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Abstract
In this paper, we study the classical Allen-Cahn equations and investigate the maximum-
principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in 
mathematical models for problems in materials science and fluid dynamics. It enjoys the 
energy stability and the maximum-principle. Moreover, it is well known that the Allen-
Cahn equation may yield thin interface layer, and nonuniform meshes might be useful 
in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) 
method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP 
LDG methods require slope limiters, then the energy stability may not be easy to obtain. 
In this paper, we only discuss the MPP technique and use numerical experiments to dem-
onstrate the energy decay property. Moreover, due to the stiff source given in the equation, 
we use the conservative modified exponential Runge-Kutta methods and thus can use rela-
tively large time step sizes. Thanks to the conservative time integration, the bounds of the 
unknown function will not decay. Numerical experiments will be given to demonstrate the 
good performance of the MPP LDG scheme.
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1 Introduction

Gradient flows are widely used in mathematical models for problems in materials science 
and fluid dynamics [3, 4]. A gradient flow is usually determined by an energy functional, 
and a typical choice of this functional is given by

where Ω ∈ ℝd (d = 1, 2, 3) is a bounded domain. For example, in the simulation of two 
phase dynamics, the unknown variable u represents the concentration of one of the two 
phases, and F(u) is the nonlinear free energy density. A common choice for the function 
F(u) is given by 1

4�2
(u2 − 1)2 with � being the inter-facial width.

In this paper, we consider the Allen-Cahn equation which can be interpreted as an L2 
gradient flow:

where M > 0 is the mobility constant and � is the chemical potential. For simplicity of the 
notations, we denote s(u) = −MF�(u) , then the governing equation can be rewritten into the 
following general form:

subject to the initial condition 

and periodic or homogeneous Neumann/Dirichlet boundary conditions. Here we assume 
s(1) = s(−1) = 0 . Roughly speaking, the Allen-Cahn equation describes regions with u ≈ 1 
and u ≈ −1 that grow and decay at the expense of one another.

One important property of the Allen-Cahn equation is that the energy function is 
decreasing with time:

It is important for numerical schemes to preserve this property. The energy stability for the 
approximation of Allen-Cahn equations has been investigated intensively. Some popular 
numerical schemes are convex splitting schemes [36], stabilized schemes [33, 39], invari-
ant energy quadratization methods [41, 42], scalar auxiliary variable (SAV) approach [31, 
32], etc.

Besides, the exact solutions of the classical Allen-Cahn equations enjoy the maximum-
principle, i.e., the exact solutions are between −1 and 1 if the initial condition satisfies 
the same property. Most of the previous works focus on the energy stability, and to the 
best knowledge, the only works in this direction are given in [19, 23, 30, 35], where finite 
difference methods were discussed. Moreover, the gradient flows may yield a thin transi-
tion layer. Therefore, nonuniform meshes are generally useful in capturing these layers. 
Because of these considerations, we would like to apply the discontinuous Galerkin (DG) 
method due to its good stability, high-order accuracy, and flexibility on h-p adaptivity and 

E(u) ∶= ∫Ω

(
1

2
|▿u|2 + F(u)

)
d�,

ut = −M�,

� =
�E

�u
= −Δu + F�(u),

(1)ut = MΔu + s(u),

(2)u(�, 0) = u0(�), � ∈ Ω,

(3)
d

dt
E(u) ⩽ 0.
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complex geometry. Moreover, in order to preserve the maximum-principle, some slope 
limiters have to be applied, and the energy stability would be rather difficult to prove. In 
this paper, we will mainly focus on the maximum-principle-preserving (MPP) techniques 
and use numerical experiments to demonstrate the energy decay property.

DG methods were first introduced in [28] in the framework of neutron transporta-
tion. Subsequently, the Runge-Kutta (RK) discontinuous Galerkin (RKDG) methods for 
hyperbolic conservation laws were introduced in a series of papers [9–12]. For convec-
tion diffusion equations, the local discontinuous Galerkin (LDG) method was given in [13] 
motivated by [2], where the Navier-Stokes equations were successfully solved. Besides the 
above, the ultra-weak DG (UDG) method [6], the staggered DG (SDG) method [8, 14], the 
direct DG (DDG) method [26], the interior penalty DG (IPDG) methods [1, 29, 37] and 
the LDG methods on overlapping meshes [18] are also important candidates for solving 
convection-diffusion equations.

Recently, in [43], genuinely MPP high-order DG methods for scalar conservation laws 
have been constructed. For parabolic equations, the second-order MPP DG methods were 
given in [44]. The technique works for IPDG, LDG and UDG methods, see [22, 25] for 
some applications. However, the extension to high-order schemes seems to be not straight-
forward. The third-order MPP schemes based on LDG methods on overlapping meshes 
[16] and DDG method [5] were discussed. Other high-order methods were also investi-
gated in [7, 21, 34, 38, 40] based on the modification of numerical fluxes.

It is well known that the Allen-Cahn equation contains stiff source, leading to extremely 
small time step size if the time integration is not constructed suitably. Recently, Huang and 
Shu introduced the modified exponential RK method for hyperbolic equations with stiff 
source terms [24]. The scheme is weakly asymptotic preserving and overcomes the stiff-
ness. They made some assumptions on the stiff source term in order to design the bound-
preserving technique. However, Allen-Cahn equations do not satisfy those assumptions. 
Moreover, their scheme is not conservative, i.e., if the numerical approximation at the 
time level n is 1, then it may not be 1 at the time level n + 1 , hence it is not suitable for 
Allen-Cahn equations. Later, in [15], two of the authors in this paper introduced the con-
servative modified exponential RK method and the third-order extension was also given in 
[17]. Thanks to the conservative time integrations, we can construct the MPP technique for 
Allen-Cahn equations. Also, the bounds of the numerical approximations will not decay by 
the time integrations. We will explain this conservative issue in details at the end of Sect. 2.

For simplicity of presentation, we only consider the one- and two-dimensional problems 
( d = 1, 2 ) in this paper. Yet our method can be extended to problems in three space dimen-
sions ( d = 3 ). Moreover, we only discuss the detailed formulation for second-order LDG 
schemes coupled with the second-order conservative modified exponential RK method [15] 
for Allan-Cahn equations. We will theoretically prove the MPP technique for our method 
and show that the bounds will not decay. The third-order time integration has been given 
in [17], and high-order spatial discretizations can be obtained following the techniques 
introduced in [16, 21, 34, 38]. Both second-order and third-order methods will be tested in 
numerical examples, which demonstrate that the time step size can be larger than the one in 
the traditional RK method. Moreover, we can observe the energy decays numerically.

The rest of the paper is organized as follows: we will demonstrate the LDG scheme and 
the time integration for the Allen-Cahn equation in one space dimension in Sect. 2. The 
MPP property will be proved in Sect. 3. We will extend the idea to problems in two space 
dimensions in Sect.  4. Numerical experiments will be given in Sect.  5. We will end in 
Sect. 6 with some concluding remarks.
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2  Numerical Scheme in One Space Dimension

In this section, we consider the following one-dimensional Allen-Cahn equation:

We will review the LDG method for spatial derivative in Sect.  2.1. Then, we adopt the 
second-order conservative modified exponential RK method in Sect. 2.2 to obtain the fully 
discretized scheme.

2.1  LDG Spacial Discretization

We first introduce an auxiliary variable p to represent ux and rewrite (4) into the following 
system of first-order equations:

In order to solve the problem numerically, we decompose the computational domain Ω into 
non-overlapping regular cells and denote the ith cell as

The cell center of Ii is denoted as

For simplicity, we consider uniform meshes. However, this assumption is not essential. We 
denote the cell length as Δx:

The finite element space consists of piecewise polynomials which can be discontinuous 
across cell boundaries:

where Pk(Ii) is the set of all polynomials of degree up to k defined on the cell Ii . In this 
paper, we take k = 1 and consider the second-order scheme.

We multiply each equation in (5) with test functions in Vh and integrate the equation on 
each cell Ii . By using integration by parts, the LDG method is defined as follows: to find 
uh(⋅, t) ∈ Vh and ph ∈ Vh , such that for any test functions z, q ∈ Vh and any cell Ii , we have

(4)ut = Muxx + s(u).

(5)
{

ut = Mpx + s(u),

p = ux.

Ii =
[
x
i−

1

2

, x
i+

1

2

]
, i = 1,⋯ ,N.

xi =
1

2

(
x
i−

1

2

+ x
i+

1

2

)
.

Δx = x
i+

1

2

− x
i−

1

2

.

Vh ∶= {uh ∶ uh|Ii ∈ Pk(Ii), i = 1,⋯ ,N},

(6)∫Ii

(uh)tzdx = M

(
−∫Ii

phzxdx + p̂
i+

1

2

z−
i+

1

2

− p̂
i−

1

2

z+
i−

1

2

)
+ ∫Ii

s(uh)zdx,

(7)∫Ii

phqdx = −∫Ii

uhqxdx + û
i+

1

2

q−
i+

1

2

− û
i−

1

2

q+
i−

1

2

,
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where the notations w−

i+
1

2

 and w+

i+
1

2

 are used to represent the values of a function w on the 

point x
i+

1

2

 obtained from the left and the right of x
i+

1

2

 , respectively. p̂
i+

1

2

 and û
i+

1

2

 are the 
numerical fluxes and are taken as alternating fluxes

or

In the remaining part of this paper, we adopt (8). The proof for (9) is similar.

2.2  Conservative Modified Exponential RK Temporal Discretization

It is easy to solve for ph locally on each cell Ii by using (7) to get

and hence we have

Substituting the above equations into (6) and noticing that

is a constant, we get the following semi-discrete scheme for solving uh(x, t) on Ii:

For simplicity of the formulation, we introduce the notation

and use (⋅, ⋅)Ii to denote the inner product on L2(Ii) . Then, the semi-discrete scheme 
becomes

(8)û
i+

1

2

= u−
i+

1

2

, p̂
i+

1

2

= p+
i+

1

2

,

(9)û
i+

1

2

= u+
i+

1

2

, p̂
i+

1

2

= p−
i+

1

2

.

ph(x)|Ii =
u−
i+

1

2

− u−
i−

1

2

Δx
+

6(x − xi)

Δx2

(
u−
i−

1

2

− u+
i−

1

2

)
,

p̂
i−

1

2

= p+
i−

1

2

=

u−
i+

1

2

+ 3u+
i−

1

2

− 4u−
i−

1

2

Δx
.

zx|Ii =
z−
i+

1

2

− z+
i−

1

2

Δx

d

dt ∫Ii

uh(x, t)z(x)dx =
M

Δx

[(
u−
i+

3

2

+ 3u+
i+

1

2

− 5u−
i+

1

2

+ u−
i−

1

2

)
z−
i+

1

2

− 3

(
u+
i−

1

2

− u−
i−

1

2

)
z+
i−

1

2

]

+ ∫Ii

s(uh)z(x)dx, ∀z(x) ∈ Vh, i = 1,⋯ ,N.

Fi(uh, z) =
M

Δx

[(
u−
i+

3

2

+ 3u+
i+

1

2

− 5u−
i+

1

2

+ u−
i−

1

2

)
z−
i+

1

2

− 3

(
u+
i−

1

2

− u−
i−

1

2

)
z+
i−

1

2

]
,

(10)
d

dt

(
uh, z

)
Ii
= Fi(uh, z) +

(
s(uh), z

)
Ii
, ∀z(x) ∈ Vh, i = 1,⋯ ,N.
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Since the source term can be stiff, we apply the second-order conservative modified expo-
nential RK method [15] (without the expansion of exponential terms) to get the fully dis-
cretized scheme:

where un
h
(x) is the numerical approximation of uh(x, t) at the time level n, and u(1)

h
(x) is a 

middle stage approximation. Here � is a constant to be determined in each time step and 
may depend on the time level n, and

Numerical examples in Sect.  5 will show that the time step size of this method can be 
larger than the one used in the traditional RK methods.

We illustrate the conservative property of our method in the following theorem.

Theorem 1 The fully discretized scheme (11) and (12) for solving Allen-Cahn equations is 
conservative in the sense that: if the numerical solution un

h
 reaches the upper bound 1 (or 

the lower bound −1) at the time level n, then un+1
h

(x) remains 1 (or −1) at the time level 
n + 1.

Proof It is easy to check the following important property for our method:

By the definition of Fi , we know that Fi(uh, z) = 0 for a constant function uh . Also, we have 
assumed that s(1) = s(−1) = 0 for the Allen-Cahn equation. Hence, when un

h
= 1 (or −1), 

we have Fi(u
n
h
, z) = s(un

h
) = 0 . Then, the property (13) guarantees that

Subsequently, u(1)
h
(x) = 1 (or −1) will lead to Fi(u

(1)

h
, z) = s(u

(1)

h
) = 0 , and (12) together 

with the property (13) gives

Hence, un+1
h

(x) remains 1 (or −1) at time level n + 1.

Remark 1 The major difference between our temporal discretization and the modified 
exponential RK methods [24] is the design of the coefficients in (11) and (12). The coef-
ficients in [24] do not satisfy the property (13) and hence the magnitudes of the solutions 
may decay with time due to the dissipation of the source term.

Remark 2 As we see in the next section, the conservative property (13) will also be used 
for designing the MPP technique. For the non-conservative method in [24], the MPP 

(11)
(
u
(1)

h
, z
)
Ii

=B1

1

[(
un
h
, z
)
Ii
+ ΔtFi(u

n
h
, z) + Δt

(
s(un

h
) + �un

h
, z
)
Ii

]
,

(12)
(
un+1
h

, z
)
Ii
=B1

2

(
un
h
, z
)
Ii
+ B2

2

[(
u
(1)

h
, z
)
Ii

+ ΔtFi(u
(1)

h
, z) + Δt

(
s(u

(1)

h
) + �u

(1)

h
, z
)
Ii

]
,

B1

1
=

1

1 + �Δt
, B1

2
=

e−�Δt

e−�Δt + 1 + �Δt
, B2

2
=

1

e−�Δt + 1 + �Δt
.

(13)(1 + �Δt)B1

1
= 1, B1

2
+ (1 + �Δt)B2

2
= 1.

u
(1)

h
(x) = un

h
(x).

un+1
h

(x) = u
(1)

h
(x) = un

h
(x).
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technique is relatively more complicated and some extra conditions on the source term are 
needed.

The third-order time integration [17] for solving (10) is

where

and

One can also check that this scheme is conservative. For simplicity, we will only show the 
MPP technique for the second-order scheme. The idea can be easily extended to the third-
order scheme.

3  Maximum‑Principle‑Preserving Technique

In this section, we design the MPP technique for our method. We will first show that the 
cell average values can be bounded between −1 and 1 under suitable conditions in Sect. 3.1. 
Then we adopt a slope limiter to make the entire solutions be bounded between −1 and 1 in 
Sect. 3.2.

3.1  Maximum‑Principle‑Preserving of the Cell Averages

We denote the cell integral average values of uh and s(uh) on cell Ii as

(
u
(1)

h
, z
)
Ii

=

[
�10

(
un
h
, z
)
Ii
+ �10ΔtFi(u

n
h
, z) + �10Δt

(
s(un

h
) + �un

h
, z
)
Ii

]
∕A1

,

(
u
(2)

h
, z
)
Ii

=

[
�20

(
un
h
, z
)
Ii
+ �20ΔtFi(u

n
h
, z) + �20Δt

(
s(un

h
) + �un

h
, z
)
Ii

]
∕A2

+ e�10�Δt

[
�21

(
u
(1)

h
, z
)
Ii

+ �21ΔtFi(u
(1)

h
, z) + �21Δt

(
s(u

(1)

h
) + �u

(1)

h
, z
)
Ii

]
∕A2

,

(
un+1
h

, z
)
Ii
=

[
�30

(
un
h
, z
)
Ii
+ �30ΔtFi(u

n
h
, z) + �30Δt

(
s(un

h
) + �un

h
, z
)
Ii

]
∕A3

+ e�10�Δt

[
�31

(
u
(1)

h
, z
)
Ii

+ �31ΔtFi(u
(1)

h
, z) + �31Δt

(
s(u

(1)

h
) + �u

(1)

h
, z
)
Ii

]
∕A3

,

+ eA�Δt

[
�32

(
u
(2)

h
, z
)
Ii

+ �32ΔtFi(u
(2)

h
, z) + �32Δt

(
s(u

(2)

h
) + �u

(2)

h
, z
)
Ii

]
∕A3

,

�10 =1, �10 = 0.707 193 337 692 501 4,

�20 =0.668 689 293 307 440 4, �20 = 0,

�21 =0.331 310 706 692 559 6, �21 = 0.417 804 756 491 506 5,

�30 =0.348 741 943 025 609 0, �30 = 0,

�31 =0.203 957 613 878 089 8, �31 = 0,

�32 =0.447 300 443 096 301 1, �32 = 0.564 075 463 710 043 9,

A1 =�10 + �10�Δt, A2 = �20 + �20�Δt + e�10�Δt
(
�21 + �21�Δt

)
,

A3 =�30 + �30�Δt + e�10�Δt
(
�31 + �31�Δt

)
+ eA�Δt

(
�32 + �32�Δt

)
.
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Taking z = 1 in (11) and (12), we get the following equations for updating ūi in time:

where ūn
i
 and ū(1)

i
 are the cell averages of un

h
 and u(1)

h
 , respectively. Moreover,

for any function � ∈ Vh.
We first state the property of the spatial discretization operator f in the lemma below 

following [44].

Lemma 1 For any function �(x) ∈ Vh with �(x) ∈ [−1, 1], ∀x ∈ Ii , i = 1,⋯ ,N , we have

under the CFL condition M Δt

Δx2
⩽

1

10
.

Proof Notice that � is simply a linear function on each cell Ii , and hence we have

Then, we obtain

It is easy to check that a1 + a2 + a3 + a4 + a5 = 1 . Under the condition M Δt

Δx2
⩽

1

10
 , all 

coefficients are non-negative. Hence, we have written �̄�i + Δtf (𝜔) as a convex combina-
tion of five point values of � . Since all point values are bounded between −1 and 1, we can 
obtain the conclusion of this lemma.

Next, we are able to prove the MPP property for the cell averages. In the following, we 
consider the L-point Gaussian quadrature rule on the cell Ii , which is exact for the integral 
of polynomials of degree up to 2L − 1 . We denote the set of these quadrature points on Ii as

Let c� be the quadrature weights for the interval [−0.5, 0.5] such that 
L∑

�=1

c� = 1 . We choose 

L large enough such that s̄i(uh) can be approximated accurately. For the common choice 
s(u) =

M

�2
(u − u3) , we take L = 2 since uh is a linear polynomial.

ūi(t) =
1

Δx ∫Ii

uh(x, t)dx, s̄i(uh) =
1

Δx ∫Ii

s(uh)dx.

(14)ū
(1)

i
=B1

1

[
ūn
i
+ Δtf (un

h
)
]
+ ΔtB1

1

[
s̄i(u

n
h
) + 𝜇ūn

i

]
,

(15)ūn+1
i

=B1

2
ūn
i
+ B2

2

[
ū
(1)

i
+ Δtf (u

(1)

h
)
]
+ ΔtB2

2

[
s̄i(u

(1)

h
) + 𝜇ū

(1)

i

]
,

f (�) =
1

Δx
Fi(�, 1) =

M

Δx2

(
�−

i+
3

2

+ 3�+

i+
1

2

− 5�−

i+
1

2

− 3�+

i−
1

2

+ 4�−

i−
1

2

)

�̄�i + Δtf (𝜔) ∈ [−1, 1]

�̄�i =
1

2

(
𝜔−

i+
1

2

+ 𝜔+

i−
1

2

)
.

�̄�i + Δtf (𝜔) = a1𝜔
−

i+
3

2

+ a2𝜔
+

i+
1

2

+ a3𝜔
−

i+
1

2

+ a4𝜔
+

i−
1

2

+ a5𝜔
−

i−
1

2

,

a1 =
MΔt

Δx2
, a2 = 3

MΔt

Δx2
, a3 =

1

2
− 5

MΔt

Δx2
, a4 =

1

2
− 3

MΔt

Δx2
, a5 = 4

MΔt

Δx2
.

Si =
{
xi
1
, xi

2
,⋯ , xi

L

}
.
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Theorem 2 The numerical scheme (14) and (15) is MPP: if −1 ⩽ un
h
(x) ⩽ 1 on each cell Ii , 

i = 1,⋯ ,N , then we have −1 ⩽ ū
(1)

i
⩽ 1 under the conditions

In addition to the above conditions, if −1 ⩽ u
(1)

h
(x) ⩽ 1 on each cell Ii , i = 1,⋯ ,N , and

then we have −1 ⩽ ūn+1
i

⩽ 1.

Proof We only prove −1 ⩽ ū
(1)

i
⩽ 1 , since the proof for −1 ⩽ ūn+1

i
⩽ 1 can be obtained fol-

lowing the same line. From (14), we get

where

Next, we estimate the bounds of R1 and R2 , respectively. Since −1 ⩽ un
h
(x) ⩽ 1 and 

M
Δt

Δx2
⩽

1

10
 , we can get

by using Lemma 1. Moreover, the condition of � gives

Then, by using the Gauss quadrature rule, we get

Recall that our scheme is conservative and (1 + �Δt)B1

1
= 1 . Also, both B1

1
 and �ΔtB1

1
 are 

non-negative. Hence, ū(1)
i

 is a convex combination of R1 and R2 . Since R1, R2 ∈ [−1, 1] , we 
get

Remark 3 In addition to the assumption s(1) = s(−1) = 0 , we also require the following 
two limits:

� ⩾ max

{
0, max

x∈Si

s
(
un
h
(x)

)
1 − un

h
(x)

, max
x∈Si

s
(
un
h
(x)

)
−1 − un

h
(x)

}
and M

Δt

Δx2
⩽

1

10
.

� ⩾ max

⎧⎪⎨⎪⎩
0, max

x∈Si

s
�
u
(1)

h
(x)

�

1 − u
(1)

h
(x)

, max
x∈Si

s
�
u
(1)

h
(x)

�

−1 − u
(1)

h
(x)

⎫⎪⎬⎪⎭
,

ū
(1)

i
= B1

1
R1 + 𝜇ΔtB1

1
R2,

R1 = ūn
i
+ Δtf (un

h
), R2 =

1

𝜇
s̄i(u

n
h
) + ūn

i
.

R1 = ūn
i
+ Δtf (un

h
) ∈ [−1, 1]

−1 ⩽
1

�
s
(
un
h
(xi

�
)
)
+ un

h
(xi

�
) ⩽ 1, � = 1,⋯ , L.

R2 =

L∑
�=1

c�

[
1

�
s
(
un
h
(xi

�
)
)
+ un

h
(xi

�
)

]
∈ [−1, 1].

−1 ⩽ ū
(1)

i
⩽ 1.

lim
u→1

s(u)

1 − u
, lim

u→−1

s(u)

1 + u
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exist. Therefore, the lower bounds of � given in the above theorem are well-defined.

3.2  Maximum‑Principle‑Preserving Limiter

Based on the theorem in the last section, we can construct physically relevant numerical 
cell averages ūi . However, the polynomial uh may be out of the bounds. Hence, we need 
to apply suitable limiters to u(1)

h
(x) and un+1

h
(x) , and construct physically relevant numeri-

cal approximations in each RK stage.
Assume that we already have −1 ⩽ un

h
(x) ⩽ 1 on each cell on time level n. The full 

algorithm on each fixed cell Ii from time level n to time level n + 1 is given below. 

 (i) Compute the first stage of the conservative time integration (11) to get u(1)
h
(x) . Since 

−1 ⩽ un
h
(x) ⩽ 1 , Theorem 2 shows that −1 ⩽ ū

(1)

i
⩽ 1 under the suitable conditions 

on Δt and �.
 (ii) Replace the polynomial u(1)

h
|Ii by a modified polynomial ũ(1)

h
(x) ∈ P1(Ii) : 

 where 

 with 

 In [43], the authors proved that the new polynomial ũ(1)
h
(x) is still a second-order 

accurate approximation with the same cell average and ũ(1)
h
(x) ∈ [−1, 1] , for all 

x ∈ Ii.
 (iii) Compute the second stage of the conservative time integration (12) to get un+1

h
(x) . 

Since we have replaced u(1)
h
(x) with ũ(1)

h
(x) and −1 ⩽ ũ

(1)

h
(x) ⩽ 1 , we can get 

−1 ⩽ ūn+1
i

⩽ 1 under the suitable conditions by using Theorem 2 again.
 (iv) Replace the polynomial un+1

h
 on Ii by a modified polynomial ũn+1

h
(x) : 

 where 

 Then, we can get −1 ⩽ ũn+1
h

(x) ⩽ 1.

ũ
(1)

h
(x) = 𝜃

(
u
(1)

h
(x) − ū

(1)

i

)
+ ū

(1)

i
,

𝜃 = min

{
1,

1 − ū
(1)

i

Mi − ū
(1)

i

,
ū
(1)

i
+ 1

ū
(1)

i
− mi

}

Mi = max
x∈Ii

u
(1)

h
(x), mi = min

x∈Ii
u
(1)

h
(x).

ũn+1
h

(x) = 𝜃
(
un+1
h

(x) − ūn+1
i

)
+ ūn+1

i
,

𝜃 = min

{
1,

1 − ūn+1
i

Mi − ūn+1
i

,
ūn+1
i

+ 1

ūn+1
i

− mi

}
, Mi = max

x∈Ii
un+1
h

(x), mi = min
x∈Ii

un+1
h

(x).
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4  Two‑Dimensional Problem

In this section, we extend the technique to two-dimensional Allen-Cahn problem (1). 
We first give the numerical scheme in Sect. 4.1 and then design the MPP technique in 
Sect. 4.2.

4.1  Numerical Scheme

We first use the classical LDG method to discrete the space and get the semi-discrete scheme. 
For two-dimensional problem, we need to introduce two auxiliary variables p and q to repre-
sent ux and uy , respectively. Thus, we can rewrite (1) into the following system:

Suppose the computational domain is Ω = [a, b] × [c, d] . We decompose it into regular rec-
tangular cells. Let a = x 1

2

< x 3

2

< ⋯ < x
Nx+

1

2

= b and c = y 1

2

< y 3

2

< ⋯ < y
Ny+

1

2

= d be 
grid points in x and y directions, respectively. We denote the (i, j)th cell as

For simplicity, we also make a non-essential assumption of uniform mesh and denote the 
cell lengths in x and y directions as Δx and Δy , respectively. The finite element space con-
sists of piecewise polynomials which can be discontinuous across cell boundaries:

For any function v ∈ Vh , we denote v+
i−

1

2
,j
 , v−

i+
1

2
,j
 , v+

i,j−
1

2

 and v−
i,j+

1

2

 to be the traces of v|Ii,j on 

the four edges of Ii,j , respectively. The LDG method in two-dimensional space is defined as 
follows: to find 

(
uh(⋅, t), ph, qh

)
∈ [Vh]

3 , such that for any test functions (v,w, z) ∈ [Vh]
3 and 

any cell Ii,j , we have

(16)

⎧⎪⎨⎪⎩

ut = M(px + qy) + s(u),

p = ux,

q = uy.

Ii,j =
[
x
i−

1

2

, x
i+

1

2

]
×
[
y
j−

1

2

, y
j+

1

2

]
, i = 1,⋯ ,Nx, j = 1,⋯ ,Ny.

Vh ∶=
{
uh ∶ uh|Ii,j ∈ Q1(Ii,j), i = 1,⋯ ,Nx, j = 1,⋯ ,Ny

}
.

(17)

∫Ii,j

(uh)tvdxdy = −M ∫Ii,j

(phvx + qhvy)dxdy + ∫Ii,j

s(uh)vdxdy

+M ∫
y
j+

1
2

y
j−

1
2

(
p̂
i+

1

2
,j
v−
i+

1

2
,j
− p̂

i−
1

2
,j
v+
i−

1

2
,j

)
dy

+M ∫
x
i+

1
2

x
i−

1
2

(
q̂
i,j+

1

2

v−
i,j+

1

2

− q̂
i,j−

1

2

v+
i,j−

1

2

)
dx,

(18)∫Ii,j

phwdxdy = −∫Ii,j

uhwxdxdy + ∫
y
j+

1
2

y
j−

1
2

(
û
i+

1

2
,j
w−

i+
1

2
,j
− û

i−
1

2
,j
w+

i−
1

2
,j

)
dy,
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where the numerical fluxes are taken as alternating fluxes

After we get the semi-discrete scheme by using the LDG method, we still use the second-
order conservative modified exponential RK method (11) and (12) to march in time.

4.2  Maximum‑Principle‑Preserving Technique

We first solve for ph locally on each cell Ii,j by using (18). For the integral on [y
j−

1

2

, y
j+

1

2

] , we 
use the two-point Gaussian quadrature. We denote the two quadrature points on [y

j−
1

2

, y
j+

1

2

] as 
y
j

1
 and yj

2
 and denote the two quadrature weights on [−0.5, 0.5] as c1 and c2 . Moreover, we 

denote the linear interpolation basis functions as �1(y) and �2(y) , y ∈ [y
j−

1

2

, y
j+

1

2

] , such that

In (18), we take w(x, y) = w̃(x)𝜙m(y) ∈ Q1(Ii,j), m = 1, 2 , where w̃(x) can be any function in 
P1([x

i−
1

2

, x
i+

1

2

]) . Then, we get

for any test function w̃(x) ∈ P1([x
i−

1

2

, x
i+

1

2

]) , which is similar to the one-dimensional prob-
lem (7). Following the same idea as in the one-dimensional case, we get

Similarly, we can solve for qh locally on each cell Ii,j by using (19) and get

where xi
1
 and xi

2
 are the two Gaussian quadrature points on [x

i−
1

2

, x
i+

1

2

].
Taking v = 1 in (17), we get

(19)∫Ii,j

qhzdxdy = −∫Ii,j

uhzxdxdy + ∫
x
i+

1
2

x
i−

1
2

(
û
i,j+

1

2

z−
i,j+

1

2

− û
i,j−

1

2

z+
i,j−

1

2

)
dx,

û
i+

1

2
,j
= u−

i+
1

2
,j
, û

i,j+
1

2

= u−
i,j+

1

2

, p̂
i+

1

2
,j
= p+

i+
1

2
,j
, q̂

i,j+
1

2

= q+
i,j+

1

2

.

�m(y
j
n
) = �mn, m, n ∈ {1, 2}.

∫
x
i+

1
2

x
i−

1
2

ph
(
x, yj

m

)
w̃(x)dx

= − ∫
x
i+

1
2

x
i−

1
2

uh
(
x, yj

m

)
w̃x(x)dx + û

i+
1

2
,j

(
yj
m

)
w̃−

i+
1

2

− û
i−

1

2
,j

(
yj
m

)
w̃+

i−
1

2

, m = 1, 2,

(20)p̂
i−

1

2
,j

(
yj
m

)
= p+

i−
1

2
,j

(
yj
m

)
=

u−
i+

1

2
,j

(
y
j
m

)
+ 3u+

i−
1

2
,j

(
y
j
m

)
− 4u−

i−
1

2
,j

(
y
j
m

)

Δx
, m = 1, 2.

(21)q̂
i,j−

1

2

(
xi
m

)
= q+

i,j−
1

2

(
xi
m

)
=

u−
i,j+

1

2

(
xi
m

)
+ 3u+

i,j−
1

2

(
xi
m

)
− 4u−

i,j−
1

2

(
xi
m

)

Δy
, m = 1, 2,
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By using the two-point Gaussian quadrature rule, we obtain

where

Substituting (20) and (21) into the above equation, we obtain

By using the temporal discretization (11) and (12), we get the following equations for 
updating the cell average value ūi,j in time:

where ūn
i,j

 and ū(1)
i,j

 are the cell averages of un
h
 and u(1)

h
 on Ii,j , respectively. For simplicity of 

notations, we still use f to denote the spatial discretization operator as in the one-dimen-
sional case. But f has a different definition in the two-dimensional problem:

∫Ii,j

(uh)tdxdy = M ∫
y
j+

1
2

y
j−

1
2

(
p̂
i+

1

2
,j
− p̂

i−
1

2
,j

)
dy +M ∫

x
i+

1
2

x
i−

1
2

(
q̂
i,j+

1

2

− q̂
i,j−

1

2

)
dx

+ ∫Ii,j

s(uh)dxdy.

d

dt
ūi,j =

M

Δx

2∑
m=1

cm

[
p̂
i+

1

2
,j

(
yj
m

)
− p̂

i−
1

2
,j

(
yj
m

)]
+

M

Δy

2∑
m=1

cm

[
q̂
i,j+

1

2

(
xi
m

)
− q̂

i,j−
1

2

(
xi
m

)]

+
1

ΔxΔy ∫Ii,j

s(uh)dxdy,

ūi,j =
1

ΔxΔy ∫Ii,j

uhdxdy.

(22)

d

dt
ūi,j =

M

Δx2

2∑
m=1

cm

(
u−
i+

3

2
,j
+ 3u+

i+
1

2
,j
− 5u−

i+
1

2
,j
− 3u+

i−
1

2
,j
+ 4u−

i−
1

2
,j

)||||||y=yjm
+

M

Δy2

2∑
m=1

cm

(
u−
i,j+

3

2

+ 3u+
i,j+

1

2

− 5u−
i,j+

1

2

− 3u+
i,j−

1

2

+ 4u−
i,j−

1

2

)||||||x=xi
m

+
1

ΔxΔy ∫Ii,j

s(uh)dxdy.

(23)ū
(1)

i,j
=B1

1

[
ūn
i,j
+ Δtf

(
un
h

)]
+ ΔtB1

1

[
1

ΔxΔy ∫Ii,j

s
(
un
h

)
dxdy + 𝜇ūn

i,j

]
,

(24)ūn+1
i

=B1

2
ūn + B2

2

[
ū
(1)

i,j
+ Δtf (u

(1)

h
)
]
+ ΔtB2

2

[
1

ΔxΔy ∫Ii,j

s
(
u
(1)

h

)
dxdy + 𝜇ū

(1)

i,j

]
,

f (�) =
M

Δx2

2∑
m=1

cm

(
�−

i+
3

2
,j
+ 3�+

i+
1

2
,j
− 5�−

i+
1

2
,j
− 3�+

i−
1

2
,j
+ 4�−

i−
1

2
,j

)||||||y=yjm
+

M

Δy2

2∑
m=1

cm

(
�−

i,j+
3

2

+ 3�+

i,j+
1

2

− 5�−

i,j+
1

2

− 3�+

i,j−
1

2

+ 4�−

i,j−
1

2

)||||||x=xi
m

,
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for any function � ∈ Vh . We state the property of f in the following lemma.

Lemma 2 For any function �(x) ∈ Vh with � ∈ [−1, 1] , we have

under the CFL condition MΔt ⩽
1

20
min{Δx2,Δy2}.

Proof We divide � into two parts and use the Gaussian quadrature rule in different 
directions:

Then, we obtain

where

Notice that c1 + c2 = 1 and hence it is easy to check that

If we require MΔt ⩽
1

20
min{Δx2,Δy2} , then all coefficients are non-negative. Hence, we 

have written �̄�i,j + Δtf (𝜔) as a convex combination of several point values of � . Since all 
point values are bounded between −1 and 1, we can obtain the conclusion of this lemma.

Finally, we get the following theorem of the maximum-principle-preserving property of 
the cell average values. The proof is similar to the one-dimensional case and hence we omit 
it. Here we denote the set of L Gauss quadrature points on [x

i−
1

2

, x
i+

1

2

] as Sx
i
 and denote the 

�̄�i,j + Δtf (𝜔) ∈ [−1, 1],

�̄�i,j =
1

2
�̄�i,j +

1

2
�̄�i,j

=
1

2Δx

2∑
m=1

cm ∫
x
i+

1
2

x
i−

1
2

𝜔
(
x, yj

m

)
dx +

1

2Δy

2∑
m=1

cm ∫
y
j+

1
2

y
j−

1
2

𝜔
(
xi
m
, y
)
dy

=
1

4

2∑
m=1

cm

[
𝜔−

i+
1

2
,j

(
yj
m

)
+ 𝜔+

i−
1

2
,j

(
yj
m

)]
+

1

4

2∑
m=1

cm

[
𝜔−

i,j+
1

2

(
xi
m

)
+ 𝜔+

i,j−
1

2

(
xi
m

)]
.

�̄�i,j + Δtf (𝜔)

=

2∑
m=1

cm

(
a1𝜔

−

i+
3

2
,j
+ a2𝜔

+

i+
1

2
,j
+ a3𝜔

−

i+
1

2
,j
+ a4𝜔

+

i−
1

2
,j
+ a5𝜔

−

i−
1

2
,j

)||||||y=yjm
+

2∑
m=1

cm

(
b1𝜔

−

i,j+
3

2

+ b2𝜔
+

i,j+
1

2

+ b3𝜔
−

i,j+
1

2

+ b4𝜔
+

i,j−
1

2

+ b5𝜔
−

i,j−
1

2

)||||||x=yi
m

,

a1 =
MΔt

Δx2
, a2 = 3

MΔt

Δx2
, a3 =

1

4
− 5

MΔt

Δx2
, a4 =

1

4
− 3

MΔt

Δx2
, a5 = 4

MΔt

Δx2
,

b1 =
MΔt

Δy2
, b2 = 3

MΔt

Δy2
, b3 =

1

4
− 5

MΔt

Δy2
, b4 =

1

4
− 3

MΔt

Δy2
, b5 = 4

MΔt

Δy2
.

2∑
m=1

cm
(
a1 + a2 + a3 + a4 + a5

)
+

2∑
m=1

cm
(
b1 + b2 + b3 + b4 + b5

)
= 1.



367Communications on Applied Mathematics and Computation (2022) 4:353–379 

1 3

set of Gauss quadrature points on [y
j−

1

2

, y
j+

1

2

] as Sy
j
 . We still choose L such that the compu-

tation for ∫
Ii,j
s(uh)dxdy is accurate enough. Moreover, we let Si,j = Sx

i
⊗ S

y

j
.

Theorem 3 Consider the ODE (22) of the cell average ūi,j , the numerical scheme (23) and 
(24) is bound-preserving: if −1 ⩽ un

h
(x, y) ⩽ 1 on each cell Ii,j , i = 1,⋯ ,Nx , j = 1,⋯ ,Ny , 

then we have −1 ⩽ ū
(1)

i,j
⩽ 1 under the conditions

and

In addition to the above conditions, if −1 ⩽ u
(1)

h
(x, y) ⩽ 1 on each cell Ii,j , i = 1,⋯ ,Nx , 

j = 1,⋯ ,Ny and

then we have −1 ⩽ ūn+1
i,j

⩽ 1.

Now we can construct physically relevant numerical cell averages ūi,j . However, the pol-
ynomial uh may be out of the bounds. On each stage of the conservative modified exponen-
tial RK method, we need to replace the solution with a modified polynomial on each cell. 
The whole procedure is the same as the one-dimensional limiter described in Sect. 3.2. For 
simplicity, we only show the formulation at the time level n + 1 for the two-dimensional 
case. On each cell Ii,j , after we get the polynomial un+1

h
(x, y) by using the temporal discre-

tization, we replace it with a modified polynomial ũn+1
h

(x, y):

where

and

Then, we can get −1 ⩽ ũn+1
h

(x, y) ⩽ 1.

� ⩾ max

{
0, max

(x,y)∈Si,j

s
(
un
h
(x, y)

)
1 − un

h
(x, y)

, max
(x,y)∈Si,j

s
(
un
h
(x, y)

)
−1 − un

h
(x, y)

}

MΔt ⩽
1

20
min{Δx2,Δy2}.

� ⩾ max

⎧⎪⎨⎪⎩
0, max

(x,y)∈Si,j

s
�
u
(1)

h
(x, y)

�

1 − u
(1)

h
(x, y)

, max
(x,y)∈Si,j

s
�
u
(1)

h
(x, y)

�

−1 − u
(1)

h
(x, y)

⎫⎪⎬⎪⎭
,

ũn+1
h

(x, y) = 𝜃

(
un+1
h

(x, y) − ūn+1
i,j

)
+ ūn+1

i,j
,

𝜃 = min

{
1,

1 − ūn+1
i,j

Mi,j − ūn+1
i,j

,
ūn+1
i,j

+ 1

ūn+1
i,j

− mi,j

}

Mi,j = max
(x,y)∈Ii,j

un+1
h

(x, y), mi = min
(x,y)∈Ii,j

un+1
h

(x, y).
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5  Numerical Examples

In this section, we take the nonlinear free energy density as

where � represents the inter-facial width. In this case, the energy function becomes

Also, we have

and the Allen-Cahn equation becomes

In the one-dimensional case, we have

Although we only show the detailed formulation for the second-order scheme, we also test 
the third-order scheme in this section. For the spatial discretization, we follow the method 
in [21]. For the time integration, we adopt the method in [17], which has also been illus-
trated at the end of Sect. 2. We will numerically show that our method has the MPP prop-
erty and test whether we can observe the energy decay. In all figures, we use “new RK” 
to represent the conservative modified exponential RK method and use “RK” to represent 
the traditional SSP RK method. Also, “without limiter” means that we do not modify the 
polynomials as in Sect. 3.2. But we still choose a suitable parameter � in the conservative 
exponential RK method as described in Theorems 2 and 3. This parameter also helps to 
approach the correct solutions.

Example 1 We first test the stability and accuracy of the ODE solvers, and study the fol-
lowing problem:

F(u) =
1

4�2
(u2 − 1)2,

E(u) = ∫Ω

(
1

2
|▿u|2 + 1

4�2
(u2 − 1)2

)
d�.

s(u) = −MF�(u) =
M

�2
(u − u3),

(25)ut = M
(
Δu +

1

�2
(u − u3)

)
.

(26)ut = M
(
uxx +

1

�2
(u − u3)

)
.

Table 1  Accuracy test for ODE 
solvers with u

0
= 0.2 with 

c = 100

N
t

L
∞ norm Order L

∞ norm Order
Second-order new RK Third-order new RK

2 2.20E−09 – 2.03E−11 –
4 5.53E−10 1.99 2.54E−12 3.00
8 1.39E−10 1.99 3.17E−13 3.00
16 3.47E−11 2.00 3.95E−14 3.00
32 8.69E−12 2.00 4.88E−15 3.02
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where c is a parameter that we can adjust. The problem becomes stiff as c increases. The 
exact solution is

We take the final time to be t = 0.5 and denote the total number of time steps as Nt.

We first take u0 = 0.2 with c = 100 . We choose c = 100 because in most of the previ-
ous works for Allen-Cahn equations, the value of 1∕� ≈ 100 . Numerical results for the 
second-order and third-order new RK method are listed in Table 1. The initial condition 
is well-prepared, and we can observe the optimal convergence rates.

Next, we take u0 = 1 , the results are given in Table 2. For this problem, the initial condi-
tion is not well-prepared, and we can observe the optimal convergence rate if the problem 
is not stiff, e.g., c = 1 . If the problem is stiff, e.g., c = 100 , the method may not converge at 
the expected rate, but our scheme is able to deal with large time steps and we can observe 
the convergence of the solutions.

Example 2 We consider the one-dimensional Allen-Cahn equation (26) with periodic 
boundary conditions. We take M = 1 and adopt N = 100 cells. The computational domain 
is [0, 2�] and the initial condition is taken as

We first test the second-order schemes. We adopt the new RK method and compare the 
results with and without the MPP limiter in Fig. 1. Different values of � are tested. The 
time step size Δt = cΔx2∕M with c = 0.1 is used in all cases. We can see that the energy 
decays as the time increases. The maximum principle is preserved after we add the MPP 
limiter.

Next, we take � = 0 , then the new RK method becomes the regular second-order RK 
method. In this case, the code will blow up with the same choice of Δt as in the new RK 

u�(t) = −cu7, u(0) = u0,

u(t) = u0
(
6ctu6

0
+ 1

)−1∕6
.

u(x, 0) = sin(x).

Table 2  Accuracy test for ODE 
solvers with u

0
= 1

N
t

c=1 c=100

L
∞ norm Order L

∞ norm Order

Second-order new RK
20 1.84E−05 – 9.40E−02 –
40 5.08E−06 1.86 1.00E−02 3.23
80 1.31E−06 1.95 7.63E−04 3.71
160 3.36E−07 1.97 6.35E−05 3.59
320 8.50E−08 1.98 2.19E−06 4.86

Third-order new RK
20 2.04E−06 – 2.67E−02 –
40 2.51E−07 3.02 1.27E−03 4.39
80 3.08E−08 3.03 1.00E−04 3.67
160 3.85E−09 3.00 2.00E−05 2.32
320 4.82E−10 3.00 3.32E−06 2.59
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Fig. 1  Example 2 with different � . Second-order method with new RK. Comparison of results with and 
without the MPP limiter. Δt = cΔx2∕M with c = 0.1
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Fig. 2  Example 2 with � = 0.01 . Second-order schemes with MPP limiters. Comparison between RK and 
new RK methods. Δt = cΔx2∕M with c = 0.03
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method. For comparison, we take � = 0.01 and Δt = cΔx2∕M with c = 0.03 . The results of 
different methods are shown in Fig. 2. We can see that the traditional RK method will lead 
to wrong solutions. To obtain correct solutions, c = 0.01 is needed. For � = 0.001 , c = 10−4 
is needed in traditional RK method. If we take � = 0.000 1 , then c = 10−6 is needed.

x

u

1 2 3 4 5 6

-1.0

-0.5

0

0.5

1.0 Without limiter
With limiter

(a) u at t = 0.002
x

u

3.04 3.06 3.08 3.10 3.12

0.99

1.00

1.01

Without limiter
With limiter

(b) u at t = 0.002. Zoom-in picture

t

En
er

gy

0 5.0x10-4 1.0x10-3 1.5x10-3 2.0x10-3

0

1.0x103

2.0x103

3.0x103

4.0x103

5.0x103

6.0x103

With limiter
Without limiter

(c) E(u)

t

M
ax

im
um

 a
bs

ol
ut

e 
va

lu
e

0 5.0x10-4 1.0x10-3 1.5x10-3 2.0x10-3

1.000

1.005

1.010

1.015

1.020

1.025
With limiter
Without limiter

(d) u ∞

Fig. 3  Example 2 with � = 0.01 . Third-order method with new RK. Comparison of results with and without 
the MPP limiter. Δt = cΔx2∕M with c = 0.02
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Fig. 4  Example 2 with � = 0.01 . Third-order schemes with MPP limiters. Comparison between RK and 
new RK methods. Δt = cΔx2∕M with c = 0.02
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We move on to test the third-order schemes. Firstly, we take � = 0.01 and adopt the 
new RK method in time. The time step size Δt = cΔx2∕M with c = 0.02 is used. The 
numerical methods with and without the MPP limiter are shown in Fig. 3. We can see 
that the energy decays as the time increases. The maximum principle is preserved after 
we add the MPP limiter. Next, we still take � = 0.01 and compare our new RK method 
with the traditional RK method in Fig. 4. The same time step size with c = 0.02 is used. 
We can see that the traditional RK method leads to wrong solutions. To obtain correct 
solutions with the traditional RK method, we need to take c = 6 × 10−3 . Finally, we test 
smaller values of � . The numerical results of our new RK method are shown in Fig. 5. 
Here we take with c = 0.02 for � = 0.001 , and take c = 6 × 10−4 for � = 0.000 1 . Again, 
we can see that the energy decays and the MPP property is preserved. For � = 0.001 , if 
we still use c = 0.02 in the traditional RK method, the code will blow up, and c = 10−4 
is needed to obtain correct solutions. For � = 0.000 1 , c = 10−6 is needed in the tradi-
tional RK method.
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Fig. 5  Example 2 with different � . Third-order scheme with new RK. Δt = cΔx2∕M . We take with c = 0.02 
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−4 for � = 0.000 1
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Example 3 We consider the one-dimensional Allen-Cahn equation (26) with homogeneous 
Neumann boundary conditions. We take M = 1 and � = 0.001 . The computation domain is 
[0, 1] and the initial condition is chosen as

where “rand(⋅ )” represents a random number on each point in [0, 1].

From now on, we only test the second-order schemes for simplicity. We take N = 100 
cells and compare the results with and without the MPP limiter in Fig. 6. The time step 
size Δt = cΔx2∕M with c = 0.1 is used. We can observe that the energy decays as the time 
increases. The maximum principle is preserved after we add the MPP limiter. Again, if we 
do not add the limiter and further take � = 0 , the code will blow up with the same choice 
of Δt.

Example 4 We consider the two-dimensional Allen-Cahn equation (25) with periodic 
boundary conditions. We take M = 0.01 and � = 0.08 . The computational domain is 
[0, 1] × [0, 1] . The initial condition is taken as

u(x, 0) = 0.9 × rand(⋅) + 0.05,

u(x, y, 0) = cos (�x) cos (�y).
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Fig. 6  Example 3

Table 3  Two-dimensional accuracy test

N Without limiter With MPP limiter

L
2 norm Order L

∞ norm Order L
2 norm Order L

∞ norm Order

20 2.15E−02 – 1.02E−01 – 2.08E−02 – 9.10E−02 –
40 4.79E−03 2.17 2.95E−02 1.79 4.78E−03 2.12 2.52E−02 1.85
80 1.16E−03 2.04 7.39E−03 2.00 1.18E−03 2.02 6.41E−03 1.97
160 2.87E−04 2.02 1.86E−03 1.99 2.93E−04 2.01 1.60E−03 2.00
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We divide the computational domain into N × N cells, i.e., Nx = Ny = N . The time step 
size Δt = 0.02Δx2∕M is used. Table 3 shows the numerical errors at the time T = 0.5 . We 
can observe the second-order convergence rate. Also, the MPP limiter does not harm the 
original high order of accuracy.

Example 5 We solve a benchmark problem for the two-dimensional Allen-Cahn equation 
(25). Consider a two-dimensional domain (−128, 128)2 with a circle of radius R0 = 100 . In 
other words, the initial condition is given by

The boundary condition is taken as the periodic boundary condition. By mapping the 
domain to Ω = (−1, 1)2 , the parameters in the two-dimensional Allen-Cahn equation are 
given by M = 6.103 51 × 10−5 and � = 0.007 8 . In the sharp interface limit ( � → 0 , which 
is suitable because the chosen � is small), the radius at the time t should be

u(x, y, 0) =

{
1, if x2 + y2 < 1002,

−1, otherwise.

Fig. 7  Example 5
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We take Nx = Ny = 401 . The time step size is Δt = 0.02Δx2∕M . We add the MPP lim-
iter. Numerical results are shown in Fig. 7. We can see that the energy decays and the 
maximum principle is preserved. Also, we compare the real radius R with the numerical 
one. We can see that our method can capture the correct radius.

Example 6 We consider the two-dimensional Allen-Cahn equation (25) with periodic 
boundary conditions. We take M = 1 and � = 0.02 . The computational domain is [0, 2�]2 . 
The initial condition is taken as u(x, y, 0) = 0.05 sin(x) sin(y).

We adopt Nx = Ny = 100 . The time step size is Δt = 0.02Δx2∕M . We add the MPP 
limiter. Numerical results are shown in Fig. 8. We can see that the energy decays as the 
time increases. The maximum principle is preserved. Also, we can observe the phase 
separation and coarsening process.

R =

√
R2

0
− 2t.

Fig. 9  Example 7
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Example 7 We consider the two-dimensional Allen-Cahn equation (25) with periodic 
boundary conditions. We take M = 1 and � = 0.02 . The computational domain is [0, 2�]2 . 
The initial condition is a random function with values in [−0.05, 0.05].

We adopt Nx = Ny = 100 . The time step size is Δt = 0.02Δx2∕M . The MPP limiter is 
added. The plots of energy and the maximum absolute value are shown in Fig. 9. We can 
see that the energy decays as the time increases. The maximum principle is preserved. The 
plots of u at different times are also shown in Fig. 9. We can observe the phase separation 
and coarsening process.

6  Conclusion

In this paper, we study the classical Allen-Cahn equations. We apply the LDG method 
due to its flexibility on the  h-p adaptivity and complex geometry. Moreover, since the 
source given in the equation may be stiff, we use the conservative modified exponential 
RK methods and thus can use relatively large time step sizes. Thanks to the conservative 
time integration, we can design the MPP technique for the scheme. Moreover, the physical 
bounds of the unknown function will not decay. Numerical experiments are also given to 
demonstrate the good performance of the MPP LDG scheme.

Since the MPP LDG methods require slope limiters, the energy stability may not be 
easy to obtain. In this paper, we only discuss the MPP technique and use numerical experi-
ments to demonstrate the energy decay property. The proof for the energy decay will be 
investigated in the future.
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