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Abstract
In this paper, a new strategy for a sub-element-based shock capturing for discontinuous
Galerkin (DG) approximations is presented. The idea is to interpret a DG element as a col-
lection of data and construct a hierarchy of low-to-high-order discretizations on this set of
data, including a first-order finite volume scheme up to the full-order DG scheme. The dif-
ferent DG discretizations are then blended according to sub-element troubled cell indicators,
resulting in a final discretization that adaptively blends from low to high order within a single
DG element. The goal is to retain as much high-order accuracy as possible, even in simula-
tions with very strong shocks, as, e.g., presented in the Sedov test. The framework retains the
locality of the standard DG scheme and is hence well suited for a combination with adaptive
mesh refinement and parallel computing. The numerical tests demonstrate the sub-element
adaptive behavior of the new shock capturing approach and its high accuracy.

Keywords High-order methods · Discontinuous Galerkin spectral element method · Finite
volume method · Shock capturing · Astrophysics · Stellar physics

Mathematics Subject Classification 76M99

1 Introduction

For non-linear hyperbolic problems, such as the compressible Euler equations, there are
two major sources of instabilities when applying discontinuous Galerkin (DG) methods
as a high-order spatial discretization. (i) Aliasing is caused by under-resolution of, e.g.,
turbulent vortical structures and can lead to instabilities that may even crash the code. As a
cure, de-aliasing mechanisms are introduced in the DG methodology based on, e.g., filtering
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[29, 30], polynomial de-aliasing [35, 36, 57] or analytical integration [23, 31], split forms of
the non-linear terms that for instance preserve kinetic energy [17,22, 26, 61], and entropy
stability [3, 5–7,19, 21, 25, 42–46,60]. (ii) The second major source of instabilities is the
Gibbs phenomenon, i.e., oscillations at discontinuities. It is well known that solutions of
non-linear hyperbolic problems may develop discontinuities in finite time, so-called shocks.
While aliasing issues can be mostly attributed to variational crimes, i.e., a bad design and
implementation of the numerical discretization with simplifications that affects aliasing (e.g.,
collocation), oscillations at discontinuities have their root deeper in the innards of the high-
order DG approach and are unfortunately an inherent property of the high-order polynomial
approximation space. Oscillations are fatal when physical constraints and bounds on the
solution exist that then break because of over- and undershoots, resulting in nonphysical
solutions such as negative density or pressure.

In this work, we focus on a remedy for the secondmajor stability issue, often referred to as
shock capturing. There are many shock capturing approaches available in the DG literature,
for instance based on slope limiters [10, 11, 40] or (H)WENO limiters [27, 50, 65], filtering
[2], and artificial viscosity [9, 47]. Slope limiters or (H)WENO limiters are always applied in
combination with troubled cell indicators that detect shocks and only flag the DG elements
that are affected by oscillations. Only in these elements, the DG polynomial is replaced
by an oscillation-free reconstruction using data from neighboring elements. Element-based
slope limiting, e.g., with TVB limiters, is effective for low-order DG discretizations only, as
its accuracy strongly degrades when increasing the polynomial order N , as in some sense,
the size of the DG elements �x gets larger and larger with higher polynomial degree N .
The accuracy of the slope limiters is not based on the DG resolution ∼ �x

N , but only on
the element size �x . Considering that a finite volume (FV) discretization with high-order
reconstructions and limiters typically resolve a shock within about 2–3 cells, the shock
width for high-order DG schemes with large elements would be very wide when relying
on element-based limited reconstructions. The same behavior is still an issue for high-order
reconstruction-based limiters such as the (H)WENOmethodology. While these formally use
high-order reconstructions, its leading discretization parameter is still �x and not �x

N , and
hence, the shock width still scales with �x .

Sub-element resolution, i.e., a numerical shock width that scales proportional to �x
N , can

be achieved with, e.g., artificial viscosity. The idea is to widen the discontinuity into a sharp,
but smooth profile, such that high-order polynomials can resolve it. Again, some form of
troubled cell indicator is introduced to not only flag the element that contains the shock (or
that oscillates), but also determine the amount of necessary viscosity, e.g., based on local
entropy production [66]. It is interesting that less viscosity is needed, i.e., the sharper shock
profiles are possible, the higher the polynomial degree of the DG discretization. Shocks can
be captured in a single DG element if the polynomial order is high enough [47]. An issue
of artificial dissipation is that a high amount of artificial viscosity is needed for very strong
shocks, which makes the overall discretization very stiff with a very small explicit time-step
restriction. Local time-stepping can be used to reduce this issue [24] or specialized many
stage Runge-Kutta schemes with optimized coefficients for strongly dissipative operators
[32].

An alternative idea to achieve sub-element resolution is to actually replace the elements
by sub-elements (lower order DG on finer grid) or maybe even FV subcells. A straight
forward, maybe even a natural idea in the DGmethodology is to use the hp-adaptivity, where
the polynomial degree is reduced, and simultaneously, the grid resolution is increased close
to discontinuities. When switching to the lowest order DG, i.e., a first-order DG, which is
nothing but a first-order FVmethod, it is assumed that the inherent artificial dissipation of the
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first-order FV scheme is enough to clear all oscillations at even the strongest shocks. The low
accuracy of the first-order FV method is compensated by a respective (very strong) increase
in local grid resolution through the h-adaptivity. An obvious downside to the hp-adaptivity
approach is the strong dynamic change of the approximation space during the simulation and
the associated strong change of the underlying data structures.

Thus, as a simpler alternative, subcell-based FV discretizations with a first-order, second-
order TVD, or high-orderWENO reconstruction were introduced, e.g., in [13, 14, 56, 59, 62].
The idea is to completely switch the troubled DG element to a robust FV discretization on a
fine subcell grid. This approach keeps the change of the data local to the affected DG element
and helps to streamline the implementation. The robust and essential oscillation-free FV
scheme on the finer subcell grid in the DG element is constructed based on the available DG
data. This helps to keep the data structures feasible and reduces the shock capturing again to
an element local technique instead of changing the global mesh topology and approximation
space. Consequently, this again allows to combine the approach with the idea of a troubled
cell mechanism to identify the oscillatory DG elements and replace the high-order DG update
with the robust FV update. As noted, there are many different variants for the FV subcell
schemewith the high-orderWENO [13,14, 56, 59, 62] variant being especially interesting, as
it alleviates the “stress” on the troubled cell indicator.When accidentally switching the whole
high-order DG element to the subcell FV scheme in smooth parts of the solution, accuracy
may strongly degrade. A first-order FV scheme, even on the fine subcell grid, would wash
away all fine structure details that the high-order DG approach simulated. Thus, from this
point of view, a high-order subcell WENO FV scheme is highly desired in this context. A
downside of a subcell WENO FV scheme is the non-locality of the data dependence due to
the high-order reconstruction stencils. This is especially cumbersome close to the interface
of the high-order DG elements, where the reconstruction stencils reach into the neighboring
DG elements and thus fundamentally change the data dependency footprint of the resulting
implementation, that consequently has a direct impact on the parallelization of the code.

In this paper, the goal is to augment a high-order DG method with sub-element shock
capturing capabilities to allow the robust simulation of highly supersonic turbulent flows
which feature strong shocks, as, e.g., in astrophysics, without changing the data dependency
footprint. Instead of flagging an element and completely switching from the high-order DG
scheme to the subcell FV scheme, we aim to smoothly combine different schemes in the
flagged element. To achieve this, we first interpret the DG element as a collection of available
mean value data. As depicted in Fig. 1, local reconstructions allow to define a hierarchy
of approximation spaces, from pure piecewise constant approximations (subcell FV) up
to a smooth global high-order polynomial (DG element), with all piecewise polynomial
combinations (sub-element DG) in between. We then associate each possible approximation
space with the corresponding FV or DG discretization to define a hierarchy of schemes that
is available for the given collection of data.

Instead of switching between these different schemes, we aim to smoothly blend them
to achieve the highest possible accuracy in every DG element. Assuming that the first-order
subcell FV approximation has enough inherent dissipation to capture shocks in an oscillation-
free manner, the goal is to give the FV discretization a high enough weight at a shock and
then smoothly transition to higher order (sub-element) DG away from the shock. In contrast
to the common approaches, where one indicator is used for the whole DG element, we aim
to introduce sub-element indicators that are adaptively adjusted inside the DG element. A
difficulty that arises when using sub-element indicators and an adaptive blending approach
is to retain conservation of the final discretization for arbitrary combinations of blending
weights.
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Fig. 1 Sketch of the main idea in
a 1D setting. Starting with eight
mean values (red), we interpret
them as a collection of available
data. We construct four different
approximation spaces (blue):
piecewise constant on a subcell
grid, piecewise linear and
piecewise cubic on a sub-element
grid, and the full seventh-degree
polynomial on the element

MV

FV O1

DG O2

DG O4

DG O8

The final discretization is a blended scheme, where the weights of the different discretiza-
tions may vary inside the DG element. To demonstrate this idea, the resulting behavior of
the new approach is depicted in Fig. 2 for the example of a Sedov blast wave in 2D. In this
particular setup, we start with the eighth-order DG as our baseline high-order discretization.
The gray grid lines indicate the eighth-order DG element borders. Re-interpreting the 2D
eighth-order DG element as 82 mean value data, we can construct either a first-order FV
scheme on 82 subcells, a fourth-order DG scheme on 22, or a second-order DG scheme
on 42 sub-elements. The blending of the four available discretizations is visualized via a
weighted blending factor (introduced in (57)) in Fig. 2 ranging from 1 (dark red, basically
pure first-order FV) up to 8 (dark blue, basically pure eighth-order DG) and all combinations
in between.

Clearly, the new approach adaptively changes on a sub-element level with a very localized
low order near the shock front, while a substantial part of the high-order DG approximation
is recovered away from the shock. We refer to the validation and application sections, Sects.
3 and 4, for a more detailed discussion.

The remainder of the paper is organized as follows: in Sect. 2, we introduce the numer-
ical scheme with the blending of the different discretizations. Section 3 includes numerical
validations and Sect. 4 shows an application of the presented approach with the conclusion
given in the last section.
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Fig. 2 Visualization of the sub-element adaptive blending approach for the 2D Sedov blast wave, see Sect.
3 for a detailed discussion. The gray grid lines represent the eighth-order DG elements. The color represents
the blending process, where dark red (value 1) corresponds to pure first-order FV and dark blue (value 8)
corresponds to the pure eighth-order DG scheme, with all combination in between. Note that the plotted value
is only for illustration and does not correspond to an actualmixedmathematical order of the final discretization.
However, the value nicely illustrates how even inside a DG element, the discretization is adaptively adjusted

2 The Sub-element Adaptive Blending Approach

The derivations in Sects. 2.1–2.6 are done in 1D, where the domain Ω is divided into Q
non-overlapping elements. Each element q with midpoint xq and size �xq is mapped to the
reference space as

x(χ) = xq + χ �xq , χ ∈
[
−1

2
,
1

2

]
. (1)

Each element holds a total number of degrees of freedom (DOF) N , where we require
N ∈ {2r , r ∈ N}. For the FV method, the element is divided into N subcells of size �xq

N
leading to a uniform grid with midpoints μi and interfaces μi± 1

2
in the reference space at

μi = −1

2
+ i

N
− 1

2 N
and μi± 1

2
= μi ± 1

2 N
, i = 1, · · · , N . (2)

For the sub-element DG scheme of order n = 2r < N , r ∈ N, the element is divided
into N

n uniform sub-elements of size n�xq
N , and the mapping of each sub-element s to its

(sub-)reference space reads as

χ(ξ)O(n)
s = −1

2
+ s n

N
− n

2 N
+ n

N
ξ, s = 1, · · · ,

N

n
, ξ ∈

[
−1

2
,
1

2

]
. (3)

Figure A1 in Appendix A provides a visual representation of the reference element and its
hierarchical decomposition into sub-elements and subcells.
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2.1 Finite VolumeMethod

Consider the general 1D conservation law

∂t u + ∂x f (u) = 0. (4)

We approximate the exact solution u(x) in element q with N mean values:

ūq = (ū1, · · · , ūN )Tq ∈ R
N , (5)

residing on the uniform subcell grid (2). Then, the 1D FV semi-discretization on subcell i
reads

(
∂t ūi

)
q = − N

�xq

(
f ∗((ūi )q , (ūi+1)q

)− f ∗((ūi−1)q , (ūi )q
))

, i ∈ 1, · · · , N , (6)

where f ∗ denotes a consistent numerical two-point flux. The adjacent values from neighbor-
ing elements q − 1 and q + 1 are given by (ū0)q := (ūN )q−1 and (ūN+1)q := (ū1)q+1. We
define the FV difference matrix

� :=

⎛
⎜⎜⎜⎜⎝

−1 1 0 · · · 0
0 −1 1

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎠ ∈ R

N×(N+1), (7)

and rewrite (6) in compact matrix form

∂t ūq = − N

�xq
� f ∗

q (8)

with the numerical flux vector f ∗
q ∈ R

N+1. For later use, we split � into a volume and a
surface operator:

� = �(V) + �(S) =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 −1 1

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−1 0 0 · · · 0
0 0 0

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎠ . (9)

Remark 1 The FV volume operator vanishes when summed along columns, that is

1T �(V) = 0T, (10)

where 1 = (1, · · · , 1)T ∈ R
N is the vector of ones.

2.2 DGMethod

In this section, we briefly outline the discontinuous Galerkin spectral element method
(DGSEM) [1, 34]. To derive the nth-order DG scheme within sub-element s ((3)), resid-
ing inside element q , we first rewrite the conservation law (4) into variational form with a
test function φ and apply spatial integration-by-parts to the flux divergence:∫

Ωs

∂t uq φ dξ = N

n �xq

(∫
Ωs

f (uq) ∂ξφ dξ − f ∗(uq) φ
∣∣
∂Ωs

)
. (11)
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We choose the test functions φ as Lagrange functions:

�i (ξ) =
n∏

k=1,k �=i

ξ − ξk

ξi − ξk
, i = 1, · · · , n, (12)

spanned with the collocation nodes ξi ∈ [− 1
2 ,

1
2

]
, and use the polynomial ansatz

u(t; ξ) ≈
n∑

i=1

ũi (t) �i (ξ) = ũT(t) �(ξ), (13)

where
ũ(t) = (ũ1(t), · · · , ũn(t)

)T and �(ξ) = (�1(ξ), · · · , �n(ξ)
)T (14)

are the vectors of nodal coefficients and Lagrange polynomials. We use collocation of the
non-linear flux functions with the same polynomial approximation. Numerical quadrature is
collocated, as well. The nodes are the Gauss-Legendre quadrature nodes. These quadrature
nodes and the interpolation polynomials are also illustrated in Fig. A1 in Appendix A.

Inserting everything into (11) gives the semi-discrete weak-form DG scheme

M ∂t ũs = N

n �xq

(
DTM f̃ s − B f ∗

s

)
. (15)

The diagonal mass matrix is
(M)i j = δi j ωi (16)

with associated numerical quadrature weights ωi , and the differentiation matrix is

(D)i j = ∂ξ � j (ξ)
∣∣
ξi
. (17)

The DG volume flux f̃ s is computed directly with the nodal values ũs of the polynomial
ansatz (13)

f̃ s = f
(
ũs
) :=

(
f
(
(ũ1)s

)
, · · · , f

(
(ũn)s

))T ∈ R
n, (18)

and the surface flux vector

f ∗
s =

(
f ∗( ũ+

s−1, ũ
−
s︸ ︷︷ ︸

left sub-element
interface

), 0, · · · , 0, f ∗( ũ+
s , ũ−

s+1︸ ︷︷ ︸
right sub-element

interface

)
)T ∈ R

n (19)

is constructed with the numerical flux evaluated at DG sub-element boundaries

ũ+
s = (b+)T ũs and ũ−

s = (b−)T ũs, (20)

where b± are the boundary interpolation operators

b± =
(
�1
(± 1

2

)
, · · · , �n

(± 1
2

))T ∈ R
n . (21)

The boundary evaluation operator can be compactly written as

B =
⎛
⎜⎝

−�1(− 1
2 ) 0 · · · 0 �1(

1
2 )

...
...

. . .
...

...

−�n(− 1
2 ) 0 · · · 0 �n(

1
2 )

⎞
⎟⎠ ∈ R

n×n . (22)

123



686 Commun. Appl. Math. Comput. (2023) 5:679–721

We rewrite (15) and arrive at

∂t ũs = N

n �xq

(
D f̃ s − B f ∗

s

)
(23)

with D := M−1DTM and B := M−1B.
Remark 2 TheDGvolumeoperator D vanisheswhen contractedwith the vector of quadrature
weights ωT := (ω1, · · · , ωn)

T = 1TM,

ωT D = 0T. (24)

Proof
ωT D = 1TMM−1 DTM = 1TDTM = (D 1)TM = 0.

Here, we use the fact that D 1 = 0 is equivalent to taking the derivative of the constant
function u(x) = 1, i.e., ∂xu(x) = ∂x1 = 0.

2.3 Projection Operator

We consider a given polynomial of degree n−1with its nodal data ũ ∈ R
n in a (sub-)element,

which we want to project to nμ mean values on regular subcells. We define the projection
operator P (n→nμ) ∈ R

nμ×n component-wise via the mean value of the polynomial in the
interval of subcell μi :

ūi = nμ

∫ μ
i+ 1

2

μ
i− 1

2

ũ(ξ) dξ =
n∑
j=1

ũ j nμ

∫ μ
i+ 1

2

μ
i− 1

2

� j (ξ) dξ

︸ ︷︷ ︸
:=P

(n→nμ)

i j

, i = 1, · · · , nμ. (25)

The integration of the Lagrange polynomial is done exactly with an appropriate quadrature
rule.

Remark 3 Contracting the projection operator P (n→nμ) with 1nμ := (1, · · · , 1)T ∈ R
nμ

gives
1Tnμ

P (n→nμ) = nμ ωT. (26)

Proof
nμ∑
i=1

Pi j = nμ

nμ∑
i=1

∫ μ
i+ 1

2

μ
i− 1

2

� j (ξ) dξ = nμ

∫ μ
nμ+ 1

2

μ
1− 1

2

� j (ξ) dξ = nμ

∫ 1
2

− 1
2

� j (ξ) dξ = nμω j .

(27)

Remark 4 When n = nμ, we succinctly write P := P (n→n).

2.4 Reconstruction Operator

The inverse of the quadratic non-singular projection matrix P (n→n) can be interpreted as a
reconstruction operator from n mean values to n nodal values of a polynomial with degree
n − 1:

ũ = P−1 ū := R ū. (28)
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However, the naïve reconstruction (28) can lead to invalid data such as negative density or
energy. Considering a convex set of permissible states for a given conservation law [64], we
want to have a limiting procedure which recovers permissible states while still conserving
the element mean value. Provided that the element average is a valid state

〈u〉 := 1

n
1Tū ∈ {permissible states

}
, (29)

we expand the reconstruction process (28) by the following limiting procedure:

R(β) = 1 − β

n
1 ⊗ 1T + β R, (30)

with the dyadic product 1 ⊗ 1T ∈ R
n×n and the “squeezing” parameter β ∈ [0, 1] chosen

such that {
ũ(β)︸︷︷︸

node values

,
(
b+)T ũ(β)

︸ ︷︷ ︸
left boundary

,
(
b−)T ũ(β)

︸ ︷︷ ︸
right boundary

} ⊂ {permissible states
}
, (31)

where

ũ(β) = R(β) ū =
(
1 − β

n
1 ⊗ 1T + β R

)
ū = (1 − β) 1 〈u〉 + β ũ, (32)

which shows that the extended reconstruction operator preserves the original element average,
that is

〈ũ(β)〉 = 〈ũ〉.

Remark 5 The expanded reconstruction operator fulfills the following relationships:

ωT R(β) = ωT R = 1

n
1T. (33)

Proof We begin with the second relation. From Eq. (26), we know

1T P = n ωT,

1T P P−1 = n ωTP−1 = n ωTR,

1

n
1T = ωTR.

The first relation follows as

ωT R(β) = 1 − β

n
ωT 1︸︷︷︸
=1

⊗1T + β ωT R︸ ︷︷ ︸
= 1

n 1T

= 1

n
1T = ωT R.

The specific calculation of the parameter β depends on the permissibility constraints of
the conservation law at hand. In Sect. 3.1, we solve the compressible Euler equations where
the density ρ and pressure p are positive values. Based on [64], we calculate the squeezing
parameter β as

β = min

( 〈ρ〉 − ε

〈ρ〉 − ρmin
,

〈p〉 − ε

〈p〉 − pmin
, 1

)
, (34)

where 〈ρ〉 and 〈p〉 are the element averages (29), and ρmin and pmin are the minimum values
of the unlimited polynomial given in (31) and ε = min(10−20, 〈ρ〉, 〈p〉).
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Remark 6 We observed that the indispensable positivity limiting can have a potential nega-
tive impact on the robustness of the high-order DG scheme, especially for high polynomial
degrees. It seems that huge artificial jumps and gradients can be generated at element inter-
faces. To alleviate this problem, it is advisable to only allow small squeezingmargins between
5% and 10%. If, for example, the squeezing parameter β falls below 0.95, the reconstructed
high-order polynomial is decided un-salvageable and the next lower order scheme is consid-
ered.

2.5 Single-Level Blending

We first focus on the case where only two different discretizations per element q are blended:
a single-level blending of the low-order FV scheme and the high-order DG scheme,

∂t uq = (1 − αq) ∂t u
(low)
q + αq ∂t u

(high)
q .

Note that we do not blend the solutions, but directly the discretizations themselves, i.e.,
the right-hand sides which we denote by ∂t uq . If both schemes operate with different data
representations, appropriate transformations ensure the compatibility during the blending
process. In our case, we use the projection operator P (N→N ) introduced in Sect. 2.3 to
transfer the nodal output of the DG operator to subcell mean values. The inputs for the
DG scheme on the other hand, i.e., the nodal coefficients ũq ∈ R

N , are reconstructed from
the given mean values ūq ∈ R

N as described in Sect. 2.4. The naïve single-level blended
discretization reads as

∂t ūq = (1 − αq) ∂t ū(FV)
q + αq P ∂t ũ

(DG)
q .

Inserting (8) and (23) gives

∂t ūq = (1 − αq)
−N

�xq
� f ∗(FV)

q + αq
1

�xq
P
(
D f̃ q − B f ∗(DG)

q

)
. (35)

The fundamental issue of the naïve single-level blending discretization (35) is that it is not
conservative if the blending parameter αq varies from element to element. It turns out that
the direct blending of the surface fluxes of both discretizations, namely f ∗(FV)

q and f ∗(DG)
q ,

leads to a non-conservative balance of the net fluxes across element interfaces. To remedy
this issue, the goal is to define unique surface fluxes common to both, the low-order and the
high-order discretization, such that they can be directly blended.We thus compute a blending
of the reconstructed interface values to evaluate a unique common surface flux f ∗

q . First, we
define two interface vectors of length N + 1 as follows:

u+
q := ( u+

q− 1
2
, (ū1)q , · · · , (ūN−1)q , u

+
q+ 1

2︸ ︷︷ ︸
prolongated states at
FV subcell interfaces

)T and u−
q := ( u−

q− 1
2
, (ū2)q , · · · , (ūN )q , u

−
q+ 1

2︸ ︷︷ ︸
prolongated states at
FV subcell interfaces

)T
,

(36)
where the outermost interface values are given by

u−
q− 1

2
= (1 − αq) (ū1)q + αq ũ

−
q and u+

q+ 1
2

= (1 − αq) (ūN )q + αq ũ
+
q . (37)

A concrete example for the blended boundary values u±
q± 1

2
is shown in Fig. 3.
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ũ1

ũ2

ũ3

ũ4
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Step function ū(χ)
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Fig. 3 Schematic of four (N = 4) mean values and the reconstructed polynomial on the reference element.
The cell boundary values u−

q− 1
2
and u+

q+ 1
2
were calculated with (37) where we assumed a blending factor of

α = 0.75

The common surface flux f ∗
q is then evaluated with the interface vectors u+

q and u−
q as

f ∗
q = f ∗ (u+

q , u−
q

)
∈ R

N+1. (38)

To make the DG surface operator B compatible with f ∗
q , we adapt the notation by inserting

an additional column of zeros:

B(0) =

⎛
⎜⎜⎜⎝

B11 0 · · · 0 · · · 0 B1N

B21 0 · · · 0 · · · 0 B2N
...

...
. . .

...
. . .

...
...

BN1 0 · · · 0 · · · 0 BNN

⎞
⎟⎟⎟⎠ ∈ R

N×(N+1). (39)

Corollary 1 Contracting the DG surface operator B(0) with the quadrature weights ω is
equivalent to the contraction of the FV surface operator, that is

ωT B(0) = 1T �(S). (40)

Proof We expand the left side of (40) and write

ωT B(0) =
(

−
N∑
i=1

ωi
�i (− 1

2 )

ωi
, 0, · · · , 0,

N∑
i=1

ωi
�i (

1
2 )

ωi

)

=
(

−
N∑
i=1

�i (− 1
2 ), 0, · · · , 0,

N∑
i=1

�i (
1
2 )

)
= (−1, 0, · · · , 0, 1) = 1T �(S).

We replace f ∗(FV)
q and f ∗(DG)

q in (35) with f ∗
q , and additionally, write the DG operators

compactly, including the projection operator, as

D̂ = P D and B̂ = P B(0). (41)
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The final form of the single-level blended discretization is

∂t ūq = (1 − αq)
−N

�x
� f ∗

q + αq
1

�x

(
D̂ f̃ q − B̂ f ∗

q

)
. (42)

Remark 7 It is easy to see that with αq = 0 for all elements q , the pure subcell FV discretiza-
tion is recovered, and with αq = 1 for all elements, the blending scheme recovers the pure
high-order DG method.

Lemma 1 Given arbitrary blending factors αq ∈ R for each element q, then the blending
scheme (42) is conservative.

Proof We discretely integrate the single-level blended discretization over all elements q with
a total number of Q:

Q∑
q

�xq 1T∂t ūq =
Q∑
q

�xq 1T
[
(1 − αq)

−N

�xq
� f ∗

q + αq
1

�xq

(
D̂ f̃ q − B̂ f ∗

q

) ]
.

With (9) and (41), we get

Q∑
q

�xq 1T∂t ūq =
Q∑
q

1T
[
− (1−αq) N

(
�(V) +�(S)

)
f ∗
q +αq

(
P D f̃ q − P B(0) f ∗

q

) ]
.

With properties (10), (24), and (26) the volume terms vanish, that is

1T �(V) = 0T and 1T P D = N ωT D = 0T.

We reformulate the DG surface term with (26) and (40) as

1T P B(0) = N ωT B(0) = N 1T�(S).

The expansion of the telescopic sum only leaves the outermost surface fluxes:

Q∑
q

[
− (1 − αq) N 1T�(S) − αq N 1T�(S)

]
f ∗
q =

Q∑
q

−N 1T�(S) f ∗
q

= −N
((− f ∗

1

)
1 + ( f ∗

N+1

)
Q

)
= 0,

which represent the change due to physical boundary conditions. For instance in case of
periodic boundary conditions, these two fluxes would cancel to zero.

This concludes the description of the single-level blending scheme.

2.6 Multi-level Blending

As mentioned in the introduction, the general idea is the construction of a hierarchy of
discretizations, with lower order DG schemes on sub-elements. In principle, it is thus possible
to define a multi-level blending discretization, where the low-order FV scheme is blended
with DG variants of different approximation orders. This multi-level extension is driven by
the desire to retain asmuch “high orderDGaccuracy” as possible, especially on a sub-element
level.

For the discussion, we consider a specific example setup with a DG element with poly-
nomial degree Np = 7. The data of this DG element are collected in form of N = 8 mean
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values on a regular subcell grid. Our goal is to blend a first-order subcell FV scheme, a
second- and fourth-order sub-element DG scheme, and the full eighth-order DG scheme.
The construction of the individual schemes follows the discussion in Sects. 2.1, 2.2, and 2.5.
In this section, the extension to a multi-level blending approach is presented.

We get the first data interpretation and its corresponding discretization by directly using
the mean values of element q as a first-order approximation space with no reconstruction at
all:

ūO(1)
q := ūq = (ū1, ū2, · · · , ū8)

T
q .

Next, we interpret the eight mean values as four second-order DG sub-elements. The recon-
struction matrix RO(2) ∈ R

2×2 transforms two adjacent mean values to two nodal values:

ũO(2)
q =

(
(ũ1)

O(2)
1 , (ũ2)

O(2)
1︸ ︷︷ ︸

O(2)−sub-element

, · · · , (ũ1)
O(2)
4 , (ũ2)

O(2)
4︸ ︷︷ ︸

O(2)−sub-element

)T
q

=
[
14 ⊗ RO(2)

]
ūq . (43)

The fourth- and eighth-order approximations are constructed analogously as

ũO(4)
q =

(
(ũ1)

O(4)
1 , · · · , (ũ4)

O(4)
1︸ ︷︷ ︸

O(4)−sub-element

, (ũ1)
O(4)
2 , · · · , (ũ4)

O(4)
2︸ ︷︷ ︸

O(4)−sub-element

)T
q

=
[
12 ⊗ RO(4)

]
ūq , (44)

and

ũO(8)
q =

(
ũO(8)
1 , · · · , ũO(8)

8︸ ︷︷ ︸
O(8)−sub-element

)T
q

=
[
11 ⊗ RO(8)

]
ūq (45)

with RO(4) ∈ R
4×4 and RO(8) ∈ R

8×8. Here, we used the Kronecker product ⊗ in con-
junction with the identity matrix 1n = diag(1, · · · , 1) ∈ R

n×n to generate appropriate
block-diagonal matrices. Figure A1 in Appendix A illustrates the hierarchy of the approxi-
mation spaces for this example.

We correspond the approximation spaces with the respective discretizations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ūO(1)
q = − 8

�xq
� f ∗,

∂t ūO(2)
q = 4

�xq

{[
14 ⊗ D̂

O(2)
]
f̃
O(2)
q −

[
14 ⊗ B̂

O(2)
](0)

f ∗
q

}
,

∂t ūO(4)
q = 2

�xq

{[
12 ⊗ D̂

O(4)
]
f̃
O(4)
q −

[
12 ⊗ B̂

O(4)
](0)

f ∗
q

}
,

∂t ūO(8)
q = 1

�xq

{[
11 ⊗ D̂

O(8)
]
f̃
O(8)
q −

[
11 ⊗ B̂

O(8)
](0)

f ∗
q

}
,

(46)

where the DG volume fluxes are computed with the respective polynomial (sub-)element
reconstructions of orders n = {2, 4, 8}:

f̃
O(n)

q = f
(
ũO(n)
q

)
.

Similar to (39), the DG surface operators
[
1N/n ⊗ B̂

O(n)]
have to be slightly adapted to

be compatible with the common surface flux f ∗. We list the modified boundary evaluation
matrices in Appendix A. Finally, all four candidate discretizations are blended starting from
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the lowest order up to the highest order discretization:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t ū
′′′
q := ∂t ūO(1)

q ,

↪→ ∂t ū
′′
q =

(
1 − α

O(2)
q

)

 ∂t ū

′′′
q + α

O(2)
q 
 ∂t ūO(2)

q ,

↪→ ∂t ū
′
q =

(
1 − α

O(4)
q

)

 ∂t ū

′′
q + α

O(4)
q 
 ∂t ūO(4)

q ,

↪→ ∂t ūq =
(
1 − α

O(8)
q

)

 ∂t ū

′
q + α

O(8)
q 
 ∂t ūO(8)

q ,

(47)

where 
 denotes the component-wise multiplication with the vector of blending parameters.
Each DG sub-element computes its own blending factor according to the local data, i.e., we
get four blending factors for the O(2) variant, two blending factors for O(4), and one for
O(8):

αO(2)
q =

(
α
O(2)
1 , α

O(2)
2 , α

O(2)
3 , α

O(2)
4

)T
q

⊗ (1, 1)T,

αO(4)
q =

(
α
O(4)
1 , α

O(4)
2

)T
q

⊗ (1, 1, 1, 1)T,

αO(8)
q =

(
αO(8)

)T
q

⊗ (1, 1, 1, 1, 1, 1, 1, 1)T.

The actual strategy for the blending factors is described in Sect. 2.7.
Again, as discussed in the case of a single-blending approach in Sect. 2.5, a special care

is needed to preserve the conservation of the final discretization. Expanding on the idea
in the single-level case, we aim to compute unique surface fluxes for each discretization
with a uniquely defined interface value at sub-element or subcell interfaces. We evaluate all
high-order DG polynomials at the FV subcell interfaces u±O(n)

q ∈ R
N :

u±O(1)
q := ūO(1)

q , u±O(2)
q =

[
14 ⊗ I±O(2)

]
ũO(2)
q ,

u±O(4)
q =

[
12 ⊗ I±O(4)

]
ũO(4)
q , u±O(8)

q =
[
11 ⊗ I±O(8)

]
ũO(8)
q ,

where the interpolation operator I±O(n) ∈ R
n×n prolongates to the embedded FV subcell

interfaces μ
O(n)
i±1/2 of the respective DG sub-element, that is

(
I±O(n)

)
i j

= �
O(n)
j

(
μ
O(n)
i±1/2

)
, i, j = 1, · · · , n. (48)

In Fig. A1 in Appendix A, two representatives of μ
O(n)
i±1/2 are shown which are aligned at the

dotted vertical lines, indicating the interfaces of the FV subcells.
We start with the first-order interpolation and stack on top of the next levels of orders via

convex blending:

(
u±
q

)′′′′
:= u±O(1)

q ,

↪→
(
u±
q

)′′′
=
[
1 − αO(2)

q

]


(
u±
q

)′′′′
+ αO(2)

q 
 u±O(2)
q ,

↪→
(
u±
q

)′′
=
[
1 − αO(4)

q

]


(
u±
q

)′′′
+ αO(4)

q 
 u±O(4)
q ,

↪→
(
u±
q

)′
=
[
1 − αO(8)

q

]


(
u±
q

)′′
+ αO(8)

q 
 u±O(8)
q .
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To arrive at a complete vector of interface values, we append the element interface values
from the left and right neighbors q − 1 and q + 1:

u+
q =

( left neighbor︷ ︸︸ ︷(
u+
N

)′
q−1 ,

internal boundaries︷ ︸︸ ︷(
u+
1 , · · · , u+

N

)′
q

)T
,

u−
q =

( (
u−
1 , · · · , u−

N

)′
q ,︸ ︷︷ ︸

internal boundaries

(
u−
1

)′
q+1︸ ︷︷ ︸

right neighbor

)T
.

These new common interface values allow us to evaluate a common surface flux (38) at each
interface, which is again the key to preserve conservation in the final discretization. This
concludes the description of the multi-level blending scheme.

2.7 Calculation of the Blending Factor˛

Agood shock indicator for high-order methods is supposed to recognize discontinuities, such
as weak and strong shocks, in the solution early on and mark the affected elements for proper
shock capturing. On the other hand, the indicator should avoid to flag non-shock-related fluid
features such as shear layers and turbulent flows. There are numerous indicators available
for DG schemes [2, 13, 14, 47, 59, 65].

In this work, wewant to construct an a-priori indicator which relies on the readily available
information within each element provided by the multi-level blending framework introduced
in Sect. 2.6. The principal idea is to compare a measure of smoothness of the different order
reconstructions with each other. Smooth, well-resolved flows are expected to yield rather
similar solution profiles compared to data that contain strong variations.

The smoothness measure σ
O(n)
q within element q of the nth-order reconstruction ũO(n)

q

is inferred from the L1-norm of its first derivative. For example, if we want to calculate the
blending factor α

O(8)
q for the eighth order, we compute

σO(8)
q =

∫ 1
2

− 1
2

∣∣∣∂ξ ũ
O(8)
q (ξ)

∣∣∣ dξ (49)

and

σO(4)
q =

(
σ
O(4)
1

)
q

+
(
σ
O(4)
2

)
q

=
∫ 0

− 1
2

∣∣∣∣∂ξ

(
ũO(4)
1

)
q
(ξ)

∣∣∣∣ dξ +
∫ 1

2

0

∣∣∣∣∂ξ

(
ũO(4)
2

)
q
(ξ)

∣∣∣∣ dξ
utilizing information from the top-level eighth-order element and its two fourth-order sub-
elements. The integrals are evaluated with appropriate quadrature rules. Then, the blending
factor is calculated by comparing the smoothness of the different orders as

αO(8)
q = 1 − cutoff

⎛
⎝0, τA

⎛
⎝

∣∣∣σO(8)
q − σ

O(4)
q

∣∣∣
max

(
σ
O(4)
q , σ

O(8)
q , 1

) − τS

⎞
⎠ , 1

⎞
⎠ , (50)

where cutoff(xlower, x, xupper) = min(max(xlower, x), xupper) and with two parameters

τA, τS > 0. The design of (50) ensures that α
O(n)
q is always within the unit interval, and

that for very small σ
O(n)
q , the indicator does not get hypersensitive due to floating point

truncation. If not noted otherwise, we set the amplification parameter to τA = 100 and the
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sensitivity parameter τS = 0.05. The latter parameter has the biggest influence on the behav-
ior of the indicator and its value demarcates the lower bound where it does not interfere
with the convergence tests conducted in Sect. 3. To capture all troubling flow features, we
independently apply the indicator (50) on all primitive state variables and select the smallest
of the resulting blending factors. The calculations of the two fourth-order blending factors(
α
O(4)
1

)
q
and

(
α
O(4)
2

)
q
are done within each sub-element independently together with their

respective second-order smoothness measures
(
σ
O(2)
s

)
q
, s = 1, · · · , 4.

For piecewise linear polynomials, the indicator (50) is not applicable. Instead, we directly
use the squeezing parameter β obtained from the positivity limiter in (30), i.e., α

O(2)
s :=

β
O(2)
s , s = 1, · · · , 4.

Remark 8 The indicator (50) is also used for the single-level blending scheme.

2.8 Sketch of the Algorithm

In the last part of this section, a sketch of the algorithm for the blending framework is pre-
sented.We present a general outline of the necessary steps for the 1D single-blending scheme
evolved with a multi-stage Runge-Kutta time-stepping method. We enter at the beginning of
a Runge-Kutta cycle and do the following.

(I) Reconstruct the polynomial ũq from the given mean values ūq for each element q as
in (28).

(II) If the reconstructed polynomial ũq contains non-permissible states, see (31), then
calculate the limited version ũ(β)

q as in (30).
(III) If the squeezing parameter βq is below βL , then set αq := 0 else compute the blending

factor αq via (50) from the unlimited polynomial ũq .
(IV) Compute the boundary values u±

q via (37) and exchange alongside zone boundaries
in case of distributed computing.

(V) Determine the common surface flux f ∗
q via (38).

(VI) Calculate the right-hand side ∂t ūq :

• if the blending factor αq above αH , then compute ∂t ūq with the DG-only scheme;
• else if the blending factor αq below αL , then compute ∂t ūq with the FV-only scheme;
• else compute ∂t ūq with the single-level blending scheme (42).

(VII) Forward in time to the next Runge-Kutta stage and return to step (I).

The switching thresholds are set to αH := 0.99 and αL := 0.01 and the limiter threshold to
βL := 0.95. Note that the algorithm only applies the blending procedure where necessary to
maintain the overall performance of the scheme.

This concludes the presentation of the 1Dblending scheme.Thedescription of the blending
scheme on 3D Cartesian meshes as well as the algorithm outline for the multi-level blending
scheme can be found in Appendixes A.3 and A.4.

3 Validation

For the computational investigations, the multi-level algorithm with the explicit SSP-RK(5,
4) time integrator [58] is implemented in a Fortran-2008 prototype code with a hybrid paral-
lelization strategy based on MPI and OpenMP. Management of the AMR and load balancing
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is provided by p4est, a highly efficient Octree library [4]. The maximal time-step for dimen-
sions d = 1, 2, 3 is estimated by the CFL condition:

�t := CFL min
q

�xq
2d−1(2 N − 1) λ̄q,max

, (51)

where CFL := 0.8, N := 8 is the number of mean values in each direction of the element
q , and λ̄q,max is an estimate of the maximum eigenvalue given in (55). For the numerical
interface fluxes f ∗, we use the Harten-Lax-Leer (HLL) approximate Riemann solver [28]
with Einfeldt signal speed estimates [15].

3.1 Governing Equations

We consider the compressible Euler equations:⎧⎪⎨
⎪⎩

∂tρ + ∇ · (ρ v) = 0,
∂t (ρ v) + ∇ · (ρ vvT + p 1

) = 0,

∂tE + ∇ ·
(
v (E + p)

)
= 0,

(52)

with the vector of conserved quantities u = (ρ, ρ v, E)T, where ρ denotes the density, v the
velocity, and E the total energy. We assume a perfect gas equation of state and compute the
pressure as:

p(u) = (γ − 1)
[
E − ρ

2
vTv
]
. (53)

If not stated otherwise, we choose γ = 1.4. The set of permissible states is given by{
permissible states

} = {∀ u
∣∣ ρ > 0 ∧ p(u) > 0

}
. (54)

For the CFL condition (51), the maximum eigenvalue is evaluated on all mean values ūq of
element q . Given dimension d = {1, 2, 3}, it reads as

λ̄q,max = max
i,d

(∣∣(v̄d)i ∣∣+
√

γ
p̄i
ρ̄i

)
, i = 1, · · · , Ndmax . (55)

3.2 Convergence Test

We use the manufactured solution method [51] and validate the 3D multi-level blending
scheme on a periodic cube of unit length (L = 1) where the resolution of the mesh is
incrementally doubled. We define our manufactured solution in primitive state variables
as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(t; x, y, z) = 1.0 + 0.35 sin
(
2 π (x−t)

L

)
+0.24 cos

(
2 π (y−t)

L

)
+0.1 sin

(
2 π (z−t)

L

)
,

v(t; x, y, z) = (0.1, 0.2, 0.3)T,

p(t; x, y, z) = 1.0 + 0.23 cos
(
2 π (x−t)

L

)
+0.19 sin

(
2 π (y−t)

L

)
+ 0.2 cos

(
2 π (z−t)

L

)
.

(56)

The final time of the simulation is T = 2 and the center of the domain is refined to introduce
non-conforming interfaces in the computational domain. We determine the L∞- and L2-
norms of the errors in the density and total energy. Tables 1, 2, 3, and 4 list the results for the
first-, second-, fourth-, and eighth-order multi-level blending schemes. The initial conditions
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Table 1 Experimental order of convergence of the first-order FV variant within the 3D multi-level blending
framework

Resol. Density Total energy Density Total energy
2r ||ε||∞ ||ε||2 ||ε||∞ ||ε||2 EOC∞ EOC2 EOC∞ EOC2

16 5.98E−03 4.84E−03 1.34E−02 1.03E−02 n/a n/a n/a n/a

32 3.51E−03 2.83E−03 7.91E−03 6.13E−03 0.77 0.77 0.76 0.75

64 2.21E−03 1.45E−03 4.30E−03 3.13E−03 0.67 0.97 0.88 0.97

128 1.42E−03 7.30E−04 2.26E−03 1.57E−03 0.63 0.99 0.93 0.99

Table 2 Experimental order of convergence of the second-order DG variant within the 3Dmulti-level blending
framework

Resol. Density Total energy Density Total energy
2r ||ε||∞ ||ε||2 ||ε||∞ ||ε||2 EOC∞ EOC2 EOC∞ EOC2

16 1.46E−03 5.38E−04 2.21E−03 9.35E−04 n/a n/a n/a n/a

32 4.59E−04 9.29E−05 6.63E−04 1.97E−04 1.67 2.53 1.74 2.25

64 1.11E−04 1.77E−05 1.48E−04 4.26E−05 2.04 2.39 2.17 2.21

128 2.63E−05 3.88E−06 3.09E−05 9.72E−06 2.08 2.19 2.25 2.13

Table 3 Experimental order of convergence of the fourth-order DG variant within the 3Dmulti-level blending
framework

Resol. Density Total energy Density Total energy
2r ||ε||∞ ||ε||2 ||ε||∞ ||ε||2 EOC∞ EOC2 EOC∞ EOC2

16 1.10E−04 6.45E−05 3.20E−04 1.83E−04 n/a n/a n/a n/a

32 7.86E−06 4.33E−06 2.19E−05 1.33E−05 3.80 3.90 3.87 3.79

64 5.18E−07 2.59E−07 1.31E−06 7.59E−07 3.92 4.07 4.07 4.13

128 3.45E−08 1.82E−08 7.75E−08 4.29E−08 3.91 3.83 4.07 4.15

and the source term of our manufactured solution (56) are in all cases evaluated and applied
on the mean values via an appropriate quadrature rule to maintain high order. The results
confirm that the discretizations behave as designed in this assessment.

3.3 Conservation Test

The goal in this assessment is to demonstrate that the multi-level-blending discretization is
conservative for all choices of blending factors. To do so, we adapt the same setup as in
Sect. 3.2, but deactivate the source term. The center of the domain is refined to introduce
non-conforming interfaces in the computational domain. Additionally, as a stress test, the
blending factors are randomly chosen and changed after each Runge-Kutta stage. As there
are multiple blending factors at a given spatial location, we consider the following weighted
blending factor:

ᾱ =
{[(

1 − αO(2)
)

+ 2αO(2)
] (

1 − αO(4)
)

+ 4αO(4)
} (

1 − αO(8)
)

+ 8αO(8), (57)
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Table 4 Experimental order of convergence of the eighth-order DG variant within the 3Dmulti-level blending
framework. Here, we set CFL := 0.1, as the time integration method is only fourth-order accurate

Resol. Density Total energy Density Total energy
2r ||ε||∞ ||ε||2 ||ε||∞ ||ε||2 EOC∞ EOC2 EOC∞ EOC2

16 2.77E−07 1.65E−07 7.77E−07 4.55E−07 n/a n/a n/a n/a

32 2.77E−09 1.00E−09 6.72E−09 2.41E−09 6.65 7.36 6.85 7.56

64 1.73E−11 3.48E−12 4.15E−11 1.04E−11 7.32 8.17 7.34 7.86

128 8.06E−14 1.87E−14 1.85E−13 6.74E−14 7.74 7.54 7.81 7.27

to illustrate the distribution of the blending factors in Fig. 4. Note the limiting cases ᾱ = 1
for pure FV and ᾱ = 8 for the eighth-order DG scheme.

The simulation runs to T = 300 performing more than a quarter million timesteps. The
result of the test is shown in Fig. 5 where we plot in log-scale the absolute value of the change
of bulk ∂t ūtotal(t), integrated over the whole domain:

∂t ūtotal(t) =
Q∑
q

1

|Ωq |
∫

Ωq

∂t ū(t) dΩ. (58)

Q is the total number of elements and |Ωq | = �xq�yq�zq is the volume per element. The
results show that the conservation error lies within the range of 64 bit (double precision)
floating point truncation and hence confirm that the multi-level blending discretization is
fully conservative up to machine precision errors.

3.4 1D Shock Tube Problems

Wevalidate themulti-level blending schemewith threewell-established 1Dproblems, namely
Sod, Lax, and Shu-Osher shock tubes. However, first, to gain insights into the individual
contributions of the different schemes, we introduce a more intuitive reformulation of the
blending factors αO(n). The multi-level blending operation (47) within element q can be
interpreted as a linear superposition of four numerical schemes. For that, we collapse the
following relations:

∂t ū
′′′
q := ∂t ūO(1)

q ,

↪→ ∂t ū
′′
q =

(
1 − αO(2)

q

)

 ∂t ū

′′′
q + αO(2)

q 
 ∂t ūO(2)
q ,

↪→ ∂t ū
′
q =

(
1 − αO(4)

q

)

 ∂t ū

′′
q + αO(4)

q 
 ∂t ūO(4)
q ,

↪→ ∂t ūq =
(
1 − αO(8)

q

)

 ∂t ū

′
q + αO(8)

q 
 ∂t ūO(8)
q ,

into one single term and define blending weights θO(n), that is

∂t ūq = θO(1)
q 
 ∂t ūO(1)

q + θO(2)
q 
 ∂t ūO(2)

q + θO(4)
q 
 ∂t ūO(4)

q + θO(8)
q 
 ∂t ūO(8)

q ,
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Fig. 4 Conservation test of the 3D multi-level blending scheme: slice through the computational domain
showing weighted blending factor ᾱ according to (57) on a Cartesian non-conforming mesh with refinement
levels 3–5. The black lines depict the boundaries of the corresponding 8th order DG elements

D
T

x
y

z

Fig. 5 Conservation test of the 3D multi-level blending scheme: evolution of the integrated change of bulk
log10(|∂t ūtotal|) (Eq. (58)) of each conservative state variable

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θO(1)
q :=

(
1 − α

O(8)
q

)


(
1 − α

O(4)
q

)


(
1 − α

O(2)
q

)
,

θO(2)
q :=

(
1 − α

O(8)
q

)


(
1 − α

O(4)
q

)

 α

O(2)
q ,

θO(4)
q :=

(
1 − α

O(8)
q

)

 α

O(4)
q ,

θO(8)
q := α

O(8)
q .

(59)

By construction, the blending weights have the following property:

θO(1)
q + θO(2)

q + θO(4)
q + θO(8)

q = 1, (60)

123



Commun. Appl. Math. Comput. (2023) 5:679–721 699

Fig. 6 Sod shock tube problem: numerical solution of the density profile (top row)with the DGFV8multi-level
blending scheme together with the exact solution at the final simulation time T = 0.2. The bottom row shows
the blending weights θO(n) (Eq. (59)) encoded by stacked bars in different colors. The light gray vertical grid
lines depict the element boundaries

and thus give a proper fraction of each contribution.
The first shock tube problem is the Sod shock tube [55]. It is defined on the unit interval

Ω = [0, 1] with a diaphragm located at xD = 0.5. The initial condition in primitive state
variables reads

(
ρ0(x), v0(x), p0(x)

) =
{(

1, 0, 1
)
, x < xD,(

0.125, 0, 0.1
)
, x � xD .

The resolution is set to 32 elements of N = 8 mean values each. This amounts to 256 total
DOF. The result for the density profile (top row) at the final simulation time T = 0.2 is
presented in Fig. 6 together with the exact solution. It shows the correct approximation of
the rarefaction wave, contact discontinuity, and the forward facing shock front. As designed,
only at the shock front, the blending scheme gets triggered, which is visible in the bottom
row of the plot. The stacked bar chart directly corresponds to the blending weights θO(n) in
(59). The vertical dimension of the stacked bars completely fill the unit interval mirroring
property (60).

The second test case is the Lax shock tube [48] with initial data set to

(
ρ0(x), v0(x), p0(x)

) =
{(

0.445, 0.689, 3.528
)
, x < xD,(

0.5, 0, 0.571
)
, x � xD .

All other simulation parameters as well as the resolution are the same as in the Sod test
case. The result for the density profile (top row) at the final simulation time T = 0.15 is
presented in Fig. 7 togetherwith reference solution on a finer grid of 1 024DOFwith the third-
order piecewise parabolic method (PPM) [49] implemented in the astrophysics code FLASH
(version 4.6, March 2019), see, e.g., [20]. For comparison, we also include the solution of
the PPM with the same grid resolution of 256 DOF. All flow features are resolved correctly
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Fig. 7 Lax shock tube problem: numerical solution of the density profile (top row) with the DGFV8 (256
DOF) multi-level blending scheme together with the reference solution (PPM, 1 024 DOF) and PPM (256
DOF) at the final simulation time T = 0.2. The bottom row shows the blending weights θO(n) (Eq. (59))
encoded by stacked bars in different colors. The vertical grid lines depict the element boundaries

and the blending scheme is only triggered in the region around the forward facing shock.
Furthermore, this example clearly reveals the adaptive blending on the sub-element level.

The third shock tube, the Shu-Osher test [54], is a Mach three shock interacting with a
sinusoidal density wave. It reveals the scheme’s capability of capturing both, discontinuous
and smooth parts of the flow. The computational domain in 1D is set to Ω = [−4.5, 4.5],
the final simulation time is T = 1.8, and the primitive variables are initialized as

(
ρ0(x), v0(x), p0(x)

) =
{(

3.856 714 3, 2.629 369, 10.333 33
)
, x < −4,(

1 + 0.2 sin(5 x), 0, 1
)
, x � − 4.

Here, we compare the results of the multi-level blending DGFV8 to PPM. To investigate the
importance of the multi-level approach on the accuracy of the DGFV8 result, we additionally
perform a simulation where we intentionally deactivate the sub-elements, i.e., αO(2) := 0
and αO(4) := 0. This is identical to the single-level blending approach presented in Sect. 2.5,
where only the first-order FV scheme is blended with the eighth-order DG scheme. The reso-
lution is as before 256 total DOF, whereas the reference solution is computed with PPM on a
much finer grid of 2 048DOF. The numerical experiments shown in Fig. 8 nicely demonstrate
the benefit of using the multi-level approach. Whereas the shocks are about equally resolved,
themulti-level blending variant gives the best results in the smooth parts of the solution. Since
the resolution is not very high, non-shock related small scale flow features cannot always
be resolved by the eighth-order DG scheme. This is especially visible in the range x =
[1.688, 2.25] where the lower order scheme has to completely or at least partially take over.

3.5 2D Riemann Problems

In this section, we present a selection of three 2DRiemann problems [39,41, 52]. The domain
for all simulations is set toΩ = [−0.5, 0.5]2 with a uniform grid resolution of 642 elements,
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Fig. 8 Shu-Osher shock tube problem: numerical solution of the density profile (top row) with the DGFV8
multi-level blending scheme together with the reference solution (PPM on 2 048 DOF), PPM, and single-
level blending scheme all using 256 DOF. The center row shows the blending weights θO(n) Eq. (59) for the
single-level blending, while the bottom row shows the multi-level blending. The vertical grid lines depict the
element boundaries

respectively, and 5122 DOF. The setup consists of the four quadrants each initialized with
their own constant states. The exact parameters of each Riemann problem are given in [41]
where they are addressed with a fixed configuration number. For brevity, we omit the setup
parameters and refer to [41]. In thiswork,we showconfigurations 3, 4, and6.Weare interested
in the change of the numerical solution when we incrementally add one level of blending
order from one run to the next. Hence, we present three solutions for each 2D Riemann
problem denoted by their respective multi-level schemes: DGFV2, DGFV4, and DGFV8.
Note that the schemes are implemented in such a way that they operate on the same element
size of N 2 = 82 mean values. The results are shown in Fig. 9, 10 and 11. The left column
shows the density contour and the right column shows the weighted blending factors as in
(57). The general observation is that with increasing order, there is more structure visible in
the density plots and the blending patterns get more nuanced in tracing the flow structures.

3.6 2D Sedov Blast

The Sedov blast problem [12,63, 64] describes the self-similar evolution of a radially sym-
metrical blast wave from an initial pressure point (delta distribution) at the center into the
surrounding, homogeneous medium. The analytical solution is given in [38, 53]. In our setup,
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Fig. 9 2D Riemann problem (configuration 3, see [41]) computed with the (from top to bottom) DGFV2,
DGFV4, and DGFV8 scheme. The resolution of 5122 DOF is the same for all runs. Left: density contours
at final time T = 0.3. Right: weighted blending factors as defined in (57). Dark blue represents the full
eighth-order DG and dark red the full first-order FV scheme
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Fig. 10 2D Riemann problem (configuration 4, see [41]) computed with the (from top to bottom) DGFV2,
DGFV4 and DGFV8 scheme. The resolution of 5122 DOF is the same for all runs. Left: density contours
at final time T = 0.25. Right: weighted blending factors as defined in (57). Dark blue represents the full
eighth-order DG and dark red represents the full first-order FV scheme

we approximate the initial pressure point with a smooth Gaussian distribution:

E0(x) = p0
γ − 1

+ E

(2π σ 2)d/2 exp
(

− 1

2

xTx
σ 2

)
, (61)
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Fig. 11 2D Riemann problem (configuration 6, see [41]) computed with the (from top to bottom) DGFV2,
DGFV4, and DGFV8 scheme. The resolution of 5122 DOF is the same for all runs. Left: density contours in
log-scale at final time T = 0.3. Right: weighted blending factors as defined in (57). Dark blue represents the
full eighth-order DG and dark red the full first-order FV scheme

with the spatial dimension d = 2, the blast energy E = 1, and the width σ , such that the
initial Gaussian is reasonably resolved. The surrounding medium is initialized with ρ0 = 1
and p0 = 10−14. Dimensional analysis [53] reveals that the analytical solution of the density
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Fig. 12 2D Sedov blast: shell-averaged density and pressure profiles at final simulation time T = 0.05
computed with the single-/multi-level blending scheme (DGFV8) and PPM on an FV equivalent uniform grid
resolution of 5122 DOF. The vertical grid lines depict the element boundaries

right at the shock front is determined by

ρshock = γ + 1

γ − 1
ρ0.

With the adiabatic coefficient γ = 1.4, we investigate how close the numerical results match
ρshock = 6. The Cartesian mesh has an FV equivalent uniform grid resolution of 5122 DOF,
i.e., when computing with the full eighth-order DG approximation space, the total number
of DG elements is 642. The spatial domain is Ω ∈ [−0.25, 0.25]2 with the initial blast
width σ = 5 × 10−3. We compare the accuracy of the results obtained with the single-level
and the multi-level (DGFV8) blending discretizations as well as the PPM. Figure 12 shows
the shell-averaged density and pressure profiles at final time T = 0.05. Figure 13 presents
the numerical solution over the whole domain as computed with the multi-level DGFV8.
To further illustrate the behavior of the multi-level and single-level blending approach, we
also show in Fig. 14 the weighted blending factors along the x-axis. The shock front is much
sharper for the multi-level blending compared to the single-level blending. It can be observed
how the weighted blending factor is dominated by the first-order FV scheme (ᾱ ≈ 1) directly
at the shock, but transitions quickly to a blended discretization (1 < ᾱ < 8) up to the full
eighth-order DG (ᾱ ≈ 8) away from the shock, even within a single DG element. This
behavior demonstrates the sub-element adaptivity of our novel approach. Again, similarly
to the shock tube Sect. 3.4 and the 2D Riemann problem Sect. 3.5, the results for the 2D
Sedov blast wave show the benefit of the multi-level approach, with the numerical profiles
even slightly closer to ρshock = 6 compared to the PPM with equal resolution of 5122 DOF.
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b t
t W tD

Fig. 13 2D Sedov blast: numerical solution computed with DGFV8 at final simulation time T = 0.05. Left:
density contours. Right: weighted blending factors as defined in (57). Dark blue represents the full eighth-order
DG and dark red represents the full first-order FV scheme

b
M

B

R R

Fig. 14 2D Sedov blast: we compare the blending factor profiles along the x-axis of the single- and multi-level
blending schemes at final time T = 0.05. The blending weights θO(n) (Eq. (59)) are encoded with stacked
bars in their respective colors. The vertical grid lines highlight the eighth-order DG element boundaries. For
reference, the scaled density (ρ/6) and scaled pressure (p/5) are included
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Table 5 Conversion from cgs
units to simulation units

Quantity Cgs units Simulation units

Mass g M
 = 1.989 × 1033 g

Time s yr = 3.154 × 107 s

Length cm pc = 3.086 × 1018 cm

Temperature K K

Table 6 Hydrodynamical parameters in cgs units and simulation units

Description Cgs units Simulation units

Domain size L = 1.543 × 1019 cm L = 5 pc

Blast energy E = 1051erg E = 5.251 6 × 10−5 M
 pc2

yr2

Ejecta mass M = 2.784 6 × 1033 g M = 1.4M

Ambient density nH = 0.13 cm−3 ρa = 2.453 9 × 10−3 M


pc3

Ambient temperature T = 104 K pa = 2.130 9 × 10−13 M

pc yr2

4 Simulation of a Young Supernova Remnant

Supernova models have been analyzed and discussed for many decades and since they unite
a broad range of features such as strong shocks, instabilities, and turbulence, they resemble
a good test bed for our novel shock capturing approach in combination with AMR.

The general sequence of events of the presented supernova simulation is like this: we start
with a constant distribution of very-low-density resembling interstellar media (ISM) that
typically fills the space between stars. When a star explodes by turning into a supernova, it
ejects its own mass at very high speeds into the ISM preceded by a strong shock front heating
up the ISM. The ejected mass is rapidly decelerated by the swept-up ISM giving rise to a
so-called reverse shock that travels backward to the center. The interface, or more precisely
the contact discontinuity, between shocked ejecta and shocked ISM is unstable and leads to a
layer of slowly growing Rayleigh-Taylor instabilities. This gradually expanding layer, called
supernova remnant, is of special interest, since this is where astronomical observations reveal
a lot of ongoing physics and chemistry, especially driven by mixing and turbulence.

We adapt the setup descriptions in [8, 16, 18] where we have the initial (internal) blast
energy E and the ejecta mass M given in cgs (centimeter-gram-seconds) units. It is beneficial
to convert the given units to convenient simulation units reflecting characteristic dimensions
of the physical model at hand. Table 5 lists the conversion between cgs and simulation units,
and Table 6 lists the initial parameters used in this simulation. The ambient density ρa is
related to the mono-atomic particle (hydrogen) density nH via ρa = mu nH , where mu is 1

12
of themass of a carbon-12 atom. The ambient pressure pa is calculated from the ideal gas law,
i.e., pa = nH kB T with the Boltzmann constant kB . There is some ambiguity regarding the
ambient gas temperature T . The literature mentions a warm and neutral interstellar medium
which is attributed to temperatures between 6 × 103 K and 104 K. The heat capacity ratio is
fixed to γ = 5/3. The simulation time spans a period from t0 = 10 years to T = 500 years.
The expansion of the forward shock (64) is then expected to approximately reach RFS = 5 pc,
which determines the size of the computational domain L := 5 pc. Figure 15 depicts a
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0

x

z

y

L = 5 pc

Blast center

Slice for
visualization

Fig. 15 Computational domain (cubic box) covering one octant of the supernova model. The faces at the
coordinate axes are set to reflecting walls, while the opposite sides are set to outflow

schematic of the simulation setup. Due to the rotational symmetry of the setup, it is sufficient
to simulate just one octant of the supernova. The following formulas have been derived in
[8] and were adapted to the current setup, i.e., power law indices of (s, n) = (0, 7). The self-
similar solution at the initial time t0 = 10 yr within the power law region and, respectively,
the blast center, is given by

r(t) = t

√
5

3

E

M
and ρ(t) = 25

21π

E2

M
t4 r(t)−7. (62)

We initialize the density as

ρ0(x) = ρa + ρ(t0) ·

⎧⎪⎨
⎪⎩

1, |x|� r(t0),( |x|
r(t0)

)−7

, |x| > r(t0),
(63)

and the total energywith (61) where p0 = pa , d = 3, and σ = 3
4 r(t0). The initial momentum

is (ρ v)0 = 0. Since we are only interested in the evolution of the instability layer of the
supernova, we apply the following rules for mesh refinement and coarsening. The expansion
radius of the forward shock over time is given by

RFS(t) = 1.06

(
E2

M ρa

)1/7

t4/7. (64)

This allows us to assign an adaptive, high-resolution shell of maximal refined elements
following the remnant as it expands into the computational domain. The inner and outer radii
of the shell are estimated as

Rinner(t) = 0.7 RFS(t) and Router(t) = 1.15 RFS(t), (65)

which have been found adequate via numerical experimentation. Moreover, up to t =
200 years, we enforce Rinner = 0, which ensures that the first phase of the explosion is
well resolved in any case. The refinement levels range from 2 to 6, which translates to an FV
equivalent resolution from 22 · 8 = 32 up to 26 · 8 = 512 cells in each spatial direction.

We perform three simulationswith the 3Dmulti-level blending schemesDGFV2,DGFV4,
and DGFV8, analog to the 2D Riemann problems discussed in Sect. 3.5. Figure 16 shows the
density slice (left column) sketched in Fig. 15 at the final simulation time of T = 500 years,
while Fig. 17 shows the corresponding 3D density contour rendering of the DGFV8 solution.
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Fig. 16 Left column: 2D density slice (see Fig. 15) showing the instability region, respectively, remnant of the
supernova at T = 500 years simulated with the (from top to bottom) DGFV2, DGFV4, and DGFV8 scheme.
Right column: 2D slice of the weighted blending factors of the respective blending schemes at T = 500 years.
The black lines correspond to the element boundaries of the Cartesian non-conforming mesh
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Fig. 17 3D density contour rendering showing the instability region, respectively, remnant of the supernova
at the final simulation time T = 500 years simulated with the DGFV8 scheme

The shock front partially left the domain, which is not considered a problem since the region
of interest, namely the instability layer, is still completely covered. The areas of no interest,
i.e., the outer region as well as the center, are only coarsely resolved by the AMR scheme.
Clearly, an increase in order leads to amuchmore detailed remnant structure emphasizing the
advantage of higher order schemes in resolving small-scale turbulence driven by Rayleigh-
Taylor instability, see [8]. The weighted blending factor is shown in the right column of
Fig. 16. The band of highly refined elements is clearly visible following the remnant as
intended. Two distinctive lines of blending activity trace the front and reverse shocks. The
plots also show a strong qualitative difference of the amount of scales in the instability layer
for DGFV2 and DGFV4. Clearly, the DGFV4 result features more scales and finer structures
as the DGFV2 simulation with the same FV equivalent grid resolution. The difference in
scales between DGFV4 and DGFV8 is less pronounced which is probably related to the
extensive blending activity with O4 inside the instability layer of the DGFV8 simulation. In
this turbulent part, we suspect that the standard collocation eighth-order DG scheme might
face aliasing instability issues as described in the introduction. There are techniques to reduce
aliasing issues available, such as filtering, consistent integration, and split forms. However,
this aspect is not the main topic of the paper and it is interesting to see that the multi-level
blending automatically adjusts to cope with these issues, as well.

5 Conclusion

In this work, we introduce an adaptive sub-element-based shock capturing approach for DG
methods. We interpret an element first as a collection of piecewise constant data. This set of
piecewise constant data can be interpreted and reconstructed in a variety of ways.We focus on
piecewise polynomial approximation spaces, starting from a pure piecewise constant FV-type
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interpretation (no reconstruction) up to the fully maximum order polynomial reconstruction
and every combination in-between, e.g., piecewise linear and piecewise cubic reconstruc-
tions. In a second step, we link the data interpretation to a corresponding (high order) DG
discretization. Thus, we get a hierarchy of discretizations acting on the same set of data.

The idea is then to adaptively blend this hierarchy of different discretization, where the
low-order variants are chosen close to discontinuities and the high-order variants in smooth or
turbulent parts of the simulation. Instead of having an element-based troubled cell indicator
approach, we use the different data interpretations again to compute sub-element localized
indicators, which allows for a sub-element adaptive blending of the discretizations.When the
blending can change throughout the element, a special care is necessary to preserve exact con-
servation of the resulting multi-level blended discretization. We achieve exact conservation,
by introducing unique, blended reconstruction states at subcell and sub-element interfaces.

In our prototype implementation, we further demonstrate that a natural combination of this
sub-element adaptive approach is with adaptive mesh refinement. We base the AMR imple-
mentation on the p4est Octree library, which allows for a straight forward parallelization of
the whole computational framework.

We show standard numerical test cases to validate the new approach and a simplified
model of a supernova remnant to highlight its high accuracy for challenging test cases with
strong shocks and turbulence like structures.
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(ũ1)
O(2)
2

(ũ1)
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2 (ũ2)

O(2)
3 (ũ2)

O(2)
4

(ξ1)
O(4)
1 (ξ1)

O(4)
2(ξ2)

O(4)
1 (ξ2)

O(4)
2(ξ3)

O(4)
1 (ξ3)

O(4)
2(ξ4)

O(4)
1 (ξ4)

O(4)
2

(ũ1)
O(4)
1

(ũ1)
O(4)
2(ũ2)

O(4)
1

(ũ2)
O(4)
2

(ũ3)
O(4)
1

(ũ3)
O(4)
2(ũ4)

O(4)
1

(ũ4)
O(4)
2

ũ
O(8)
1

ξ
O(8)
1

ũ
O(8)
2

ξ
O(8)
2

ũ
O(8)
3

ξ
O(8)
3

ũ
O(8)
4

ξ
O(8)
4

ũ
O(8)
5

ξ
O(8)
5

ũ
O(8)
6

ξ
O(8)
6

ũ
O(8)
7

ξ
O(8)
7

ũ
O(8)
8

ξ
O(8)
8

μ
O(8)
7+1/2

μ
O(8)
7−1/2

Reference element
[− 1

2 , 1
2

]

α
O(2)
1 α

O(2)
2 α

O(2)
3 α

O(2)
4

α
O(4)
1 α

O(4)
2

αO(8)

O(1)

O(2)

O(4)

O(8)

ū1

ū2

ū3

ū4 ū5
ū6

ū7

ū8

Fig. A1 Schematic of eight (N = 8) mean values and its four levels of data interpretation. The values μ
O(8)
7±1/2

indicate the location of the interpolation nodes in (48) of the FV subcell interpolation operator I±O(n),
n = 2, 4, 8
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A.2 Boundary Evaluation Operators for theMulti-level Blending Scheme (46)

[
14 ⊗ B̂

O(2)
](0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̂O(2)
1 1 0 B̂O(2)

1 3 0 0 0 0 0 0

B̂O(2)
2 1 0 B̂O(2)

2 3 0 0 0 0 0 0

0 0 B̂O(2)
1 1 0 B̂O(2)

1 3 0 0 0 0

0 0 B̂O(2)
2 1 0 B̂O(2)

2 3 0 0 0 0

0 0 0 0 B̂O(2)
1 1 0 B̂O(2)

1 3 0 0

0 0 0 0 B̂O(2)
2 1 0 B̂O(2)

2 3 0 0

0 0 0 0 0 0 B̂O(2)
1 1 0 B̂O(2)

1 3

0 0 0 0 0 0 B̂O(2)
2 1 0 B̂O(2)

2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
8×9,

[
12 ⊗ B̂

O(4)
](0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̂O(4)
1 1 0 0 0 B̂O(4)

1 5 0 0 0 0

B̂O(4)
2 1 0 0 0 B̂O(4)

2 5 0 0 0 0

B̂O(4)
3 1 0 0 0 B̂O(4)

3 5 0 0 0 0

B̂O(4)
4 1 0 0 0 B̂O(4)

4 5 0 0 0 0

0 0 0 0 B̂O(4)
1 1 0 0 0 B̂O(4)

1 5

0 0 0 0 B̂O(4)
2 1 0 0 0 B̂O(4)

2 5

0 0 0 0 B̂O(4)
3 1 0 0 0 B̂O(4)

3 5

0 0 0 0 B̂O(4)
4 1 0 0 0 B̂O(4)

4 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
8×9,

Interface layer with prolongated boundary values

Element q − 1 Element q

Face centered
mean values

Nodal
boundary values

Fig. A2 Schematic of conforming interface q − 1
2 with 1:1 adjacent elements q − 1 and q for N = 4. The

two kinds of boundary values occurring in (A6) are illustrated
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[
11 ⊗ B̂

O(8)
](0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̂O(8)
1 1 0 0 0 0 0 0 0 B̂O(8)

1 9

B̂O(8)
2 1 0 0 0 0 0 0 0 B̂O(8)

2 9

B̂O(8)
3 1 0 0 0 0 0 0 0 B̂O(8)

3 9

B̂O(8)
4 1 0 0 0 0 0 0 0 B̂O(8)

4 9

B̂O(8)
5 1 0 0 0 0 0 0 0 B̂O(8)

5 9

B̂O(8)
6 1 0 0 0 0 0 0 0 B̂O(8)

6 9

B̂O(8)
7 1 0 0 0 0 0 0 0 B̂O(8)

7 9

B̂O(8)
8 1 0 0 0 0 0 0 0 B̂O(8)

8 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
8×9.

A.3 Extension to 3D Cartesian Grids

The extension to higher spatial dimensions with Cartesian conforming grids is relatively
straight forward via a tensor-product strategy. In this section, we want to present the most
important building blocks for the 3D single-level blending scheme. The steps of the 3D
multi-level blending are analogous as in Sect. 2.6 and not detailed any further. Consider the
general 3D conservation law:

∂t u + ∂x f (u) + ∂yg(u) + ∂zh(u) = 0. (A1)

We now have an element q with N 3 mean values as available data:

ūq ∈ R
N×N×N ,

and the element sizes�xq , �yq , and �zq . With the tensor-product of Lagrange polynomials
� on Legendre-Gauss nodes ξi , i = 1, · · · , N :

u(t; ξ, η, ζ ) ≈
N∑

i, j,k=1

ũi jk(t) �i (ξ) � j (η) �k(ζ ), (A2)

and the reconstruction operator R, which we introduced in Sect. 2.4, we get the nodal coef-
ficients as

ũq = ūq

zą

d=x

R = ūq ×x R ×y R ×z R ∈ R
N×N×N . (A3)

Here,wemake use of the n-mode product notation [33].A definition is given inAppendixA.5.
In general, all vector and matrix operations presented so far can be directly expanded to 3D
via the n-mode product. The blending scheme (42) in 3D reads as:

tūq = − (1 − αq)
N

�xq
f̄∗
q ×x � + αq

1

�xq

{
f̃q ×x D̂ ×y P ×z P − f̄∗

q ×x B̂
}

− (1 − αq)
N

�yq
ḡ∗
q ×y � + αq

1

�yq

{
g̃q ×y D̂ ×z P ×x P − ḡ∗

q ×y B̂
}

− (1 − αq)
N

�zq
h̄∗
q ×z � + αq

1

�zq

{
h̃q ×z D̂ ×x P ×y P − h̄∗

q ×z B̂
}
. (A4)
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The DG volume fluxes are calculated from the node values as
(
f̃q
)
i jk = f

((
ũq
)
i jk

)
,
(
g̃q
)
i jk =g

((
ũq
)
i jk

)
and

(
h̃q
)
i jk =h

((
ũq
)
i jk

)
, i, j, k=1, · · · , N .

Remark A1 If necessary, the β-reconstruction (30) ensures permissible states for the recon-
structed polynomial, that is

ũ(β)
q = ūq

zą

d=x

R(β). (A5)

Again, for f̄∗
q ∈ R

(N+1)×N×N , ḡ∗
q ∈ R

N×(N+1)×N and h̄∗
q ∈ R

N×N×(N+1), we need to
compute common surface fluxes to preserve conservation. Therefore, we define two selection
operators:

s− = (1, 0, · · · , 0, 0)T ∈ R
N and s+ = (0, 0, · · · , 0, 1)T ∈ R

N ,

mapping the outermost mean values of ūq to the respective interface. Then, the 3D analog of
the prolongation procedure (37) along direction d reads as

ū±d
q± 1

2
= (1 − αq) ūq ×d s±︸ ︷︷ ︸

face-centered
mean values

+ αq P

nodalboundary
values︷ ︸︸ ︷(

ũq ×d b±) PT︸ ︷︷ ︸
face−centered
mean values

∈ R
N×N . (A6)

In Fig. A2, the two kinds of boundary values are illustrated.

Note that only the face-centered mean values ū±d
q± 1

2
together with the blending factor αq

are supposed to be exchanged between processes in case of distributed computing.
Next, we reconstruct again a nodal representation from ū±d

q± 1
2
:

ũ±d
q± 1

2
= R ū±d

q± 1
2
RT

︸ ︷︷ ︸
nodal boundary

values

∈ R
N×N . (A7)

From the two representations of boundary values ū±x
q± 1

2
and ũ±x

q± 1
2
, we calculate two candidate

fluxes at the interface q − 1
2 . In x-direction, it reads as

f̄∗′
q− 1

2
= f ∗

(
ū+x
q− 1

2
, ū−x

q− 1
2

)
∈ R

N×N , (A8)

f̃∗
q− 1

2
= f ∗

(
ũ+x
q− 1

2
, ũ−x

q− 1
2

)
∈ R

N×N . (A9)

Next, we determine a common surface flux f̄∗
q− 1

2
by blending the two candidate interface

fluxes:
f̄∗
q− 1

2
= (1 − αq− 1

2
) f̄∗′

q− 1
2

+ αq− 1
2

P f̃∗
q− 1

2
PT ∈ R

N×N , (A10)

where αq− 1
2

= αq−1+αq
2 . The final step is to calculate the inner interface fluxes analogous to

(38): (
f̄∗
q

)
i jk

= f ∗(ūi−1 jk, ūi jk), i = 2, · · · , N , j, k = 1, · · · , N
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Coarser level Finer level

Mortar layer with prolongated boundary values

Fig. A3 Schematic of a non-conforming interfacewith 4:1 adjacent cells for N = 4. The two kinds of boundary
values occurring in (A15) are illustrated. Compare with Fig. A2

and insert the common surface fluxes f̄∗
q± 1

2
:

(
f̄∗
q

)
i jk

=
(
f̄∗
q− 1

2

)
jk

, i = 1, j, k = 1, · · · , N ,

(
f̄∗
q

)
i jk

=
(
f̄∗
q+ 1

2

)
jk

, i = N + 1, j, k = 1, · · · , N .

The y- and z-direction are treated analogously. The computation of the blending parameter
α for 3D follows the same steps as in Sect. 2.7 where the integrals (49) are rewritten in 3D
form. The presented parameters τa and τs stay the same. This concludes the 3D blending
scheme with conforming interfaces.

We extend the 3D single-blending scheme to non-conforming grids where we assume
4:1 transitions only. See Fig. A3. The steps for the 3D multi-level blending scheme are
analogous and not detailed any further. First, we define four matrix operators which allow
us to construct refinement and coarsening procedures within the blending framework. We
require that N = 2l , l ∈ N, and define the following expansion and compression operators:

E(N→2N ) := 1N ⊗ 12 ∈ R
2N×N (A11)

and

C(N→ N
2 ) := 1

2
1N ⊗ 1T2 ∈ R

N
2 ×N

. (A12)

Moreover, we need the projection operator P (N→M) introduced in Sect. 2.3 for mapping
N node values to M mean values. We define

E := E(N→2N ), C := C(N→ N
2 )︸ ︷︷ ︸

mean values to mean values

and Z := P (N→2N ), Q := P (N→ N
2 )︸ ︷︷ ︸

node values to mean values

.

We refine the parent element q as

r̄q = (1 − αq) ūq

zą

d=x

E + αq ũq

zą

d=x

Z ∈ R
2N×2N×2N . (A13)
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The refined block r̄q is then split into 8 child elements. The reverse operation, namely
coarsening, is done by compressing each child element ūr , r = 1, · · · , 8, separately:

c̄q = (1 − αq) ūq

zą

d=x

C + αq ũq

zą

d=x

Q ∈ R
N
2 × N

2 × N
2 . (A14)

Afterward, the family of eight blocks c̄q is glued together. These blending operations are
especially useful for refining or coarsening of highly oscillatory data or at pronounced dis-
continuities.

For the treatment of non-conforming 4:1 interfaces, we need a procedure which maps the
boundary values from the coarser element to a so-called mortar layer [37] that has the same
resolution as the adjacent four smaller elements. See Fig. A3. To compute the mortar layer
of the coarser element q , we formulate

(
ū±d
q± 1

2

)
coarse

= (1 − αq) E
(
ūq ×d s±

)
ET︸ ︷︷ ︸

face-centered
mean values

+ αq Z̃

nodal boundary
values︷ ︸︸ ︷(

ũq ×d b±) Z̃T

︸ ︷︷ ︸
face-centered
mean values

∈ R
2N×2N . (A15)

Note the similarity to the prolongation procedure for conforming interfaces (A6). The coarse

side of the mortar layer

(
ū±d
q± 1

2

)
coarse

is split up to match the faces of the four finer elements

r = 1, · · · , 4. The boundary values of the smaller elements are constructed by applying (A6)
individually. Only the mortar layers together with the associated blending factors αr , r =
1, · · · , 4, are supposed to be exchanged between processes in case of distributed computing.
The separate computation of the interface fluxes f̄∗fine,r ∈ R

N×N , r = 1, · · · , 4, follows
the formulas (A7)–(A10). While the resulting four fluxes can be directly copied back to the
smaller faces without further treatment, they have to be mapped to the coarser side via L2

projection [37]:

∫ 0

− 1
2

∫ 0

− 1
2

(
f ∗
coarse − f ∗

fine,1

)
φ dξ dη +

∫ 1
2

0

∫ 0

− 1
2

(
f ∗
coarse − f ∗

fine,2

)
φ dξ dη

+
∫ 0

− 1
2

∫ 1
2

0

(
f ∗
coarse − f ∗

fine,3

)
φ dξ dη +

∫ 1
2

0

∫ 1
2

0

(
f ∗
coarse − f ∗

fine,4

)
φ dξ dη = 0.

The integrals are evaluated in the reference space of the coarse face. Applying exact quadra-
ture rules gives

(
f̃∗coarse

)
i j

=
N∑
kl

(
f̃∗fine,1

)
kl

�i

(
1

2
ξk − 1

4

)
ωk

2ωi
� j

(
1

2
ηl − 1

4

)
ωl

2ω j

+
N∑
kl

(
f̃∗fine,2

)
kl

�i

(
1

2
ξk + 1

4

)
ωk

2ωi
� j

(
1

2
ηl − 1

4

)
ωl

2ω j

+
N∑
kl

(
f̃∗fine,3

)
kl

�i

(
1

2
ξk − 1

4

)
ωk

2ωi
� j

(
1

2
ηl + 1

4

)
ωl

2ω j

+
N∑
kl

(
f̃∗fine,4

)
kl

�i

(
1

2
ξk + 1

4

)
ωk

2ωi
� j

(
1

2
ηl + 1

4

)
ωl

2ω j
,
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where i, j = 1, · · · , N and ξk , ηl are the collocation nodes of the tensor product (A2). We
translate the above equation into matrix notation and get

f̃∗coarse = L− f̃∗fine,1 LT− + L+ f̃∗fine,2 LT− + L− f̃∗fine,3 LT+ + L+ f̃∗fine,4 LT+ ∈ R
N×N , (A16)

where (L±)i j = �i
( 1
2 ξ j ± 1

4

) ω j
2ωi

, i, j = 1, · · · , N . Analogous to (A10), we determine a
common surface flux for the coarse side:

f̄∗
q− 1

2
= (1 − αq− 1

2
) C f̄∗′

q− 1
2
CT + αq− 1

2
P
(
f̃∗coarse

)
q− 1

2

PT ∈ R
N×N , (A17)

where αq− 1
2

= 1
2

(
αq−1 + min

r=1,··· ,4 (αr )q
)
. The face-centered fluxes f̄∗′

q− 1
2

∈ R
2N×2N are

the result of the appropriate glue operation of the four first-order fluxes
(
f̄∗′
r

)
q− 1

2

∈ R
N×N ,

r = 1, · · ·, 4. This concludes the description of the treatment of non-conforming 3DCartesian
grids within the blending framework.

A.4 Sketch of the Algorithm for theMulti-level Blending Scheme

The algorithm of the multi-level blending scheme is more involved, but still follows the same
general sequence of steps as in the single-level scheme outlined in Sect. 2.8. Moreover, we
use the notation for the 3D scheme (Appendix A.3). At each Runge-Kutta stage, we do as
follows.

(I) Initialize two tracing variables: nq,min = nq,max = 8.
(II) Loop from highest to lowest order: nq = 8, 4, 2.

• Set nq,min = nq of element q .
• For each sub-element s in element q at level nq .
– Reconstruct the polynomial (ũs)

O(n)
q from given mean values ūq via (43), (44)

or (45).
– If the reconstructed polynomial (ũs)

O(n)
q contains non-permissible states, see

(31), then calculate the limited version
(
(ũs)

O(n)
q

)(β)

as in (30).

– If the squeezing parameter (βs)
O(n)
q is below βL , then set (αs)

O(n)
q := 0 else

compute the blending factor (αs)
O(n)
q via (50) from the unlimited polynomial

(ũs)
O(n)
q .

• If all blending factors (αs)
O(n)
q are above αH , then break the loop.

• If all blending factors (αs)
O(n)
q are below αL , then set nq,max = n − 1.

(III) Compute the multi-level blended boundary values ū±d
q± 1

2
analog to (A6) within the

minimum and maximum bounds given by nq,min and nq,max. Exchange them together

with all involved blending factorsα
O(n)
q alongside zone boundaries in case of distributed

computing.
(IV) Determine the multi-level blended common surface flux f̄∗

q− 1
2
analog to (A10) within

the minimum and maximum bounds given by nq,min and nq,max.
(V) Compute the multi-level blended right-hand-side ∂t ūq as described in Sect. 2.6 but

within the minimum and maximum bounds given by nq,min and nq,max.
(VI) Forward in time to the next Runge-Kutta stage and return to step (I).
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The switching thresholds are set to αH := 0.99 and αL := 0.01 and the limiter threshold to
βL := 0.95. Note that the algorithm only applies the blending procedure where necessary to
maintain the overall performance of the scheme. The two bounds nq,min and nmax even avoid
redundant computation at levels sorted out by the shock indicator.

A.5 N-Mode Product

Given tensor u ∈ R
I1×I2×···×ID with a matrix A ∈ R

J×Id , then the n-mode product is defined
as:

(u ×d A)i1···id−1 j id+1···iD =
Id∑
id

ui1···id ···iD A jid . (A18)

The resulting tensor has following dimensions:

u ×d A ∈ R
I1×···×Id−1×J×Id+1×···×ID .

Given the same tensor u and a vector b ∈ R
Id , then the n-mode product acts as a contraction

of u with b along dimension d . We write

(u ×d b)i1···id−1 id+1···iD =
Id∑
id

ui1···id ···iD bid . (A19)

The resulting tensor has following dimensions:

u ×d b ∈ R
I1×···×Id−1×Id+1×···×ID .
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