.6E−12 5.1 31.3
 128 1.5E−13 5.0 1.7E−13 5.0 2.4E−13 5.0 129.5
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this test that is more suitable to assess methods for long evolution times was proposed in 
[42] and [32]. Our test problem here is inspired on the modified version of the problem. We 
solve the blood flow equations with the initial condition (Figs. 28 and 29) 

on a domain of length 50  cm, with the reference cross-sectional area chosen as 
A0 = 3.14 cm2 . The solution of the problem consists of a right facing shock wave running 

(116)[A, u,𝜓] =

{[
15A0, 919.7, 1

]
if x ⩽ 10 ,[

A0(1 + 0.2 sin
(

80

50
πx
)
, 0, 1

]
if x > 10

Table 17   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the m-ENO reconstruction. Rates are calculated for the cross-sectional area A. Computa-
tional parameters are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.1E−06 – 4.5E−06 – 6.0E−06 – 0
 16 1.0E−06 2.0 1.1E−06 2.0 1.6E−06 1.9 0.1
 32 2.6E−07 2.0 2.9E−07 2.0 4.9E−07 1.7 0.4
 64 6.5E−08 2.0 7.3E−08 2.0 1.2E−07 2.0 2.3
 128 1.6E−08 2.0 1.8E−08 2.0 3.1E−08 2.0 14.7

ADER-3
 8 5.1E−08 – 5.6E−08 – 8.1E−08 – 0.1
 16 1.1E−08 2.2 1.2E−08 2.2 1.8E−08 2.2 0.3
 32 9.6E−10 3.5 1.1E−09 3.5 1.6E−09 3.5 1.1
 64 1.4E−10 2.8 1.6E−10 2.8 2.3E−10 2.7 5.1
 128 1.5E−11 3.3 1.7E−11 3.3 2.5E−11 3.2 28.4

ADER-4
 8 7.3E−08 – 9.4E−08 – 1.4E−07 – 0.3
 16 4.6E−09 4.0 5.5E−09 4.1 9.9E−09 3.9 0.9
 32 2.8E−10 4.1 3.6E−10 3.9 8.7E−10 3.5 4.2
 64 1.5E−11 4.2 2.0E−11 4.2 5.9E−11 3.9 18.4
 128 9.7E−13 4.0 1.1E−12 4.2 2.4E−12 4.6 83.1

ADER-5
 8 2.3E−08 – 3.1E−08 – 6.0E−08 – 0.5
 16 8.3E−10 4.8 9.6E−10 5.0 1.8E−09 5.1 1.9
 32 2.3E−11 5.2 3.1E−11 4.9 9.1E−11 4.3 7.6
 64 7.1E−13 5.0 8.8E−13 5.1 2.2E−12 5.4 31.0
 128 9.5E−14 2.9 1.5E−13 2.5 5.8E−13 1.9 129.1
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into a smooth, high-frequency fluctuation in cross-sectional area A. As time evolves, the 
shock runs into the fluctuation, which spreads upstream. The numerical solution is evalu-
ated at output time Tout = 0.03 s. Figures 30,  31,  32,  33 and  34 show the results obtained 
with ADER schemes of orders 2nd to 5th, with different reconstruction methods. This 
problem does not have an exact solution. We therefore compute a reference solution using 
the fifth order ADER scheme with WENO reconstruction on a mesh of 5 000 computa-
tional cells. In all cases the reference solution is shown in black and the numerical solu-
tion on a mesh of 1 000 cells is shown with blue dots. For orders of accuracy 2nd to 5th, 
Figs. 30,  31,  32,  33 and  34 compare the numerical solution with the reference solution in 
the portion of domain [25, 50], showing on top the shock wave and below the domain por-
tion [28, 40] displaying the physical oscillations upstream of the shock.

Table 18   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the m-ENO reconstruction. Rates are calculated for the flow Au. Computational parameters 
are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 5.5E−06 – 6.0E−06 – 8.1E−06 – 0
 16 9.5E−07 2.5 1.1E−06 2.4 1.9E−06 2.1 0.1
 32 1.9E−07 2.3 2.2E−07 2.4 4.0E−07 2.3 0.4
 64 4.3E−08 2.1 5.2E−08 2.1 1.1E−07 1.9 2.3
 128 1.1E−08 2.0 1.2E−08 2.1 2.6E−08 2.1 14.7

ADER-3
 8 1.7E−06 – 1.8E−06 – 2.4E−06 – 0.1
 16 2.1E−07 3.0 2.4E−07 2.9 3.3E−07 2.9 0.3
 32 2.7E−08 3.0 3.0E−08 3.0 4.3E−08 3.0 1.1
 64 3.4E−09 3.0 3.8E−09 3.0 5.3E−09 3.0 5.1
 128 4.3E−10 3.0 4.7E−10 3.0 6.7E−10 3.0 28.4

ADER-4
 8 6.8E−07 – 7.3E−07 – 1.0E−06 – 0.3
 16 2.3E−08 4.9 2.8E−08 4.7 4.8E−08 4.4 0.9
 32 1.5E−09 3.9 1.8E−09 4.0 4.3E−09 3.5 4.2
 64 9.7E−11 4.0 1.1E−10 4.1 2.4E−10 4.2 18.4
 128 5.7E−12 4.1 6.3E−12 4.1 1.3E−11 4.2 83.1

ADER-5
 8 7.5E−08 – 9.5E−08 – 1.8E−07 – 0.5
 16 4.4E−09 4.1 5.8E−09 4.0 1.2E−08 3.9 1.9
 32 1.1E−10 5.3 1.3E−10 5.4 2.8E−10 5.4 7.6
 64 4.7E−12 4.5 5.2E−12 4.7 9.6E−12 4.9 31.0
 128 4.9E−13 3.3 7.7E−13 2.8 2.9E−12 1.7 129.1
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As the order of the numerical method increases, the resolution of the physical oscil-
lations of the solution is improved. For second order methods and all the reconstructions 
techniques, only two oscillations just behind the shock are captured. The WENO recon-
struction method shows a small advantage over the other reconstruction schemes, for the 
second-order case. However, for the fourth and fifth order cases, the WENO numerical 
solution presents spurious oscillations and over/under shoots. For the third-order case, 
AENO shows a small advantage over the other methods. For the fourth-order case, AENO 
is comparable to ENO and m-ENO; both AENO and m-AENO show a small advantage 
over the remaining methods. For the fifth-order case, all methods are comparable, with the 
exception of WENO, which shows the worse performance, due to the spurious oscillations 
and over/under shoots.

Table 19   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the AENO reconstruction with �2 = 0.5 . Rates are calculated for the cross-sectional area A. 
Computational parameters are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.2E−06 – 4.5E−06 – 6.0E−06 – 0
 16 1.0E−06 2.0 1.1E−06 2.0 1.6E−06 1.9 0.1
 32 2.6E−07 2.0 2.9E−07 2.0 4.7E−07 1.8 0.4
 64 6.4E−08 2.0 7.2E−08 2.0 1.2E−07 2.0 2.3
 128 1.6E−08 2.0 1.8E−08 2.0 2.8E−08 2.1 15.6

ADER-3
 8 5.7E−08 – 6.1E−08 – 8.2E−08 – 0.1
 16 1.3E−08 2.1 1.4E−08 2.1 2.1E−08 2.0 0.3
 32 2.0E−09 2.7 2.2E−09 2.7 3.0E−09 2.8 1.2
 64 3.1E−10 2.7 3.3E−10 2.7 4.4E−10 2.8 5.4
 128 4.2E−11 2.9 4.5E−11 2.9 5.8E−11 2.9 28.2

ADER-4
 8 8.4E−08 – 9.7E−08 – 1.4E−07 – 0.2
 16 4.2E−09 4.3 4.9E−09 4.3 8.4E−09 4.0 0.8
 32 2.5E−10 4.1 3.1E−10 4.0 6.8E−10 3.6 2.7
 64 1.7E−11 3.9 1.8E−11 4.1 3.3E−11 4.4 11.7
 128 9.7E−13 4.1 1.1E−12 4.0 2.0E−12 4.0 60.5

ADER-5
 8 4.6E−09 – 4.9E−09 – 6.4E−09 – 0.5
 16 1.0E−10 5.5 1.1E−10 5.4 1.7E−10 5.3 2.0
 32 3.5E−12 4.9 3.8E−12 4.9 6.2E−12 4.8 8.0
 64 1.1E−13 5.0 1.3E−13 4.9 2.8E−13 4.4 31.9
 128 3.0E−15 5.2 3.8E−15 5.1 8.4E−15 5.1 133.7
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Table 20   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the AENO reconstruction with �2 = 0.5 . Rates are calculated for the flow Au. Computational 
parameters are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.9E−06 – 5.8E−06 – 8.2E−06 – 0
 16 1.0E−06 2.3 1.2E−06 2.3 2.0E−06 2.0 0.1
 32 2.0E−07 2.3 2.3E−07 2.4 3.3E−07 2.6 0.4
 64 5.8E−08 1.8 6.6E−08 1.8 9.3E−08 1.8 2.3
 128 1.5E−08 2.0 1.7E−08 2.0 2.5E−08 1.9 15.6

ADER-3
 8 2.3E−06 – 2.7E−06 – 3.7E−06 – 0.1
 16 3.5E−07 2.7 4.1E−07 2.7 5.9E−07 2.7 0.3
 32 4.8E−08 2.9 5.3E−08 2.9 7.6E−08 3.0 1.2
 64 6.2E−09 3.0 6.8E−09 3.0 9.4E−09 3.0 5.4
 128 7.8E−10 3.0 8.6E−10 3.0 1.2E−09 3.0 28.2

ADER-4
 8 1.8E−07 – 2.0E−07 – 3.1E−07 – 0.2
 16 4.5E−09 5.3 5.1E−09 5.3 9.1E−09 5.1 0.8
 32 3.1E−10 3.9 4.1E−10 3.6 1.1E−09 3.1 2.7
 64 1.4E−11 4.5 1.9E−11 4.4 6.3E−11 4.1 11.7
 128 7.5E−13 4.2 9.7E−13 4.3 2.5E−12 4.7 60.5

ADER-5
 8 8.1E−08 – 8.1E−08 – 9.2E−08 – 0.5
 16 1.4E−09 5.9 1.4E−09 5.9 1.7E−09 5.8 2.0
 32 2.6E−11 5.7 3.1E−11 5.5 5.7E−11 4.9 8.0
 64 6.5E−13 5.3 8.4E−13 5.2 1.9E−12 4.9 31.9
 128 1.7E−14 5.2 2.4E−14 5.2 5.9E−14 5.0 133.7
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Table 21   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the m-AENO reconstruction with �2 = 0.5 . Rates are calculated for the cross-sectional area 
A. Computational parameters are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.2E−06 – 4.5E−06 – 6.0E−06 – 0
 16 1.0E−06 2.0 1.1E−06 2.0 1.6E−06 1.9 0.1
 32 2.6E−07 2.0 2.9E−07 2.0 4.7E−07 1.8 0.4
 64 6.4E−08 2.0 7.2E−08 2.0 1.2E−07 2.0 2.3
 128 1.6E−08 2.0 1.8E−08 2.0 2.8E−08 2.1 15.6

ADER-3
 8 5.7E−08 – 6.1E−08 – 8.2E−08 – 0.1
 16 1.3E−08 2.1 1.4E−08 2.1 2.1E−08 2.0 0.3
 32 2.0E−09 2.7 2.2E−09 2.7 3.0E−09 2.8 1.2
 64 3.1E−10 2.7 3.3E−10 2.7 4.4E−10 2.8 5.4
 128 4.2E−11 2.9 4.5E−11 2.9 5.8E−11 2.9 28.2

ADER-4
 8 7.8E−08 – 9.2E−08 – 1.3E−07 – 0.2
 16 4.0E−09 4.3 4.5E−09 4.4 7.0E−09 4.2 0.7
 32 2.4E−10 4.0 2.7E−10 4.0 4.3E−10 4.0 3.1
 64 1.5E−11 4.0 1.7E−11 4.0 3.3E−11 3.7 12.5
 128 9.5E−13 4.0 1.1E−12 4.0 1.7E−12 4.3 62.8

ADER-5
 8 5.5E−09 – 6.1E−09 – 1.0E−08 – 0.5
 16 2.2E−10 4.6 2.5E−10 4.6 4.4E−10 4.6 2.0
 32 5.4E−12 5.4 5.7E−12 5.4 8.4E−12 5.7 9.5
 64 1.5E−13 5.2 1.7E−13 5.1 2.8E−13 4.9 35.1
 128 4.6E−15 5.0 5.1E−15 5.0 8.3E−15 5.1 139.5
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Table 22   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the m-AENO reconstruction with �2 = 0.5 . Rates are calculated for the flow Au. Computa-
tional parameters are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.9E−06 – 5.8E−06 – 8.2E−06 – 0
 16 1.0E−06 2.3 1.2E−06 2.3 2.0E−06 2.0 0.1
 32 2.0E−07 2.3 2.3E−07 2.4 3.3E−07 2.6 0.4
 64 5.8E−08 1.8 6.6E−08 1.8 9.3E−08 1.8 2.3
 128 1.5E−08 2.0 1.7E−08 2.0 2.5E−08 1.9 15.6

ADER-3
 8 2.3E−06 – 2.7E−06 – 3.7E−06 – 0.1
 16 3.5E−07 2.7 4.1E−07 2.7 5.9E−07 2.7 0.3
 32 4.8E−08 2.9 5.3E−08 2.9 7.6E−08 3.0 1.2
 64 6.2E−09 3.0 6.8E−09 3.0 9.4E−09 3.0 5.4
 128 7.8E−10 3.0 8.6E−10 3.0 1.2E−09 3.0 28.2

ADER-4
 8 1.7E−07 – 2.0E−07 – 3.1E−07 – 0.2
 16 3.2E−09 5.7 3.8E−09 5.7 6.3E−09 5.6 0.7
 32 2.3E−10 3.8 2.8E−10 3.8 6.2E−10 3.3 3.1
 64 1.0E−11 4.5 1.4E−11 4.3 6.2E−11 3.3 12.5
 128 4.1E−13 4.6 4.8E−13 4.9 9.5E−13 6.0 62.8

ADER-5
 8 6.8E−08 – 7.6E−08 – 9.5E−08 – 0.5
 16 9.2E−10 6.2 1.0E−09 6.2 1.6E−09 5.9 2.0
 32 1.8E−11 5.6 2.1E−11 5.6 3.8E−11 5.4 9.5
 64 4.3E−13 5.4 4.7E−13 5.5 7.8E−13 5.6 35.1
 128 1.3E−14 5.0 1.5E−14 5.0 2.4E−14 5.1 139.5
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Table 23   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the WENO reconstruction. Rates are calculated for the cross-sectional area A. Computational 
parameters are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.2E−06 – 4.5E−06 – 6.0E−06 – 0
 16 1.0E−06 2.0 1.2E−06 2.0 1.8E−06 1.8 0.1
 32 2.6E−07 2.0 2.9E−07 2.0 4.3E−07 2.0 0.5
 64 6.4E−08 2.0 7.1E−08 2.0 1.2E−07 1.9 2.4
 128 1.6E−08 2.0 1.8E−08 2.0 2.6E−08 2.1 14.9

ADER-3
 8 5.0E−08 – 5.5E−08 – 8.0E−08 – 0.1
 16 1.1E−08 2.2 1.2E−08 2.2 1.8E−08 2.2 0.3
 32 9.6E−10 3.5 1.1E−09 3.5 1.6E−09 3.5 1.1
 64 1.4E−10 2.8 1.6E−10 2.8 2.3E−10 2.7 5.2
 128 1.5E−11 3.3 1.7E−11 3.3 2.5E−11 3.2 26.6

ADER-4
 8 7.4E−08 – 8.5E−08 – 1.2E−07 – 0.2
 16 3.9E−09 4.2 4.3E−09 4.3 6.3E−09 4.3 0.7
 32 2.4E−10 4.0 2.7E−10 4.0 4.0E−10 4.0 2.8
 64 1.5E−11 4.0 1.7E−11 4.0 2.6E−11 4.0 12.0
 128 9.6E−13 4.0 1.1E−12 4.0 1.6E−12 4.0 59.0

ADER-5
 8 3.6E−09 – 3.9E−09 – 5.5E−09 – 0.5
 16 1.4E−10 4.7 1.5E−10 4.7 2.5E−10 4.5 2.0
 32 5.6E−12 4.6 6.2E−12 4.6 1.0E−11 4.6 7.8
 64 2.6E−13 4.4 2.9E−13 4.4 4.6E−13 4.5 31.4
 128 8.3E−15 5.0 9.2E−15 5.0 1.5E−14 5.0 132.1
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Table 24   Convergence-rate study for the blood flow equations. ADER schemes from 2nd to 5th order of 
accuracy with the WENO reconstruction. Rates are calculated for the flow Au. Computational parameters 
are: Tout = 0.1 and Ccfl = 0.9

Mesh L
1
-err L

1
-ord L

2
-err L

2
-ord L∞-err L∞-ord CPU/s

ADER-2
 8 4.3E−06 – 5.8E−06 – 8.4E−06 – 0
 16 7.7E−07 2.5 8.8E−07 2.7 1.4E−06 2.6 0.1
 32 2.1E−07 1.9 2.4E−07 1.9 3.4E−07 2.0 0.5
 64 6.4E−08 1.7 7.1E−08 1.8 1.0E−07 1.7 2.4
 128 1.6E−08 2.0 1.8E−08 2.0 2.5E−08 2.0 14.9

ADER-3
 8 1.7E−06 – 1.8E−06 – 2.4E−06 – 0.1
 16 2.1E−07 3.0 2.4E−07 2.9 3.3E−07 2.9 0.3
 32 2.7E−08 3.0 3.0E−08 3.0 4.3E−08 3.0 1.1
 64 3.4E−09 3.0 3.8E−09 3.0 5.3E−09 3.0 5.2
 128 4.3E−10 3.0 4.7E−10 3.0 6.7E−10 3.0 26.6

ADER-4
 8 4.5E−07 – 5.1E−07 – 7.6E−07 – 0.2
 16 2.5E−08 4.2 2.8E−08 4.2 4.0E−08 4.2 0.7
 32 1.6E−09 4.0 1.7E−09 4.0 2.5E−09 4.0 2.8
 64 9.6E−11 4.0 1.1E−10 4.0 1.5E−10 4.0 12.0
 128 5.9E−12 4.0 6.6E−12 4.0 9.3E−12 4.0 59.0

ADER-5
 8 1.7E−07 – 1.8E−07 – 2.4E−07 − 0.5
 16 5.2E−09 5.0 5.8E−09 5.0 8.0E−09 4.9 2.0
 32 1.6E−10 5.0 1.8E−10 5.0 2.5E−10 5.0 7.8
 64 4.9E−12 5.0 5.4E−12 5.0 7.7E−12 5.0 31.4
 128 1.5E−13 5.0 1.7E−13 5.0 2.4E−13 5.0 132.1



846	 Communications on Applied Mathematics and Computation (2023) 5:776–852

1 3

er
ro
r

er
ro
r

Fig. 28   L1-errors for the blood flow equations. Computed errors for flow Au for the 2nd and 3rd order 
ADER schemes with ENO, m-ENO, AENO and WENO 
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Fig. 29   L1-errors for the blood flow equations. Computed errors for flow Au for the 4th and 5th order ADER 
schemes with ENO, m-ENO, AENO, m-AENO and WENO 
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Fig. 30   Shock/turbulence interaction test problem: ADER schemes from 2nd to 5th order with ENO recon-
struction
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Fig. 31   Shock/turbulence interaction test problem: ADER schemes from 2nd to 5th order with m-ENO 
reconstruction
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Fig. 32   Shock/turbulence interaction test problem: ADER schemes from 2nd to 5th order with WENO 
reconstruction
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Fig. 33   Shock/turbulence interaction test problem: ADER schemes from 2nd to 5th order with AENO 
reconstruction
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7 � Conclusions

In this paper, we have presented a novel, non-linear spatial reconstruction scheme called 
AENO, with two variants. The method is akin to the established methods ENO, m-ENO 
and WENO. All reconstruction schemes have been implemented in conjunction with the 
fully discrete ADER scheme, from second to fifth order of accuracy, in both space and 
time, along with the Toro-Titarev solver for the generalized Riemann problem. The meth-
ods have been tested thoroughly for the linear advection equation and for a non-linear 
hyperbolic system, namely the blood flow equations. The assessment of the methods has 
been through comparison of profiles with exact solutions, convergence rate studies and effi-
ciency studies. Overall, the results of the new AENO reconstruction methods are compara-
ble to the ENO, m-ENO and WENO. However, AENO shows a distinctive advantage over 
ENO for long-time evolution problems; this is more obvious for second- and third-order 
methods, but will also be apparent for high-order methods on coarse meshes. Crucially, 
AENO turns out to be the most efficient of all schemes tested. Estimates reveal AENO 
to be up to one order of magnitude more efficient than WENO, for sought small errors. 
Desirable future developments are implementation and assessment of the AENO schemes 
in conjunction with semi-discrete methods in one and multiple space dimensions.
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Fig. 34   Shock interaction test problem: ADER schemes from 2nd to 5th order with m-AENO reconstruc-
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