Communications on Applied Mathematics and Computation (2021) 3:585-604
https://doi.org/10.1007/542967-021-00145-2

ORIGINAL PAPER

®

Check for
updates

Existence of Boundary Value Problems for Impulsive
Fractional Differential Equations with a Parameter

Jin You' - Mengrui Xu' - Shurong Sun'

Received: 13 August 2020 / Revised: 19 April 2021 / Accepted: 5 May 2021 /
Published online: 22 September 2021
© Shanghai University 2021

Abstract

We investigate a class of boundary value problems for nonlinear impulsive fractional dif-
ferential equations with a parameter. By the deduction of Altman’s theorem and Krasno-
selskii’s fixed point theorem, the existence of this problem is proved. Examples are given
to illustrate the effectiveness of our results.
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1 Introduction

Fractional differential equations are essential tools of describing memory and hereditary
properties of materials, and they are widely applied in physics, control theory, and engi-
neering. Recently, they also attract many researchers and have a rapid development [5, 6, 9,
10, 14]. Boundary value problems of fractional differential equations have been studied by
many scholars [1, 8, 13, 15, 16, 18] during the past years.

The theory of impulsive differential equations has rapid development over the years,
see for the monographs by Bainov et al. [3], Lakshmikantham et al. [7] and references
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therein. The most prominent feature of impulsive fractional differential equations is taking
the influence of the condition of system of sudden and abrupt phenomenon into full consid-
eration, which also plays a very important role in modern science, and has been extensively
used in population ecological dynamics system, infectious disease dynamics, and so on. In
recent years, some researchers have studied impulsive fractional differential equations, see
for example [11, 17]. However, the theory for fractional differential equations has not yet
been sufficiently developed. For example, there are few papers considering the boundary
value problems for impulsive fractional differential equations of order 2 < a < 3 with a
parameter, the form of this equation is more complicated and the property of this equation
is worth to study.

In this paper, we consider the existence of the solution for a class of boundary value
problems of nonlinear impulsive fractional differential equations

D u(t) = Af (t,u(t)), t € J',

Au(ty) = Qp(ut)), k=1,2,-,m,

A () = R (u(t) k= 1,2, ,m, 1)
Al (1) = S (u(t) . k = 1,2, ,m,

u(0) + ' (0) = 0, u(1) + u'(1) = 0,u” (0) + u"(1) = 0,

where D“ is the Caputo derivative, 2 < o < 3, J =[0,1] f € C(U X R,R), Ot, R, S,€ C(R, R),
O=ty<t; <<ty < <t, <t ., =LJ =I\{t,,,t,},Jo=10,1,1,J, = (t,, 1], -+,
S = (0,0 10, Auty) = u(t) — u(e)), Au' () = W' (67) — W' (1), A’ (1) =" (6) — " (7).

The paper is organized as follows. In Sect. 2, we introduce some necessary notions,
basic definitions, and Lemmas. In Sect. 3, using the deduction of Altman’s theorem and
Krasnoselskii’s fixed point theorem, the existence of solutions is proved. In Sect. 4, two
examples are given to demonstrate the applications of our results.

2 Preliminaries
We firstly introduce the following space:
PCU,R)y={u:J->R|ueCl,), u(t;:), u(r;) exist, u(r;) = u(f), k= 0,1, ---,m} with

the norm ||u|| = sup |u(?)|. Clearly, PC(J, R) is a Banach space.

el
Definition 1 ([10]) The Caputo derivative of order a for a function u is given by

l t

Dlu(t) = m /a (=) 'u(s)ds,n—1 < a <n.

Definition 2 ([3]) The set F is said to be quasi-equicontinuous in J, if for any & > 0,

there exists a 6 > 0, such that if x € F,k € Z, ¢, 1" € (t,_;,t,]nJ and |/ — ¢”'| < §, then
[x(?") — x(?"")| < e.
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Lemma 1 ([3]) The set F C PC(J,R) is relatively compact if and only if

(1) Fis bounded,
(i) F is quasi-equicontinuous in J.

Lemma 2 ([12]) Let D be a Banach space. Assume that Q is an open bounded subset of D,

0 € D,letT : Q— D be acompletely continuous operator, such that
1 7ull < Nlull, Vu € 0Q.

Then, T has a fixed point in Q.

Lemma 3 ([4]) Let D be a convex closed and non-empty subset of Banach space X X Y. Let
F, G be the operators, such that

(i) Fx+ Gy € D, whenever x,y € D,
(i1) Fis compact and continuous and G is a contraction.

Then, there exists a z € D, such that z = Fz + Gz, where z = (u,v)€ X X Y.
Lemma4 ([2]) Let u(t) € C[0, 1]. Then, the solution of the fractional differential equation
Du(t)=0

isu(t)=Cy+Cit+ Cyf> + -+ C,_1 "1, C,ER,i=0,1,2, ,n,n = [a] + 1.

Lemma 5 For a given f € C(J X R,R), a function u is a solution of the following impul-
sive boundary value problem:

D*u(t) = f(t,u(®),2<a <3, te],

Au(ty) = O (u(t)), k= 1,2, ,m,

Au' () = R (ut) k= 1,2, ,m, )
A" (1) = S (u(t) k= 1,2, m,

1(0) + 1’ (0) = 0, u(1) + /(1) = 0, " (0) + u”’ (1) = 0,

if and only if u is a solution of the impulsive fractional integral equation
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u(t) = — ) / (t =) f(s,uls))ds

r(a) Z (r — )" f (s, u(s))ds

k—1

+ Z O 1)/ (t; — )" (s, u(s))ds
(@ .
+Z ZFk(a—Z)/ t; —s) 3f(s u(s))
k
Z‘ r(a_ 1)/ (t; = )"7f (s, u(s))ds

-1
Z‘ (, (t)itz)lk) / (t, = " (5, u(s))ds

+ Z 2F(0[_2)/ (t; = 9" f (5, u(s))ds

k-1

+ZQ u(t;)) +Z(tk 1R (u(t)))

—t
+ Z %Si(”(ti)) + 20 ~ 1Ry (u(t))
i=1 =l

k-1

+ (= 1)t = 1S, (u(r)
i=1

k 2
t—t
+ Z, ( 2k) Si(u)) —ay —ayt —asi?, 1€ J k=012,

i=1

where
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m+l
o= i 2 / (1= 91 (s,15)) ds

o !
+ZF(1

(s, u(s))ds

r(a (r = 5)"f (s,u(s))ds

4t +3
_ a3
2F(a / (t; — )" f (5. u(s))ds
+ Z 0, (u()) + Z (t,, — 1R (u(t)

m 22 -8t +3

i=1

m—1
+ Z (t t)(4 ) i(u(ti))

m+1
+ Z r(a / (t; = )" (s, u(s))ds

m+1

-2 ey - / (1, = 9)F (5. u()d >

a, = —day,

m+1

1 1 f o
a; = 1 ; Fa—2) /t” @t —s) 3f(s, u(s))ds

m
1
+37 S (u).
i=1
Proof Let u be a solution of (2). Then, by Lemma 4, we have

u(r) = I“f(t, u(t)) —a, —ayt — ast’
__
"~ T(a)

Therefore

— ti)(tm - t[) ! o
" Z ZF((x —-2) / (t; — )7 f (s, u(s))ds
i=1

+y %Si(u(ti)) + ;(2 — 1,)R; (u(t))

1
(t— s)"‘_lf(s, u(s))ds —a; — ayt —ast*,t € Jp.

“

&)

(6)
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, 1 ' .
u' (1) =m/0(t—s) 2f(s,u(s))ds—aZ—2a3t,l‘€JO,

u” (1) =F( 1_ % /0 (t— s)“_3f(s, u(s))ds — 2az,t € J;.

Ift € J;, we have

u(t) = m (t = )" 'f(s,u(s))ds — by — by(t — 1) — by(t — 1,)%,
and
u'(t) = _r( "y / (t = )7 (s, u(s))ds — by — 2b5(t — 1),
" 1 ' a_
u’ (1) :F(a ) (t—ys) 3f(s, u(s))ds —2bs,
A
u(ty) =m /0 (t - s)"_lf(s, u(s))ds —a, — a1, — a3tf,u(zl+) =-b,,
u' (1)) =F(a1— 5 /0 l(r, — )" 2f (s,u(s))ds — a, — 2ast,,u/(t;*) = —b,,
(1)) =ﬁ /0 1 — $)%73f (s, u(s))ds — 2a5,u" (1, ") = —2bs.
While
Auty) =u(t?) — u(ty) = O, (u(1))),
Au' (1) =u' () — ' (1) = R, (u(t)).
A" (@) = (1F) — ' (17) = S (u(1))).
We have

—bl =% / l(l‘] _S)"*lf(s,u(s))ds_al —axt _Cl3l‘2 + Q] (I/l(tl)),
—by, = F(a / (t, — )™ 2f(s u(s))ds —a, —2a5t, + R, (”(tl))
_2b3 :m /0 ([1 - S)a—?’f(s’ u(s))ds - 2(13 + Sl (u(tl))

Consequently, for ¢ € J,
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u(t) =%/ (t—s)"_lf(s u(s) ds+ m/ t — )" lf(s u(s))

2
/ (1 = )" 7f (s, u<s>)ds+m W / (1 = )" f (5. u(s))ds

F(a - l)

+QAMM)+O—hmdMHD+EU—Q)&QMQ)—m—ay—%L

We can also get
u(t) = % / (t— s)"_lf(s, u(s))ds

Z -9 'f (s, u(s))ds

i=1 Y lio

F(a)
k=1

+Z e 1)/ @t — )" 2f(s u(s))

« .
+ Z 2rk(a—2)/ (t; = )" f (s, u(s))ds
k

+ Z} r(a / (t; — )" 2f (5, u(s))ds
o (= 1)t — 1) o
z} T(a - 2) : / (t; = 9" (5, u(s)) ds
(1= 1) o
+ Z T — 2)/ (t; — )°7f (5, u(s))ds

k-1

+ZQ u(t;)) +Z(tk—t)R (u(z;))

+ 21 @Si(u(m) + ;a — )R (u())
k—1

+ 2= 1) — 1)S, (u(t)
i=1

k
(t—1,)?
+i§ 5 8i(u@) —ay — @t~y 1 € Tk =01, m.
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On the condition that u(0) + u’(0) = 0, we have
a, = —a,. 7
By u(1) + /(1) = 0, we have

m+1
a, +3a; = F( ) / -9 lf(s u(s))

m—1 t,—t; 2 )
& T(a— 1)/t (t; = 9)°7*f (s, u(s))ds
+§‘ T(a - 1)/ (& = ) 7f (s, u(s))ds
m—1
G-t,—t)t,—1) [ .
" i=1 2'(a = 2) /t,-_l(ti =) 3f(s, u(s))ds
— 41, +3

_I_

3 IIMs EMs

I
m . (ti - s)“_3f(s, u(s))ds

m—1

0, (u(t) +Z(r — 1R, (u(t)))

4 3

* Z % 5;(u)

m el

2(2 —t,)R; M(l) + 2 (tm l)(4 —t) i(u(ti))

1 l
m+1 1 i
_ o2

+ ; Ia—-1) ‘/ti_l t—s) f(s, u(s))ds. N

Combining (7) and (8) with the condition «”’(1) + " (0) = 0, we conclude that
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m+1

a, = <F(a) / # — )" 1f(s u(s))

1)/ (t; — $)°2f (s, u(s))ds + Z e 1)(; — 9)%72f (s, u(s))ds

B tl)(tm - ti) i 3
ZF(a —2) /t (t; — )" f (s, u(s))ds

4t +3
+ 2 —/ (t; — )°7f (s, u(s))ds

i=1

","Z

+ 2 0, (u(t) + Z(rm — 1R, (u(t))

& 212 — 81, +3
i=1

+Z
m+1
+ by = 1) ~ 1, ti)Si(u(tl-))+

S;(u(t)) + D@2 = 1,)R, (u(ty)

(s, u(s))ds

(s, u(s))ds) ,
1 a-
1 ; Tt = / (t; = $)°f (s, u(s))ds + ~ Zs u(t,)).

Conversely, if we assume that u is the solution of (4), through directly calculation, it shows
that the solution given by (3) satisfies (2). This completes the proof.

as =

Assume the following holds.

(H,) Thereexist constants K, L, M, N, such that|f (1, u(r))| < K, |Q,| < L, |R,| < M,|S| <N.
max f(t,u) QA(M) Sk(u)

1€00,1] Ry (u)

< o0, lim %=
u—0 U Tus0 u—0

-0
(Hy) There exist constants L,L,,L;,L, > 0,u,v € R, such that

V@ uw) = f@Ev)| < Lylu—v|, Q) — Q)| < Lylu —v],
|Rk(u) Rk(V)| Lz'” V|s|Sk(u)_Sk(V)|<L4|”_V|~

(H,) limsup < 00, lim o0, lim

We define an open bounded set Q = {u € PC(J,R)| ||u|| < r}, and then, Q = {u e PC
(LR ull < r}
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3 Main Results

In this section, we will prove the existence of (1) by Lemmas 2 and 3.
First of all, we define an operator 7 : Q — PC(J,R) as

Tu(t) =$ / (t—9)*"f (s, u(s))ds

" 2 / (1= 9 s.u(5) s

k—1

Zr(a 5 / (t; = ) 7f (s, u(s))ds

(6 = 1) o
+;2rk( =5 (t—s) 3 (s, u(s))ds

d t—t 4
’ ; F(a——kl) /, (t; = )" (s, u(s))ds

k—1
(e —t)t—1) [h o
+ 2 W / (t,— ) 3f(s, u(s))ds

i=1 oy
k 2
(t—1) .
+ Z rfz) (t —5) 3f(s u(s))
k-1

+ZQ u(t,)) +Z(rk 1R, (u(t)))

k-1

R
+Z(tk zt’) (u(;) +Z(t—tk)R u(t;) +Z(t—tk)(tk 1)S; (u(z))

i=1

k 2
r—t m
I NG Si(u(t)) —a; — ayt — ast®, t € J,k=0,1,2, -,
i§=1, 2 ©)

where a,, a,, and a; are defined as (4)—(6).
Lemma6 T : Q — PC(J,R) is completely continuous with the assumption (H,).

Proof First, we note that T is continuous on account of the continuity of f, O, Ry, S;. Then,
under the assumption (H,), foranyu € Q, t € J,,k =0, 1, ---, m, we can obtain
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m+l
ol < s / (& = 91 (5.u(s)) ds
i=1 Yo
m—1 l _

i o o -1, [4 w2t
F(g 1) ‘/’H(ti_s)a2v(s,u(s))|ds+gr(a_l)/ t; —s) 2[f<s,u(s))|ds

i=1
m—1 2

@1, =), — 1) . 2~ 41, +3 .
+§W/ t; — ) 3[f s u(s) |ds+z e — 4/"'7 (t; = ) 3lf(5 u(S))|dS

m

1272 - 8t,, + 3|

+ 21 () '*Z“ IR ) + 3 P )
=1 i=1
m—1 4 m
+y M 15, ()| + Y@ = 1, IR, (u@))|
i=1 pry
m+1 m+l
+,Z‘ T(a — 1)/ (t; = )| (s, u(s)) |ds + = Z e 2)/ (t; — )" |f (5. u(s)) |ds

m+1 m—1

a—1 a—2
r(a)z/(’_s) ds+2r(a 1)/ (t; — )" 2ds

m—1

— 52 _ a3
1)/(r S) ds+lz:‘f‘(a 2)'/(t $)* " ds

a3 _ m—1
Z 2F(a / (t; — ) ds + mL + (m M+ N
bl

4

m+1 (m+ I)K
a2 973
Zr(a 1)/“ 5) ds+4zr(a—2)/( TS TaED

3mK | (17m = 5)K
T(@) = 4T(@-1)

+mL+(m—1)M+<7Tm—l)

/n+l (m+ I)K 1
3| 1
las| = F((x 2) / (t; =) s u(s) |ds + — 2 |S u(t) | < Ta-1) + 7

i=1

|(Tu(t) | < T )/(Z -85 llf(s u(s) |ds + o )Z/ ;- )™ llf g M(v))|ds
k-1 ( _t2
Z Ta - 1)/ =l (st 'd”z T 2)/ (1 =91 (s, u9) ds
k t e .
i ' _ a2 =t —1) i a3
+ g{ O /t ;=) lf(s, u(s))lds + E —F w2 / ;= 8) V(y, u(s))|ds

k 2 i k=1
(t— 1) o
+§Fk2> (t; = ) 7 If (s, u(s) |ds+2|Q u(t)) |+ Yt = IR (ut)|

i=1

k—1
( —t,-)
+2 kT|s,-(u<tl-))| + ,-zl(t — IR (u(t)]
k-1 )2
+ Z(t—tk)(tk = 113 (u(t)) | + Z 18, (utt) | +la |+ la |+ L]
3(m + DK @Bm—-1DK (43m — 15K 22m—-13 . .
< T+ D) @) Ta-1) +4mL + (4m — 3)M + TN =H.

Therefore, TQ is bounded. _
We can also obtain that foranyu € Q, t € J,,k=0,1,2,---,m
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(1Y 0)1 < s / (1, — 9% (5. u(s)) ds
F( )Z/ @ — )" 1 s u(s))|ds
+ 2 (tk / t;, — ) 3[f(s u(s))lds
i=1
G-t ("
* Z Fa2) / (= ) If (s, u(s)) 1ds
Z (u@) |+2<zk )1S; (u(@))]

k
Z (t = 118, (u(®)) | + lay| + 2]
=1

<(4m+1)K (m+ DK

<X

T(a) T+ 1)
(20m — 5)K (17m — 8)N —
m+mL+(2m—l)M+T =H.

Foranyu € Q, ¢',¢" € J,,' < 1", there exists at least one point £, e (/. #").k = 0, 1,2,
y k p &

|(Tu)(¢") = (Tu)(t")] < [(Tw) G| = ) SH @ = 1)

when [ —¢'| = 0, [|(Tu)(#") — (Tw)(#")|| — 0. Therefore, TQ is quasi-equicontinuous.
Thus, by Lemma 1,7 : Q — PC(J, R) is completely continuous.
This completes the proof.

In view of the solution of existence for a class of boundary value problem of impulsive
fractional differential equation with a parameter, define T, as (9), where we use Af to take
place of f. By Lemma 5, problem (1) has a solution if and only if u = T,u has a fixed point.

We denote

1 —dml, — (4m — 3)l; — B3y,

P = T, . @, L @y
Tt T(@ A1)
,_ 1=mLy—@m= DLy =2m = DL,
p= miDL, | GmidL, | Tl
T+ T(@) a1

Theorem 1 Assume that (H,) — (H,) and | A| < p hold. Then the problem (1) has at least one
solution.

Proof From (H,), there exist positive constants /,, [, /5, I;, such that |[f (¢, u)| < [, |ul, |Q; ()]
< Llul, IR (w)| < Lilul, |S,(w)| < lylul. Whenu € 0Q, i.e.,||ul| = r, we have
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2|M m+1

F( ) Z/ t; — )"~ L v u(v))lds
m—1

2012, — 1) [ o
* Z T@-1) /[i_](li —-5) 2lf(s, u(s))|ds

i=1

1 Tull <

m—1
M'l(tm a—
+2 m /, (1 = )1 (s, u(s)))Ids

i=1

o 14201 =1,) [ .
+ Z m /zi_,(ti —5) 2[f(s, u(s))lds

i=1
mAIG, — )3 - 2t

m L m— 1) [l w3
+ 4 T(a—2) /l[, (t; — 9) [f(S, M(S)) |ds

i=1

+ —_—

2C(a —2)

i=1 fi-

2OAE =3, 42
(A1 =31, + )/ (1 = 9731 (5,us)) lds
1

|S u(t;) |+Z(3 2t,)IR; (u(z)]

i=1

+2Z 0 (u() |+2Z(z — )R (ut))]
+

|
(t,
DA

m—1 2
|25, — 6t,, + 3|
+Z(1—z Yty = IS (u(t;) I+Z—
i=1

> |Si(u(fi))|

(= 1)(4 = 1, = 1) & o
f| (u(r) |+Z o= 1)/ (t; = 972 (s, u(s)) |ds

5
i=1
m+1

>

F(a / t; —8)* 3[f(¥ u(v))|ds

20,14 " vt S 20, - 1) v
<F(a)2/(t—s) d+2 S CE) /(z $)%2ds

ticy

= t)l'”ll a3 2(1 = 1,11 14] w2
+; M= /lf(t ) d+z Ta-1) /(z $)*ds

m—1

(t, —t)(3 =2, — )| Al a3
+ ) RORET /(z )% 3ds

i=1

(2 =3, + DAl [t s
- — d
* ; M(a—2) /, (t; =)™ ds

-1
m—1
6

+2mly +2 Y (b, — 1l + Z

i=1

+Z(1—z )ty —z)14+z

m+1

m
ly+ ) (321,
i=1

[212 - 6t,, + 3|

< (t, —t)d—1, —1
4+Z(m 1)(2 m 1)14
i=1

m+1

Mlll a2 M“l i _ a3
F(a 1)/ (t; — ) dHZF(a—Z)/ti,l(ti 5)%3ds ) [Jull

. 3(m+1)1l m=Dl  @m=150
Ta+1) T(a) (@ —1) >| |

22m — 13
En 1), Y,

+4mly, + (4m = 3)l; +
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so we have || T u|| < ||ull, for any u € 0Q. T is completely continuous.

By Lemma 2, the operator T, has at least one fixed point in Q, which also implies that
problem (1) has at least one solution in Q.

This completes the proof.

Now, we split the operator T, into two parts as T, = F, + G, where

Fou(t) = T )/(z—s)" U (s, u(s))ds
F( 2 / (t; = 5 'f (5, u(s))ds
N Z i(tk / (t; — 82 (5. u(s)) ds
+ Z ;(Fté‘ / (1, = ) (5. u(s)) ds
+ 21 ﬁgx & / (1; = $f (5. u(s))ds

k—1
+ZW/ (t; = )" (s, u(s))ds

i=1

A=) [ .
+ Z W—ICZ) ;- )" 3f(s, u(s))ds

i=1 tiy
k k—1
+ Z Q,-(u(ti)) + ) (4 — tl-)Rl-(u([i))
i=1 i=1
= (% — fi)z k=1
+ Z Si(u(e)) + Z(z — 1R (u(r)) + Z(; — )t — 1S, (1(t)

k 2

(t—t
2 ") Si(u(t)),t € Lk =0,1,2,,m
i=1

Obviously, F, is completely continuous. And
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m+l
Glu(o:(n ;2 / (t; = )7 f (s, u(s)) ds

M_

m— /l(l "
+ F(a /(t—s) *f (s, u(s))ds

A1 —
( / (1, = )2 (s. u(s))ds

M=t —t)t, —1) [ s
20 (a - 2) /t,-_] (t; = )" f (s, u(s))ds

AP — 41, +3)
2r(a -2)

+

+
ME “M

+

/ - ) 3 (s, us))ds

'M*

i=1

z |

0, (u()) +Z(r — 1R, (u(1,))

b: "M

( o, = 81, +3)

+2 fsi(u(r,-)) + ;(2 — 1R, (u(t))

@, —1)E
+ (L, t)(2 —t) 5,(ut)

i=1

m+1
* g‘ I (5’ “(S))ds

m+1

7 < (s, u(s))ds>(1 —1)

1m-H 7
—< Z X 2)/( — )7 (s, u(s))ds

=1

+ é—ll > Si(u(tl-))>t2

i=1

Theorem 2 Under the assumption of (H,) — (H;), and |A| < min(p, p’), problem (1) has at
least one solution.

Proof Step 1 From (H,), during similarly calculation as before, we have
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[F, @) + G, ()] <m/(f $)* llf 5 N(S) |ds + ml </, 1 -5 1 s “(s))|ds

=t [l -
+|/1|§1, Ta D /’; (t; = "2 |f (s, u(s)) |ds

k=1
A z(lrk(a / (1= 9" If (s u)lds
-1, i .
+14] Z, l"(a——kl) /’H(t,- =) 2|f (s, u(s)) |ds

k=1 4
+|’”2%/ (= 9 If (5. u(s)) 1ds
k=1

+ 14 |2 zr(atk)z)/ (= *3IF (s, u(s) |d5+Z|Q (ut)) |+2(fk—f)|R (u(e))|

(1)

+ Z:, =S 18, () 1 + Z(r — IR, (u(t))]
k-1

+ 2= 1) = IS (ue) | + 2

i=1

(t

|Si (u(@)]

m+1 m=1
1

g Z} n l(z — 9% |(F(s. () ds + |4] Z = 1)/ (1= 521 (F5v) s

_tm ! a—
* '“Z -1 /,H“f—f) 71 vs)Dlds

(4 1), —1) [ w
+M'ZW/, (@ = 97| (f(s.v(s)) ds

i—1

fz—l'+3 m—1

+|’”2 (e — [ﬁ (=9 1(f(5:v() IdHZIQ ) |+Z(z —1)IR,(v(1))]

m—1

+ 2@, =) (v0) )+ 3@ - IRy ()]

i=1
m—1 m+1

t, — )4 — i
+ Z ( )( _| L (v(e)) ]+ 14l 2 - / (& = 5121 (Fs. v(5)) ds
i1
m+1
+4 Z T 2)/ (t; = )" (f(s, v(9) 1ds
(m+ D|A|l, (2m— DIAlL, (4m = 3)| A1, dm—3
<< T(a+1) T(a) Wa—1 TratCm-Dh+—5 l4>|IuI|
m+ DAL 3mlAll, TmlAlL
( Tath ' T Tar@on Tt 1)l4>||v||

<(2(m+ DIAlL | Gm = DAL (1m = 3)|A1,
Fla+1) () 2 (a — 1)

+ 2mly + (4m = Dl + 1= 9l4>r <r

Thus, |F, () + G,(v))| € Q.
Step 2 From (H,), for any u,v € Q,t € J,, k=0, 1, -, m, we can get
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m+1
1Gu0) = G0 <l = 3, " = 9 (s ) = £ 5, v9) s
i=1 Y1ty
+14] Z e (t = 92| (f(s, u(s)) = f(5, v(5)) |ds

+M|ZF( / (& = 21 (F5, u(s) = (5, v(5)) |ds

m—1

Gty =)y =1) [
+”'ZW / (t; = 1 (F(s, u(s) = £G5, v(5)) 1ds

— 41,43

+|MZ T / (t; = 9" (F(s, () = f(5,v(5)) lds

m—1

+ 2 10, (u(t)) = O, (vt)) | + Yt = 1)IR; (u(t)) = R, (v(z))|
i=1 i=1

m—1

+ 2@+ =418 (ur)) = S;(ve) | + D2 = 1,)IR; (u(r)) = R; (v(t)|
i=1 i=1
m—1
> Un =0t =815 utrp) 5, (v00)1
m+1

DN 1)/ (1 = 9721 (. u(s) = 5. 9(9) ds

m+1

+M|Z e 2)/ (t; = 9" (F(s, u(s)) = f(s,v(5)) Ids

m+l
<|/1|m 2/ (t; — $)*"\ds
+14] 2 (’F”(a Wk / (t; — 5)*2ds
+"”Z ’) ‘/(;-y)ﬂ 24

m—1

4- L
+|A|Z( zr(;)(t”’ 1) 1/(: $)*3ds

(% — 41, +3)Ll

+|/1|2 e = / (t; — )™ 3ds+2L2+Z(t — 1)L,

m—1 m—1

+Z(2+z — 41 )L4+2(2—t )L;+Z# L,

m+1 m+1
+|/1|ZF( 1)/ (t — 8)*" 2ds+|/1|2 e 2)/ (- 8)*" 3ds>||u—v||

<< (m+ DAL, Gm+2)|AIL,

S\ Ta+1) ()
Tm|A|L,
2l — 1)

+mLy + (2m — 1)Ly + 3(m — 1)L4> |lu—v].

Therefore, G, is a contraction.
This completes the proof. When || < min(p, p’), by Lemma 3, problem (1) has at least
one solution in Q.

@ Springer



602 Communications on Applied Mathematics and Computation (2021) 3:585-604

4 Examples

Example 1 Consider the following boundary value problems of impulsive fractional dif-
ferential equations:

Dou(t) = /1(51‘::: h2<a<3ir#l,

Au(%) =e¥ -1,

Au’(%) =In(1 +u?) — u,

ALy =1+ -1,

w(0) + ' (0) = 0, u(1) + /(1) = 0, (0) + " (1) = 0.

10)

Let

1 1 1 ’
4(r(a+1) * o i)

which satisfy
@ @l <L 1Qw)| < L|IRw| < 1, [Sw| <1

(ii) limsupw — 0.lim Q(u) ~0.1in R(u) im0 g

1u—0 u u—0 u u=0 U

All the assumptions of Theorem 1 are satisfied. Thus, problem (10) has at least one
solution.

Example 2 Consider the following boundary value problems of impulsive fractional dif-
ferential equations:

Deu®) = A, 2<a <3t §,

Auy )_3+u2’
|3 = 3o an
" u?
Ay = 2o,

u(0) + W(0)=0,u(l)+d/(1)=0,u"0)+u"(1)=0

Let
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1
h=b=l=1l=5.
~ 91
P 1y
Ta+D) ' T@ ' 2@@-1)
’ 193

1 1 1
140(F(a+1) Tro T 2F(a—l))

|4] < min(p, p"),

which satisfy

@ FEwl <110 < 1, [Rw| < 1,[1Sw)] <1

max f(z, u(t)
(i) limsupL = 0,1im 2% = ¢_1im 2@ _ ¢ jim 5@
u—0 u u—=0 U u—=0 U u—=0 U

=0,

(i) [t ) = f6,9)] < —|u v|,|Qk(u>—Qk<v>|<i|u—v|,

1
[R () — ReW)| < —|u—vl[,[S,w) — S| < —IM =l
100
All the assumptions of Theorem 2 are satisfied. Thus, the problem (11) has at least one
solution.

5 Conclusions

In this paper, we investigate a class of boundary value problems for nonlinear impulsive
fractional differential equations with a parameter. We give sufficient conditions to obtain
the existence of this problem for the first time by deduction of Altman’s theorem and Kras-
noselskii’s fixed point theorem. Our results enrich the study for impulsive fractional dif-
ferential equations of order 2 < @ < 3 with a parameter. We will explore the eigenvalue
problems for this equation in the future.
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