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Abstract
Recently, Zhang and Ding developed a novel finite difference scheme for the time-
Caputo and space-Riesz fractional diffusion equation with the convergence order 
O(�2−� + h

2) in Zhang and Ding (Commun. Appl. Math. Comput. 2(1): 57–72, 2020). 
Unfortunately, they only gave the stability and convergence results for 
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 . In this paper, using a new 

analysis method, we find that the original difference scheme is unconditionally stable 
and convergent with order O(�2−� + h

2) for all � ∈ (0, 1) and � ∈ (1, 2] . Finally, some 
numerical examples are given to verify the correctness of the results.

Keywords  Caputo derivative · Riesz derivative · Time-Caputo and space-Riesz fractional 
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1  Introduction

In this paper, we consider the following time-Caputo and space-Riesz fractional diffusion 
equation:
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where K > 0 is the diffusion coefficient. CD
�

0,t
u(x, t) is the Caputo fractional derivative with 

respect to t, of order 0 < 𝛼 < 1 , defined by [4, 6, 7]

��u(x, t)

�|x|�
 is the Riesz fractional derivative with respect to x of order � ∈ (1, 2] , which is 

defined as [6–8]

where RLD
�

a,x
 denotes the left Riemann-Liouville fractional derivative

and RLD
�

x,b
 is the right Riemann-Liouville fractional derivative

Recently, Zhang and Ding [9] developed a novel finite difference scheme with convergence 
order O(�2−� + h2) for (1). However, it is a pity that they only proved that the stability and 
convergence in the case

based on the mathematical induction, while for case

it seems difficult to prove the result using their method.

(1)
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CD
𝛼

0,t
u(x, t) = K

𝜕𝛽u(x, t)

𝜕�x�𝛽
+ f (x, t), 0 < x < L, 0 < t ⩽ T ,

u(x, 0) = 𝜑(x), 0 ⩽ x ⩽ L,

u(0, t) = u(L, t) = 0, 0 < t ⩽ T ,

CD
𝛼

0,t
u(x, t) =

1
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t

0

𝜕u(x, s)
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1
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ds, 0 < 𝛼 < 1.
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1

2 cos
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2
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u(x, t), 1 < 𝛽 ⩽ 2,

RLD
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a,x
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1
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𝜕2
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x

a
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RLD
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x,b
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1
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𝜕x2 ∫
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In this article, we will use another analysis method to reanalyze the difference scheme 
established in [9] and find that it is unconditionally stable and convergent with order 
O(�2−� + h2) for all � ∈ (1, 2] and � ∈ (0, 1).

The paper is organized as follows. In Sect. 2, we review the difference scheme established 
in [2] and its theoretical analysis. New stability and convergence analysis are introduced in 
Sect. 3. Numerical experiments are provided in Sect. 4 to prove the rationality of the theoreti-
cal analysis and the effectiveness of the algorithm.

2 � Review the Algorithm in [9]

2.1 � Establishment of the Algorithm

Define tn = n�, n = 0, 1,⋯ ,N, and xj = jh, j = 0, 1,⋯ ,M, where � = T∕N and h = L∕M 
are time and space mesh sizes, respectively.

For the numerical approximation of the Caputo fractional derivative CD
�

0,t
u(t) at 

t = tn (n = 0, 1,⋯ ,N) , the authors used the following common L1 formula [2, 5]:

where

At the same time, an effective second-order formula is used to numerically treat the spatial 
Riesz fractional derivative in [1], that is

where

and

(2)

CD
�

0,t
u(t)|t=tn =

1

Γ(1 − �)

n−1
∑

k=0
∫

tk+1

tk

(tn − s)−�
�u(x, s)

�s
ds

=
1

Γ(1 − �)

n−1
∑

k=0
∫

tk+1

tk

(tn − s)−�
[

u(x, tk+1) − u(x, tk)

�
+O(�)

]

ds

=
�−�

Γ(2 − �)
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∑

k=0

bn−k−1
(

u(x, tk+1) − u(x, tk)
)

+O
(

�2−�
)

,

bk = (k + 1)1−� − k1−� , k = 0, 1,⋯ , n − 1.

(3)
��u(xj, tn)
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= −

1

2 cos

(

π

2
�

)

(

L
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,
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2
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1
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j+1
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�=0

�
(�)

2,�
u
(

xj − (� − 1)h, tn
)
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Here, the coefficients

which can also be calculated by the following recursive relations [1]:

Next, substituting (2) and (3) into (1), we obtain

where there exists a constant C such that

Finally, omitting the high order terms Rn
j
 of (4). Replacing the function u(xj, tn) with its 

numerical approximation value un
j
 , then we can obtain the following finite difference 

scheme [9]:
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(
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0
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M
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where q =
��Γ(2 − �)K

2h� cos
(

π

2
�

).

2.2 � Theoretical Analysis of the Algorithm

Lemma 1  [1] Under the condition

the coefficient �(�)

2,2
 satisfies

In [9], by using mathematical induction, the stability and convergence results of the pro-
posed scheme are stated as follows:

Theorem  1  Under the condition (6) and 0 < 𝛼 < 1 , the finite difference scheme (5) for 
time-Caputo and space-Riesz fractional diffusion (1) is unconditionally stable.

Theorem 2  Denote by u(xj, tn) (j = 1, 2,⋯ ,M − 1; n = 1, 2,⋯ ,N) the exact solution of (1) 
at mesh point (xi, tn) , and let {Un

j
| 0 ⩽ j ⩽ M, 0 ⩽ n ⩽ N} be the solution of the finite differ-

ence scheme (5). Define

then there exists a positive constant C, such that

under the condition (6) and 0 < 𝛼 < 1.

Remark 1  From the conclusion of the above two theorems, we find that the method in [9] 
can only prove that the difference scheme (5) is stable and convergent under the condition 
(6). Below, we will use another method to prove that the difference scheme (5) is uncondi-
tionally stable and convergent for all � ∈ (0, 1) and � ∈ (1, 2].
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⩾ 0.

�n
j
= u(xj, tn) − Un

j
, j = 1, 2,⋯ ,M; n = 1, 2,⋯ ,N,

||�n||∞ ⩽ C
(

�2−� + h2
)

, 0 ⩽ n ⩽ N,
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3 � A New Theoretical Analysis Method for the Algorithm in [9]

Let

be the space grid functions. For any u, v ∈ Uh , define the following inner product

and the corresponding norm

For convenience, denote the operator

then the numerical algorithm (5) can be rewritten as

where � = ��Γ(2 − �).
Next, we list several lemmas for the stability and convergence analysis.

Lemma 2  [3] Let bk = (k + 1)1−� − k1−� , k = 0, 1, 2,⋯ and 0 < 𝛼 < 1 . Then there holds 
that

Lemma 3  [1] Let the operator ��
x
 be defined by (7). Then the following inequality:

holds for all � ∈ (1, 2].

Uh =
{

u|u = (u0, u1,⋯ , uM), u0 = uM = 0
}

(u, v) = h

M−1
∑

j=1

ujvj

‖u‖ =
√

(u, u) .
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k=1
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bn−k−1 − bn−k
�
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j
− bn−1u

0

j
= �K��

x
uk
j
+ �f k

j
,

1 ⩽ j ⩽ M − 1, 1 ⩽ n ⩽ N,

u0
j
= �

�

xj
�

, 0 ⩽ j ⩽ M,

un
0
= un

M
= 0, 1 ⩽ n ⩽ N,

(i) 1 = b0 > b1 > b2 > ⋯ > bk → 0, as k → +∞;

(ii)

n
∑

k=0

(bk − bk+1) + bn+1 = (1 − b1) +

n−1
∑

k=1

(bk − bk+1) + bn = 1.

(��
x
u, u) ⩽ 0
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Now, we give the stability result of the finite difference scheme (5).

Theorem 3  The finite difference scheme (5) is unconditionally stable to the initial value � 
and right term f for all � ∈ (0, 1) and � ∈ (1, 2].

Proof  Taking the inner product of the first equation of (8) with un leads to

For the second term of the left hand of (9), we obtain

based on the Cauchy-Schwarz inequality and Lemma 2.
Similarly, for the third term of the left hand of (9), we also have

For the first term of the right hand of (9), it follows from Lemma 3 that

As to the second term of the right hand of (9), we easily know that

Substituting (10), (11), (12) and (13) into (9) yields

Note that

and

then we obtain

(9)

(un, un) −

n−1
∑

k=1

(

b
n−k−1 − b

n−k

)(

u
k
, u

n
)

− b
n−1

(

u
0
, u

n
)

= �K
(

��
x
u
n
, u

n
)

+ �(f n, un).

(10)−

n−1
�

k=1

�

bn−k−1 − bn−k
��

uk, un
�

⩾ −

n−1
�

k=1

�

bn−k−1 − bn−k
�

‖uk‖ ⋅ ‖un‖

(11)−bn−1
�

u0, un
�

⩾ −bn−1‖u
0
‖ ⋅ ‖un‖.

(12)�K
(

��
x
un, un

)

⩽ 0.

(13)�(f n, un) ⩽ �‖f n‖ ⋅ ‖un‖.

(14)‖un‖ ⩽

n−1
�

k=1

�

bn−k−1 − bn−k
�

‖uk‖ + bn−1‖u
0
‖ + �‖f n‖.

� = ��Γ(2 − �) = (1 − �)Γ(1 − �)T�N−� ,

bn−1 = n1−� − (n − 1)1−� = (1 − �)�−� , n = 1, 2,⋯ ,N, � ∈ (n − 1, n),

𝜇 < T𝛼Γ(1 − 𝛼)bn−1, n = 1, 2,⋯ ,N.
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Denote

then (14) can be rewritten as

Now, we will prove that

by the mathematical induction.
First of all, it is obviously true for n = 1 . Secondly, we assume that

is true for k = 1, 2,⋯ , n − 1. Then we can get further

that is

This ends the proof.

Finally, we consider the convergence of the difference scheme (5).

Theorem 4  Suppose that u(xj, tn) (j = 1, 2,⋯ ,M − 1; n = 1, 2,⋯ ,N) and {un
j
| 0 ⩽ j ⩽ M,

0 ⩽ n ⩽ N} are the exact solution of (1) and finite difference scheme (5), respectively. Let

Then it holds that

for all � ∈ (0, 1) and � ∈ (1, 2].

Proof  From (1) and (4), we obtain the following error equation:

U = ‖u0‖ + T�Γ(1 − �) max
1⩽�⩽N

‖f �‖,

‖un‖ ⩽

n−1
�

k=1

�

bn−k−1 − bn−k
�

‖uk‖ + bn−1U, 1 ⩽ n ⩽ N.

‖un‖ ⩽ U, 1 ⩽ n ⩽ N

‖uk‖ ⩽ U

‖un‖ ⩽

n−1
�

k=1

�

bn−k−1 − bn−k
�

‖uk‖ + bn−1U ⩽ U, 1 ⩽ n ⩽ N,

(15)‖un‖ ⩽ ‖�‖ + T�Γ(1 − �) max
1⩽�⩽N

‖f �‖, 1 ⩽ n ⩽ N.

�n
j
= u(xj, tn) − un

j
, j = 1, 2,⋯ ,M; n = 1, 2,⋯ ,N.

‖�n‖ ⩽ CT�Γ(1 − �)
√

L
�

�2−� + h2
�

, 1 ⩽ n ⩽ N
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For the first equation of (16), it follows from the inequality (15) that

Due to

then we get

This completes the proof.

4 � Numerical Example

In this section, we give some numerical results to prove the rationality of our theoretical 
analysis.

Example 1  Consider the following equation:

with a given force term

Its exact solution is

(16)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�n
j
−

n−1
�

k=1

�

bn−k−1 − bn−k
�

�k
j
− bn−1�

0

j
= �K��

x
�k
j
+ �Rk

j
,

1 ⩽ j ⩽ M − 1, 1 ⩽ n ⩽ N,

�0
j
= 0, 0 ⩽ j ⩽ M,

�n
0
= �n

M
= 0, 1 ⩽ n ⩽ N.

‖�n‖ ⩽ T�Γ(1 − �) max
1⩽�⩽N

‖R�
‖, 1 ⩽ n ⩽ N.

‖R�
‖

2 =
�

R� ,R�
�

⩽ C2L
�

�2−� + h2
�2
,

‖�n‖ ⩽ CT�Γ(1 − �)
√

L
�

�2−� + h2
�

, 1 ⩽ n ⩽ N.

CD
�

0,t
u(x, t) = �4

��u(x, t)

�|x|�
+ f (x, t), 0 ⩽ x ⩽ 1, 0 ⩽ t ⩽ 1

f (x, t) =
Γ(� + � + 2)

Γ(� + 2)
t�+1x4(1 − x)4

+
t�+�+1�4

cos (π�∕2)

4
∑

�=0

(−1)�
(4 + �)!

�! (4 − �)! Γ(5 + � − �)

[

x4+�−� + (1 − x)4+�−�
]

.

u(x, t) = t�+�+1x4(1 − x)4.
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By using the numerical algorithm (5), the maximum error, temporal convergence 
order and spatial convergence order were listed in Tables 1 and 2 for different values 
of �, �, � and h, respectively. From these tables, we can conclude that the developed 
numerical algorithm is unconditionally stable and convergent with order O(�2−� + h2).

Table 1   The maximum error and 
temporal convergence order with 
� = 1.5 and h =

1

800

� � The maximum error The temporal convergence order

0.2 1

10
8.658 765 E–006 –

1

12
6.413 437 E–006 1.646 4

1

14
4.970 150 E–006 1.653 9

1

16
3.982 490 E–006 1.659 1

1

18
3.274 153 E–006 1.662 8

0.4 1

10
3.194 704 E–005 –

1

12
2.433 552 E–005 1.492 7

1

14
1.930 660 E–005 1.501 7

1

16
1.578 412 E–005 1.508 6

1

18
1.320 620 E–005 1.514 0

0.5 1

10
5.396 999 E–005 –

1

12
4.174 471 E–005 1.408 8

1

14
3.354 995 E–005 1.417 7

1

16
2.773 867 E–005 1.424 4

1

18
2.343955E–005 1.429 8

0.6 1

10
8.701 323 E–005 –

1

12
6.836 268 E–005 1.323 1

1

14
5.567 885 E–005 1.331 3

1

16
4.657 145 E–005 1.337 6

1

18
3.975 980 E–005 1.342 6

0.8 1

10
2.050 545 E–004 –

1

12
1.661 756 E–004 1.153 1

1

14
1.389 974 E–004 1.158 5

1

16
1.190 086 E–004 1.162 7

1

18
1.037 368 E–004 1.166 0
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In addition, Figs. 1, 2, 3 and 4 compare the graphs of the exact and approximate solu-
tions with different values of � , � , � and h. From these figures, we can conclude that the 
developed numerical solutions are in excellent agreement with the exact solution.

Table 2   The maximum error and 
spatial convergence order with 
� = 0.7 and � =

1

1 000

� h The maximum error The spatial convergence order

1.1 1

20
3.630 199 E–005 –

1

25
2.342 366 E–005 1.963 4

1

30
1.678 806 E–005 1.826 9

1

35
1.239 086 E–005 1.970 2

1

40
9.656 867 E–006 1.866 9

1.3 1

20
3.465 919 E–005 –

1

25
2.224 634 E–005 1.987 0

1

30
1.590 544 E–005 1.840 2

1

35
1.171 728 E–005 1.982 5

1

40
9.125 217 E–006 1.872 4

1.5 1

20
3.041 155 E–005 –

1

25
1.942 731 E–005 2.044 8

1

30
1.386 003 E–005 2.011 0

1

35
1.019 512 E–005 2.055 4

1

40
7.936 704 E–006 2.030 7

1.7 1

20
2.493 301 E–005 –

1

25
1.585 946 E–005 2.027 5

1

30
1.129 508 E–005 1.861 5

1

35
8.301 045 E–006 1.998 0

1

40
6.463 725 E–006 1.873 5
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