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Abstract
In this paper, we apply the Fourier analysis technique to investigate superconvergence prop-
erties of the direct disontinuous Galerkin (DDG) method (Liu and Yan in SIAM J Numer 
Anal 47(1):475–698, 2009), the DDG method with the interface correction (DDGIC) (Liu 
and Yan in Commun Comput Phys 8(3):541–564, 2010), the symmetric DDG method 
(Vidden and Yan in Comput Math 31(6):638–662, 2013), and the nonsymmetric DDG 
method (Yan in J Sci Comput 54(2):663–683, 2013). We also include the study of the inte-
rior penalty DG (IPDG) method, due to its close relation to DDG methods. Error estimates 
are carried out for both P2 and P3 polynomial approximations. By investigating the quanti-
tative errors at the Lobatto points, we show that the DDGIC and symmetric DDG methods 
are superior, in the sense of obtaining (k + 2) th superconvergence orders for both P2 and P3 
approximations. Superconvergence order of (k + 2) is also observed for the IPDG method 
with P3 polynomial approximations. The errors are sensitive to the choice of the numerical 
flux coefficient for even degree P2 approximations, but are not for odd degree P3 approxi-
mations. Numerical experiments are carried out at the same time and the numerical errors 
match well with the analytically estimated errors.
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1 Introduction

In this paper, we apply the Fourier analysis tool to investigate superconvergence properties 
of the direct discontinuous Galerkin (DDG) method [19], the DDG method with interface 
correction (DDGIC) [20], the symmetric DDG method [25], and the nonsymmetric DDG 
method [27] for diffusion equations. We also include a study of the interior penalty discon-
tinuous Galerkin (IPDG) method [4], since the IPDG method is closely related to DDG 
methods.

The DDG methods are a class of discontinuous Galerkin (DG) finite element methods 
designed for diffusion equations. It was first proposed in [19] by Liu and Yan following 
the direct weak formulation of parabolic equations. A numerical flux concept of (̂uh)x was 
introduced to approximate the solution’s spatial derivative ux across element interface. Dif-
ferent to the local DG (LDG) method, in which auxiliary variables are introduced for the 
solution’s spatial derivatives and rewritten of the original equation into a first-order system 
is required, the DDG method is based on the weak formulation of the diffusion equation 
and thus being solved directly.

For the original DDG method [19], suitable higher order numerical flux coefficients are 
hard to be identified and the accuracy loss is observed for nonuniform simulation. In [20], 
Liu and Yan modified the DDG method with extra interface terms added and obtained by 
the DDGIC method. It turns out that the DDGIC method is so far the best solver for time 
dependent diffusion problems. To carry out the L2(L2) error estimate, Vidden and Yan fur-
ther introduced the concept of the test function numerical flux and proposed the symmetric 
DDG method in [25]. The symmetric DDG method is a more suitable solver for elliptic-
type PDEs. In [27], Yan also studied the nonsymmetric DDG method for nonlinear diffu-
sion problems, in which the optimal convergence order is obtained for any degree polyno-
mial approximations.

With lower order piecewise constant and linear approximations, DDGIC and sym-
metric DDG methods degenerate to the IPDG method. On the other hand, DDG meth-
ods are found to have quite a few advantages over the IPDG method for higher order Pk 
( k ⩾ 2 ) approximations. DDGIC polynomial solutions have been proved to satisfy strict 
maximum principle with at least third order of accuracy in [8], while only second order can 
be obtained for IPDG and LDG methods [34]. With the Fourier analysis technique, DDG 
methods are proved to be superconvergent on its approximation to the solution’s spatial 
derivative ux in [33]. No such superconvergence result is observed for the IPDG method. 
Recently in [17], the two interface jump conditions have been built into numerical flux 
definition and a uniform high order symmetric DDG method is obtained for elliptic inter-
face problems.

Superconvergence properties of DG and LDG methods for hyperbolic and parabolic 
problems have been intensively investigated in the past via different approaches, such as 
the negative norm estimate [13, 18], by considering the problem as an initial or boundary 
value problem [1–3, 16], by special decomposition of error and playing with test func-
tions in the weak formulation [6, 9, 10, 28, 29], by the Fourier analysis [11, 14, 22, 23, 15, 
35], etc. However, there is few work regarding the superconvergence study of the DDG 
methods. In [7], the authors proved the superconvergence property of the DDGIC method 
for one-dimensional linear convection diffusion equations, under some suitable choice of 
numerical fluxes and initial discretization. In [33], superconvergence study on the moment 
errors of the DDGIC and the symmetric DDG methods are carried out via the Fourier anal-
ysis approach for piecewise P2 polynomial approximations.
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The Fourier analysis has been known to be a powerful technique to study the stability 
and error estimates for DG methods and other related schemes, especially in some cases 
when the standard finite element technique can not be applied. It was applied to analyse the 
instability of “bad” schemes in [30], to demonstrate the optimal convergence via quantita-
tive error estimates in [31, 32, 35], and to show the superconvergence property at special 
points in [14, 33, 35], etc. Though the Fourier analysis is limited to linear problems with 
periodic boundary conditions and uniform mesh, it can be used as a guidance to problems 
under general settings. In this paper, we will continue adopting the Fourier analysis tech-
nique to investigate the superconvergence properties of four DDG methods for one-dimen-
sional linear heat equation. The analysis is carried out not only for the case of piecewise P2 
polynomial approximations but also for the case of piecewise P3 polynomial approxima-
tions, which is more challenging for Fourier type analysis. We also apply the Fourier analy-
sis technique to study the IPDG method [4], due to its close relation to the DDG methods. 
By investigating the quantitative error at Lobatto points via the Fourier analysis, we show 
that as follows. 

i) DDGIC and symmetric DDG methods are the best among the five DG methods studied. 
At Lobatto points, DDGIC and symmetric DDG methods are superconvergent of order 
(k + 2) with quadratic ( k = 2 ) and cubic ( k = 3 ) polynomial approximations. The errors 
are sensitive to the numerical flux coefficient �1 for P2 approximations ( �1 =

1

2k(k+1)
 ), 

but are not sensitive to the numerical flux coefficients for P3 odd degree polynomial 
approximations.

ii) The IPDG method is found to be superconvergent of order (k + 2) at Lobatto points with 
P3 polynomial approximations. For P2 approximation, the IPDG method is supercon-
vergent of order (k + 2) at the cell center, but is convergent with optimal order of (k + 1) 
at the other two Lobatto points, which are similar to DDGIC and symmetric DDG 
methods with �1 ≠ 1

2k(k+1)
 taken in the numerical flux.

iii) The original DDG method and nonsymmetric DDG method are convergent of optimal 
(k + 1) th order at Lobbato points for P3 polynomial approximations. For P2 approxima-
tions and with the proper choice of �1 =

1

2k(k+1)
=

1

12
 in the numerical flux, the errors at 

Lobbato points are superconvergent of (k + 2) th order, while the errors are only conver-
gent of order k with �1 ≠ 1

2k(k+1)
.

iv) The superconvergence and optimal convergence orders at the Lobatto points are inde-
pendent of the �0 coefficient in the numerical flux, as long as it is chosen large enough 
to guarantee the stability of the methods.

The paper is organized as follows: we first review the DDG method and its variations for 
heat equation in Sect. 2. In Sect. 3, we present the Fourier analysis procedure in detail. For 
each method, we carry out the quantitative error estimates at Lobatto points via the Fou-
rier analysis and show the numerical tests errors match well with the analytical predicted 
errors. Conclusions are given in Sect. 4.

2  DDG Method and Its Variations

In this section, we present the scheme formulation of the DDG finite element method and 
its variations for the model problem
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with initial condition u(x, 0) = sin x and periodic boundary condition. The exact solution to 
(1) is given by

We consider to approximate heat equation (1) with DG methods in space, and couple with 
the strong stability preserving (SSP) Runge-Kutta (RK) method [24] in time for the fully 
discretization. The spatial domain [0, 2�] is partitioned into N computational cells, i.e., 

[0, 2�] =
N⋃
j=1

Ij . We denote the cell by Ij = [xj−1∕2, xj+1∕2] and the cell center by 

xj =
1

2

(
xj−1∕2 + xj+1∕2

)
 , for j = 1,⋯ ,N , where

We consider the uniform partition with mesh size Δx = 2�

N
 . The piecewise polynomial 

solution space of DG methods is defined as

where Pk(Ij) denotes the set of polynomials of degree at most k on cell Ij . For vh ∈ � k
h
 , we 

adopt following notations to denote the jump and average of vh across the cell interface 
xj+1∕2:

Now we are ready to define the DDG method and its variations.

2.1  DDG Method

Multiply the heat equation (1) with test function, integrate over cell Ij and have integration 
by part, and formally we obtain the DDG method as follows: find the solution uh ∈ � k

h
 , 

such that for any test function vh ∈ � k
h
 , we have

The above formulation is based on the weak formulation of the heat equation directly, thus 
it was named direct discontinuous Galerkin methods in [19]. Notice that the DG solution is 
discontinuous across cell interfaces, thus we introduce the numerical flux (̂uh)x to approxi-
mate the solution derivative (uh)x at the cell interfaces x

j±
1

2

, j = 1,⋯ ,N , which is given by

The numerical flux (̂uh)x is uniquely defined at the cell interface and is consistent to the 
solution spatial derivative ux . It involves the solution’s jump, derivative average, sec-
ond order derivative jump and even-th derivative higher order jump quantities at the cell 

(1)ut − uxx = 0, x ∈ [0, 2�]

(2)u(x, t) = e−t sin (x).

0 = x 1

2

< x 3

2

< ⋯ < x
N+

1

2

= 2𝜋.

�
k
h
∶= {v ∈ L2[0, 2�] ∶ v|Ij ∈ Pk(Ij), j = 1,⋯ ,N},

v±
h
= vh(x ± 0, t), [[vh]] = v+

h
− v−

h
, {{vh}} =

v+
h
+ v−

h

2
.

(3)∫Ij

(uh)tvhdx − (̂uh)x(vh)
−

j+
1

2

+ (̂uh)x(vh)
+

j−
1

2

+ ∫Ij

(uh)x(vh)xdx = 0.

(4)(̂uh)x = �0
[[uh]]

Δx
+ {{(uh)x}} + �1Δx[[(uh)xx]] + �2(Δx)

3[[(uh)xxxx]] +⋯ .
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interface. There exists a large group of admissible coefficient pair (�0, �1) that ensures the 
stability and convergence of the DDG method, see [19] for more details.

On the other hand, it is hard to identify admissible numerical flux coefficients for the 
high order terms, for example �2 in (4). Higher order jump terms, i.e., [[(uh)xxxx]] is none 
zero only when k ⩾ 4 , which turns out to be not essential and can be cut off from the 
numerical flux formula. In [20], we modified the original DDG scheme formulation (3) by 
adding interface correction terms that involve the test function derivative (vh)x . The inter-
face correction terms are important to balance the solution and test functions in the bi-
linear form, which in return guarantee the optimal convergence and improve the capacity 
of the DDG method.

2.2  DDG Method with Interface Correction

Now the scheme formulation of the DDG method with interface correction (DDGIC) [20] 
is defined as: find the solution uh ∈ � k

h
 , such that for any test function vh ∈ � k

h
 , we have

where we adopt the short notation of

The numerical flux is given by

Notice that higher order jump terms are dropped off from (4). The numerical flux formula 
of the DDGIC method only involves the solution jump, derivative average and the second 
order derivative jump terms. With the admissible coefficient pair (�0, �1) chosen in (6), the 
DDGIC method is proved to be stable and convergent with optimal order of accuracy [20].

The DDGIC method is closely related to the classical IPDG method [4, 26]. For piece-
wise constant ( k = 0 ) and linear ( k = 1 ) approximations, the second derivative jump term 
[[(uh)xx]] degenerates to zero and has no contribution to the calculation of the numerical flux 
(6). Thus, the DDGIC method degenerates to the IPDG method with low order approxima-
tions. On the other hand, DDG methods are found to have quite a few advantages over the 
IPDG method and LDG method [12] for high order approximations ( Pk with k ⩾ 2).

Numerical tests show a small fixed penalty coefficient �0 = 2 can be applied to obtain 
optimal convergence for Pk ( k ⩽ 9 ) approximations with the DDGIC method. Polynomial 
solutions have been proved to satisfy strict maximum principle with at least third order of 
accuracy for the DDGIC method in [8], while only second order can be obtained for IPDG 
and LDG methods [34]. With the Fourier analysis technique, in [33], the solutions of the 
DDG methods are proved to be superconvergent on its approximation to the solution’s spa-
tial derivative ux . No such superconvergence result is observed for the IPDG method.

(5)∫Ij

(uh)tvhdx − (̂uh)xvh
|||
j+

1

2

j−
1

2

+ ∫Ij

(uh)x(vh)xdx +
(vh)

−
x

2
[[uh]]j+ 1

2

+
(vh)

+
x

2
[[uh]]j− 1

2

= 0,

(̂uh)xvh
|||
j+

1

2

j−
1

2

∶= (̂uh)x(vh)
−

j+
1

2

− (̂uh)x(vh)
+

j−
1

2

.

(6)(̂uh)x = �0
[[uh]]

Δx
+ {{(uh)x}} + �1Δx[[(uh)xx]].
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2.3  Symmetric/Nonsymmetric DDG Method

To carry out the L2(L2) error estimate, we further introduce the numerical flux concept for 
the test function (vh)x and obtain a symmetric DDG method in [25]. It turns out the sym-
metric DDG method is a more suitable DDG method for elliptic-type PDEs. With the stiff-
ness matrix being symmetric, fast solvers can be applied with the symmetric DDG method.

To compare with the nonsymmetric DG method of Baumann and Oden [5] and the non-
symmetric interior penalty Galerkin (NIPG) method [21], we switch the sign of interface 
terms to negative and obtain the nonsymmetric DDG method in [27]. Different to the accu-
racy loss issues in [5, 21], the nonsymmetric DDG method is found to obtain optimal order 
convergence for all degree polynomial approximations.

Denote � = ±1 , we have the symmetric ( � = +1 ) and nonsymmetric ( � = −1 ) DDG 
methods uniformly laid out as follows: find the solution uh ∈ � k

h
 , such that for any test 

function vh ∈ � k
h
 , we have

where numerical fluxes of the solution and test function are taken as

For the symmetric DDG method, with the notation of �0 = �0u + �0v , a quadratic form 
restriction on the coefficient pair (�0, �1) is proved to lead to admissible numerical flux 
(8), and guarantees the optimal convergence of the method. We refer the readers to [25] 
for more details. For the nonsymmetric DDG method, with all interface terms involv-
ing �1 cancelling out in the global formulation, the nonsymmetric DDG is stable with 
𝛽0 = 𝛽0u − 𝛽0v > 0 taken in the numerical flux, see [27]. The stability result also holds for 
nonlinear diffusion equations.

2.4  IPDG Method

Finally, we lay out the scheme of the classical IPDG method [4], under the format of DDG 
methods. We find the solution uh ∈ � k

h
 , such that for any test function vh ∈ � k

h
 , we have

The penalty term and the derivative average are combined into the numerical flux with

Notice that the original form of the IPDG method did not recognize the scale of Δx and its 
relationship to the jump term [[uh]] , thus the penalty coefficient �0 has to be large enough to 
stabilize the scheme, especially with refined mesh. Now we know term [[uh]]

Δx
 is a low order 

but also a leading term on its approximation to the solution derivative (uh)x . The difference 

(7)∫Ij

(uh)tvhdx − (̂uh)xvh
|||
j+

1

2

j−
1

2

+ ∫Ij

(uh)x(vh)xdx + �
(
(̃vh)x[[uh]]j+ 1

2

+ (̃vh)x[[u]]j− 1

2

)
= 0,

(8)

{
(̂uh)x = �0u

[[uh]]

Δx
+ {{(uh)x}} + �1Δx[[(uh)xx]],

(̃vh)x = �0v
[[vh]]

Δx
+ {{(vh)x}} + �1Δx[[(vh)xx]].

(9)∫Ij

(uh)tvhdx − (̂uh)xvh
|||
j+

1

2

j−
1

2

+ ∫Ij

(uh)x(vh)xdx +
(vh)

−
x

2
[[uh]]j+ 1

2

+
(vh)

+
x

2
[[uh]]j− 1

2

= 0.

(10)(̂uh)x = �0
[[uh]]

Δx
+ {{(uh)x}}.
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between the DDGIC method and the IPDG method is that the second derivative jump term 
[[(uh)xx]] is included in the numerical flux (6) for the DDGIC method.

Up to now, we have discretized the spatial variable with various DG methods, yielding 
the semi-discrete scheme written as

with L being the spatial discretization operator. To discretize the temporal variable, we use 
the following third-order SSP RK method [24]:

3  Superconvergence Study by Fourier Analysis

In this section, we first present the rewriting details of DG methods of Sect. 2 as finite differ-
ence schemes. Then, we perform the standard von Neumann Fourier analysis to these meth-
ods and symbolically calculate the errors at Lobatto points. Quantitative error estimates and 
numerical experiments are carried out for each method. We present the detailed results for 
the DDG method in Sect. 3.1, for the DDGIC method in Sect. 3.2, for the symmetric DDG 
method in Sect. 3.3, for the nonsymmetric DDG method in Sect. 3.4, and for the IPDG method 
in Sect. 3.5.

We now use the DDG method (3) as an example to demonstrate the Fourier analy-
sis procedure. First we adopt a local basis of the solution space � h

k
 , denoted as �l

j
(x) , 

l = 1, 2, ⋯ , k + 1 . In particular, the basis functions are chosen to be the Lagrangian polyno-
mials based on the following k + 1 Lobatto points in the cell Ij , i.e.,

Here {�l}k+1l=1
 are the roots of polynomial (1 − x2)P�

k
(x) = 0 , with Pk(x) being the Legendre 

polynomial of degree k.
In Table 1 we display the location of {�l} for k = 2, 3 . With the basis �l

j
(x) chosen, the 

numerical solution can be represented as

(11)(uh)t = L(uh)

(12)

⎧⎪⎨⎪⎩

u
(1)

h
= un

h
+ ΔtL(un

h
),

u
(2)

h
=

3

4
un
h
+

1

4

�
u
(1)

h
+ ΔtL(u

(1)

h
)
�
,

un+1
h

=
1

3
un
h
+

2

3

�
u
(2)

h
+ ΔtL(u

(2)

h
)
�
.

xl
j
= xj +

�l
2
Δx, l = 1, 2, ⋯ , k + 1.

(13)uh|Ij =
k+1∑
l=1

ul
j
�l
j
(x), x ∈ Ij.

Table 1  Lobatto points {�
l
} : the 

roots of (1 − x
2)P�

k
(x) = 0

{�
l
}

k = 2 �1 = −1, �2 = 0, �3 = 1

k = 3 �1 = −1, �2 = −
1√
5
, �3 =

1√
5
, �4 = 1
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After substituting (13) into (3) and inverting a local mass matrix of (k + 1) × (k + 1) , the 
DDG finite element method can be rewritten in the following form:

where uj =
(
u1
j
, u2

j
,⋯ , uk+1

j

)T

 , and A, B and C are (k + 1) × (k + 1) matrices that only 
depend on the parameters �0 and �1 defined in the numerical flux (4).

Clearly, uj , the coefficients of the solution uh inside cell Ij , is a vector of solution values 
at Lobatto points, since the local basis functions are Lagrange polynomials based on these 
points. In this way, the DG finite element scheme (14) can be considered as a finite difference 
scheme. However, it is not a standard finite difference scheme, since each point in the group of 
k + 1 points belonging to the cell Ij obeys a different form.

In order to solve (14), we have the assumption on the solution

with i =
√
−1 . Substituting (15) into (14), the coefficient vector �̂ satisfies the following 

ODE system:

where G(Δx) is the amplification matrix, given by

and A, B, C are taken from (14). Denote the eigenvalues of G as �1, �2,⋯ , �k+1 , and the 
corresponding eigenvectors as V1, V2,⋯ ,Vk+1 , the general solution of the ODE system 
(16) can be written out as

where the coefficients a1, a2,⋯ , ak+1 are determined by the initial condition

Now we have the explicit expression for the solution of the DG method for (1). Comparing 
with the exact solution (2), we obtain the quantitative error estimates at the Lobatto points, 
which are denoted as

To validate the analytical results, we numerically solve (1) with the five DG methods pre-
sented in Sect. 2 coupled with the third-order SSP RK method (12) [24] for temporal dis-
cretization. Very small time step ( Δt = 0.001Δx2 ) is taken in the numerical experiments to 
make sure the temporal error is negligible comparing with the spatial error. Final time is 
set as T = 1.

Now we provide the error estimates by the Fourier analysis and numerical experiments for 
the five DG methods in the following subsections.

(14)
duj

dt
= Auj−1 + Buj + Cuj+1,

(15)uj(t) = �̂(t)eixj

(16)
d

dt
�̂(t) = G(Δx)�̂(t),

G(Δx) = Ae−iΔx + B + CeiΔx,

(17)�̂(t) = a1e
𝜆1tV1 + a2e

𝜆2tV2 +⋯ + ak+1e
𝜆k+1tVk+1,

�̂(0) =
(
e

𝜁l
2
Δx
, e

𝜁2
2
Δx
,⋯ , e

𝜁k+1
2

Δx
)T

.

(18)
‖‖‖erl

‖‖‖∞ = max
1⩽j⩽N

||||u
(
xl
j
, t
)
− ul

j
(t)
||||, l = 1, 2,⋯ , k + 1.
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3.1  DDG Method

In this section we perform the Fourier analysis for the DDG method (3) with P2 quadratic 
and P3 cubic polynomial approximations. According to (4), fourth and higher order derivative 
jump terms, i.e., [[(uh)xxxx]] do not contribute to the calculation of the numerical flux. Thus, the 
numerical flux of the DDG method for both P2 and P3 cases is taken in the form of

For the DDG method with P2 approximations, the matrices A, B, C of (14) are

For P3 polynomial approximations, the matrices A, B, C of (14) are

We investigate the superconvergence property of the DDG method with different �1 coeffi-
cients taken in the numerical flux (̂uh)x of (4). In particular, we study two settings of 
(�0, �1) = (1,

1

8
) and (�0, �1) = (1,

1

12
) for the P2 case, and (�0, �1) = (12,

1

8
) and 

(�0, �1) = (12,
1

24
) for the P3 case. The errors at Lobatto points via Fourier analysis are pre-

sented in Table 2. For the P2 case, with �1 =
1

2k(k+1)
=

1

12
 , the errors of the DDG method at 

Lobatto points are superconvergent of order k + 2 = 4 ; with �1 ≠ 1

12
 , the errors of the DDG 

method at Lobatto points are only second order accurate. For the P3 case, the error is 
observed with the optimal k + 1 = 4 th order of accuracy at the Lobatto points. The conver-
gence order does not depend on the choice of �1 for the P3 case.

(̂uh)x = �0
[[u]]

Δx
+ {{(uh)x}} + �1Δx[[(uh)xx]].

A =

⎛
⎜⎜⎜⎜⎜⎝

9

2
(−1 + 8�

1
) − 18(−1 + 4�

1
)

9

2
(−3 + 2�

0
+ 8�

1
)

−
3

4
(−1 + 8�

1
) 3(−1 + 4�

1
) −

3

4
(−3 + 2�

0
+ 8�

1
)

3

2
(−1 + 8�

1
) − 6(−1 + 4�

1
)

3

2
(−3 + 2�

0
+ 8�

1
)

⎞
⎟⎟⎟⎟⎟⎠

,

B =

⎛⎜⎜⎜⎜⎜⎝

−(11 + 9�
0
+ 48�

1
) 16(1 + 6�

1
) − (5 + 3�

0
+ 48�

1
)

1

2
(14 + 3�

0
+ 24�

1
) − 2(7 + 12�

1
)

1

2
(14 + 3�

0
+ 24�

1
)
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Table 2  Analytical error estimate 
at Lobatto points for the DDG 
method (3)

P
k �

1
≠ 1

2k(k+1)
�
1
=

1

2k(k+1)

k = 2 �1 =
1

8
�1 =

1

12

e
r1

1

24
te−tΔx2 + O

(
Δx4

)
e−t (8t+1)

2 880
Δx4 + O

(
Δx6

)
e
r2

1

24
te−tΔx2 + O

(
Δx4

)
e−t (16t−1)

5 760
Δx4 + O

(
Δx6

)
e
r3

1

24
te−tΔx2 + O

(
Δx4

)
e−t (8t+1)

2 880
Δx4 + O

(
Δx6

)
k = 3 �1 =

1

8
�1 =

1

24

e
r1

4.96 × 10−4e−t tΔx4 + O
(
Δx5

)
3.31 × 10−5e−t tΔx4 + O

(
Δx6

)
e
r2

4.96 × 10−4e−t tΔx4 + O
(
Δx5

)
3.31 × 10−5e−t tΔx4 + O

(
Δx6

)
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r3

4.96 × 10−4e−t tΔx4 + O
(
Δx5

)
3.31 × 10−5e−t tΔx4 + O

(
Δx6

)
e
r4

4.96 × 10−4e−t tΔx4 + O
(
Δx5

)
3.31 × 10−5e−t tΔx4 + O

(
Δx6

)

Table 3  Errors at Lobatto points for the DDG method (3) with P2 polynomials ( �
0
=1)

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 6.12E−03 6.05E−03 1.79E−04 1.79E−04
20 1.50E−03 2.03 1.51E−03 2.00 1.12E−05 4.01 1.12E−05 4.00
40 3.77E−04 1.99 3.78E−04 2.00 6.99E−07 4.00 7.00E−07 4.00
80 9.45E−05 2.00 9.46E−05 2.00 4.37E−08 4.00 4.37E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 6.09E−03 6.05E−03 1.50E−04 1.49E−04
20 1.50E−03 2.02 1.51E−03 2.00 9.23E−06 4.02 9.33E−06 4.00
40 3.77E−04 1.99 3.78E−04 2.00 5.82E−07 3.99 5.83E−07 4.00
80 9.45E−05 2.00 9.46E−05 2.00 3.64E−08 4.00 3.65E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 6.12E−03 6.05E−03 1.79E−04 1.79E−04
20 1.50E−03 2.03 1.51E−03 2.00 1.12E−05 4.01 1.12E−05 4.00
40 3.77E−04 1.99 3.78E−04 2.00 6.99E−07 4.00 7.00E−07 4.00
80 9.45E−05 2.00 9.46E−05 2.00 4.37E−08 4.00 4.37E−08 4.00



190 Communications on Applied Mathematics and Computation (2022) 4:180–204

1 3

We numerically implement the DDG method (3) for the heat equation (1), and compare 
the numerical solution errors at Lobatto points and the errors predicted by Fourier analysis. 
Tables 3 and 4 list the errors with P2 and P3 approximations, respectively. The numerical 
results agree very well with the analytical ones.

Table 4  Errors at Lobatto points for the DDG method (3) with P3 polynomials ( �
0
= 12)

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 2.86E−05 2.84E−05 1.75E−06 1.90E−06
20 1.76E−06 4.02 1.78E−06 4.00 1.15E−07 3.93 1.19E−07 4.00
40 1.11E−07 3.99 1.11E−07 4.00 7.35E−09 3.97 7.41E−09 4.00
80 6.94E−09 4.00 6.94E−09 4.00 4.61E−10 3.99 4.63E−10 4.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 2.83E−05 2.84E−05 2.06E−06 1.90E−06
20 1.76E−06 4.01 1.78E−06 4.00 1.22E−07 4.07 1.19E−07 4.00
40 1.11E−07 3.99 1.11E−07 4.00 7.47E−09 4.03 7.41E−09 4.00
80 6.94E−09 4.00 6.94E−09 4.00 4.63E−10 4.01 4.63E−10 4.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 2.83E−05 2.84E−05 2.06E−06 1.90E−06
20 1.76E−06 4.01 1.78E−06 4.00 1.22E−07 4.07 1.19E−07 4.00
40 1.11E−07 3.99 1.11E−07 4.00 7.47E−09 4.03 7.41E−09 4.00
80 6.94E−09 4.00 6.94E−09 4.00 4.63E−10 4.01 4.63E−10 4.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
4

Order e
r
4

Order e
r
4

Order e
r
4

Order

10 2.86E−05 2.84E−05 1.75E−06 1.90E−06
20 1.76E−06 4.02 1.78E−06 4.00 1.15E−07 3.93 1.19E−07 4.00
40 1.11E−07 3.99 1.11E−07 4.00 7.35E−09 3.97 7.41E−09 4.00
80 6.94E−09 4.00 6.94E−09 4.00 4.61E−10 3.99 4.63E−10 4.00
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3.2  DDGIC Method

In this section we perform the Fourier analysis for the DDGIC method (5) with the numerical 
flux taken as

For the DDGIC method with P2 approximation, the matrices A, B, C of (14) are

For the DDGIC method with P3 approximations, the matrices A, B, C of (14) are given as

In Table  5, we list the analytically calculated errors at Lobatto points for the DDGIC 
method with different choices of �1 . We investigate two settings of (�0, �1) = (3,

1

8
) and 

(�0, �1) = (3,
1

12
) for the P2 case, and (�0, �1) = (12,

1

8
) and (�0, �1) = (12,

1

24
) for the P3 

case. The errors are sensitive to the choice of �1 for the P2 case, but are not for the P3 case.
With P2 approximations and �1 =

1

2k(k+1)
=

1

12
 , the error of the DDGIC method is super-

convergent of order k + 2 = 4 at the Lobatto points. With �1 ≠ 1

2k(k+1)
 , the superconvergence 

order of k + 2 is observed at the cell center point, while only optimal order of k + 1 is observed 
for the other two Lobatto points. With P3 polynomial approximations, the error is superconver-
gent of order k + 2 = 5 at Lobatto points for both �1 =

1

2k(k+1)
 and �1 ≠ 1

2k(k+1)
.
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Similar to the DDG method,  we numerically implement the DDGIC method and compare 
the numerical solution errors with the errors predicted by the Fourier analysis at the Lobatto 
points. The two groups of errors match well, see Tables 6 and 7 for P2 and P3 polynomials 
approximations, respectively.

3.3  Symmetric DDG Method

In this section we perform the Fourier analysis error estimate for the symmetric DDG method 
of (7). We follow (8) as the numerical flux formula with �0 = �0u + �0v.

For the symmetric DDG method and P2 approximations, the matrices A, B, C of (14) are

For the symmetric DDG method and P3 approximations, the matrices A, B, C of (14) are

Analytically calculated errors at the Lobatto points are listed in Table 8 for the symmetric 
DDG method. For both P2 and P3 approximations, two choices of the �1 coefficient are con-
sidered. We investigate the cases of (�0, �1) = (2,

1

8
) and (�0, �1) = (2,

1

12
) for P2 polynomial 

approximations, and (�0, �1) = (24,
1

8
) and (�0, �1) = (24,

1

24
) for P3 approximations. Errors 

and orders at Lobatto points for the symmetric DDG method are similar to the ones of the 
DDGIC method. Superconvergence orders are sensitive to the choice of the �1 coefficient 
for P2 approximations, but are not for P3 approximations.
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5 − 30(4�

1
+ 1) 20(6�

1
+ 1) 12(1 − 9

√
5)�

1
−

4�
0√
5

+ 2 + 2

√
5

12(1 − 9

√
5)�

1
−

4�
0√
5

+ 2

√
5 + 2 20(6�

1
+ 1) − 30(4�

1
+ 1) 12(1 + 9

√
5)�

1
+

4�
0√
5

− 2

√
5 + 2

4(�
0
+ 150�

1
− 5) 10(1 −

√
5 + 6(1 − 5

√
5)�

1
) 10(1 +

√
5 + 6(1 + 5

√
5)�

1
) − 2(8�

0
+ 420�

1
− 15)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛⎜⎜⎜⎜⎜⎜⎝

−4�
0
− 440�

1
+ 42 − 5(1 +

√
5 − (4 + 12

√
5)�

1
) 5(

√
5 − 1 + (4 − 12

√
5)�

1
) − 2(1 − 20�

1
)

4�
0√
5

− 4(3 − 25

√
5)�

1
−

51√
5

+ 3 5 +
√
5 − 4(

√
5 + 15)�

1

√
5 − 5 − 4(

√
5 − 15)�

1

2√
5

(1 − 20�
1
)

−4�
0√
5

− 4(3 + 25

√
5)�

1
+

51√
5

+ 3 − 5 −
√
5 + 4(

√
5 + 15)�

1
5 −

√
5 + 4(

√
5 − 15)�

1

−2√
5

(1 − 20�
1
)

4(4�
0
+ 200�

1
− 27) 20(1 +

√
5 − (4 + 12

√
5)�

1
) 20(1 −

√
5 − (4 − 12

√
5)�

1
) 8(1 − 20�

1
)

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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For the P2 case, with �1 =
1

2k(k+1)
=

1

12
 , the error is superconvergent of order k + 2 = 4 

at the Lobatto points. With �1 ≠ 1

2k(k+1)
 , the error is still superconvergent of order k + 2 at 

the cell center, but is convergent with optimal order of k + 1 at other two Lobatto points. 
For the P3 case, superconvergence orders of k + 2 = 5 are observed at the Lobatto points 
for both �1 =

1

2k(k+1)
 and �1 ≠ 1

2k(k+1)
.

We further apply the symmetric DDG method (7) for the model equation, and com-
pare the numerical solution errors at Lobatto points with the errors estimated by the Fou-
rier analysis. Our numerical results agree well with those predicted by Fourier analysis. In 
Tables 9 and 10, we list the errors of the symmetric DDG method at Lobatto points with 
piecewise P2 and P3 polynomials, respectively.

3.4  Nonsymmetric DDG Method

In this section we carry out Fourier analysis on the nonsymmetric DDG method of (7). 
The numerical fluxes are taken from (8) with �0 = �0u − �0v . For the nonsymmetric 
DDG method and P2 polynomial approximations, the matrices A, B, C of (14) are

A =

⎛
⎜⎜⎜⎝

−
9

2
(1 − 8�1) 18(1 − 4�1)

3

2
(6�0 − 16�1 + 3)

3

4
(1 − 8�1) − 3(1 − 4�1) −

3

4
(2�0 − 32�1 + 7)

−
3

2
(1 − 8�1) 6(1 − 4�1)

3

2
(2�0 − 32�1 + 5)

⎞
⎟⎟⎟⎠
,

B =

⎛⎜⎜⎝

−9�0 + 12�1 − 29 16(6�1 + 1) − 3�0 + 12�1 − 17
1

2
(3�0 − 36�1 + 29) − 2(12�1 + 7)

1

2
(3�0 − 36�1 + 29)

−3�0 + 12�1 − 17 16(6�1 + 1) − 9�0 + 12�1 − 29

⎞⎟⎟⎠
,

C =

⎛
⎜⎜⎜⎝

3

2
(2�0 − 32�1 + 5) 6(1 − 4�1) −

3

2
(1 − 8�1)

−
3

4
(2�0 − 32�1 + 7) − 3(1 − 4�1)

3

4
(1 − 8�1)

3

2
(6�0 − 16�1 + 3) 18(1 − 4�1) −

9

2
(1 − 8�1)

⎞⎟⎟⎟⎠
.

Table 5  Analytical error estimate 
at Lobatto points for the DDGIC 
method (5)

P
k �

1
≠ 1

2k(k+1)
�
1
=

1

2k(k+1)

k = 2 �1 =
1

8
�1 =

1

12

e
r1

1

96
e−tΔx3 + O

(
Δx5

)
e−t (4t−1)

2 880
Δx4 + O

(
Δx6

)
e
r2

3t+1

960
e−tΔx4 + O

(
Δx6

)
e−t (8t+1)

5 760
Δx4 + O

(
Δx6

)
e
r3

1

96
e−tΔx3 + O

(
Δx5

)
e−t (4t−1)

2 880
Δx4 + O

(
Δx6

)
k = 3 �1 =

1

8
�1 =

1

24

e
r1

2.11 × 10−4e−t tΔx5 + O
(
Δx6

)
2.21 × 10−5e−t tΔx5 + O

(
Δx6

)
e
r2

7.62 × 10−5e−t tΔx5 + O
(
Δx6

)
3.04 × 10−5e−t tΔx5 + O

(
Δx6

)
e
r3

7.62 × 10−5e−t tΔx5 + O
(
Δx6

)
3.04 × 10−5e−t tΔx5 + O

(
Δx6

)
e
r4

2.11 × 10−4e−t tΔx5 + O
(
Δx6

)
2.21 × 10−5e−t tΔx5 + O

(
Δx6

)
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For the nonsymmetric DDG method and P3 approximations, the matrices A, B, C of (14) 
are

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

8(1 − 20�1) 20(1 −
√
5 − (4 − 12

√
5)�1) 20(1 +

√
5 − (4 + 12

√
5)�1) 4(4�0 − 40�1 + 3)

−2√
5

(1 − 20�1) 5 −
√
5 + 4(

√
5 − 15)�1 − 5 −

√
5 + 4(

√
5 + 15)�1

−4�0√
5

+ 4(3 + 17

√
5)�1 −

27√
5

− 3

2√
5

(1 − 20�1)
√
5 − 5 − 4(

√
5 − 15)�1 5 +

√
5 − 4(

√
5 + 15)�1

4�0√
5

+ 4(3 − 17

√
5)�1 +

27√
5

− 3

−2(1 − 20�1) 5(
√
5 − 1 + (4 − 12

√
5)�1) − 5(1 +

√
5 − (4 + 12

√
5)�1) − 4�0 + 280�1 − 18

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2(8�0 − 60�1 + 45) 10(1 +
√
5 + 6(1 + 5

√
5)�1) 10(1 −

√
5 + 6(1 − 5

√
5)�1) 4(�0 − 30�1 + 10)

4�0+68√
5

− 12(1 + 5

√
5)�1 + 8 − 30(4�1 + 1) 20(6�1 + 1) −

4�0+68√
5

− 12(1 − 5

√
5)�1 + 8

−
4�0+68√

5

− 12(1 − 5

√
5)�1 + 8 20(6�1 + 1) − 30(4�1 + 1)

4�0+68√
5

− 12(1 + 5

√
5)�1 + 8

4(�0 − 30�1 + 10) 10(1 −
√
5 + 6(1 − 5

√
5)�1) 10(1 +

√
5 + 6(1 + 5

√
5)�1) − 2(8�0 − 60�1 + 45)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−4�0 + 280�1 − 18 − 5(1 +
√
5 − (4 + 12

√
5)�1) 5(

√
5 − 1 + (4 − 12

√
5)�1) − 2(1 − 20�1)

4�0+27√
5

+ 4(3 − 17

√
5)�1 − 3 5 +

√
5 − 4(

√
5 + 15)�1

√
5 − 5 − 4(

√
5 − 15)�1

2√
5

(1 − 20�1)

−
4�0+27√

5

+ 4(3 + 17

√
5)�1 − 3 − 5 −

√
5 + 4(

√
5 + 15)�1 5 −

√
5 + 4(

√
5 − 15)�1

−2√
5

(1 − 20�1)

4(4�0 − 40�1 + 3) 20(1 +
√
5 − (4 + 12

√
5)�1) 20(1 −

√
5 − (4 − 12

√
5)�1) 8(1 − 20�1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

Table 6  Errors at Lobatto points for the DDGIC method with P2 polynomials ( �
0
= 3)

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 1.00E−03 9.51E−04 6.99E−05 5.97E−05
20 1.20E−04 3.06 1.19E−04 3.00 3.93E−06 4.15 3.73E−06 4.00
40 1.49E−05 3.01 1.49E−05 3.00 2.36E−07 4.06 2.33E−07 4.00
80 1.86E−06 3.00 1.86E−06 3.00 1.46E−08 4.01 1.46E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 2.39E−04 2.39E−04 9.28E−05 8.96E−05
20 1.48E−05 4.02 1.49E−05 4.00 5.58E−06 4.06 5.60E−06 4.00
40 9.30E−07 3.99 9.33E−07 4.00 3.50E−07 4.00 3.50E−07 4.00
80 5.83E−08 4.00 5.83E−08 4.00 2.19E−08 4.00 2.19E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 1.00E−03 9.51E−04 6.99E−05 5.97E−05
20 1.20E−04 3.06 1.19E−04 3.00 3.93E−06 4.15 3.73E−06 4.00
40 1.49E−05 3.01 1.49E−05 3.00 2.36E−07 4.06 2.33E−07 4.00
80 1.86E−06 3.00 1.86E−06 3.00 1.46E−08 4.01 1.46E−08 4.00
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Table 7  Errors at Lobatto points for the DDGIC method with P3 polynomials ( �
0
= 12)

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 8.00E−06 7.59E−06 7.86E−07 7.95E−07
20 2.49E−07 5.01 2.37E−07 5.00 2.58E−08 4.93 2.48E−08 5.00
40 7.76E−09 5.00 7.41E−09 5.00 8.18E−10 4.98 7.76E−10 5.00
80 2.42E−10 5.00 2.32E−10 5.00 2.57E−11 4.99 2.43E−11 5.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 2.74E−06 2.75E−06 1.08E−06 1.09E−06
20 8.67E−08 4.98 8.58E−08 5.00 3.52E−08 4.94 3.42E−08 5.00
40 2.72E−09 5.00 2.68E−09 5.00 1.11E−09 4.98 1.07E−09 5.00
80 8.49E−11 5.00 8.38E−11 5.00 3.48E−11 5.00 3.34E−11 5.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 2.74E−06 2.75E−06 1.08E−06 1.09E−06
20 8.67E−08 4.98 8.58E−08 5.00 3.52E−08 4.94 3.42E−08 5.00
40 2.72E−09 5.00 2.68E−09 5.00 1.11E−09 4.98 1.07E−09 5.00
80 8.49E−11 5.00 8.38E−11 5.00 3.48E−11 5.00 3.34E−11 5.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
4

Order e
r
4

Order e
r
4

Order e
r
4

Order

10 8.00E−06 7.59E−06 7.86E−07 7.95E−07
20 2.49E−07 5.01 2.37E−07 5.00 2.58E−08 4.93 2.48E−08 5.00
40 7.76E−09 5.00 7.41E−09 5.00 8.18E−10 4.98 7.76E−10 5.00
80 2.42E−10 5.00 2.32E−10 5.00 2.57E−11 4.99 2.43E−11 5.00
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Table 8  Analytical error 
estimate at Lobatto points for the 
symmetric DDG method (7)

P
k �

1
≠ 1

2k(k+1)
�
1
=

1

2k(k+1)

k = 2 �1 =
1

8
�1 =

1

12

e
r1

1

48
e−tΔx3 + O

(
Δx5

)
e−t (4t−1)

2 880
Δx4 + O

(
Δx6

)
e
r2

t+2

2 880
e−tΔx4 + O

(
Δx6

)
e−t (8t+1)

5 760
Δx4 + O

(
Δx6

)
e
r3

1

48
e−tΔx3 + O

(
Δx5

)
e−t (4t−1)

2 880
Δx4 + O

(
Δx6

)
k = 3 �1 =

1

8
�1 =

1

24

e
r1

1.37 × 10−4e−t tΔx5 + O
(
Δx6

)
8.84 × 10−6e−t tΔx5 + O

(
Δx6

)
e
r2

1.42 × 10−4e−t tΔx5 + O
(
Δx6

)
2.13 × 10−5e−t tΔx5 + O

(
Δx6

)
e
r3

1.42 × 10−4e−t tΔx5 + O
(
Δx6

)
2.13 × 10−5e−t tΔx5 + O

(
Δx6

)
e
r4

1.37 × 10−4e−t tΔx5 + O
(
Δx6

)
8.84 × 10−6e−t tΔx5 + O

(
Δx6

)

Table 9  Errors at Lobatto points for the symmetric DDG method with P2 polynomials ( �
0
= 2)

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 1.94E−03 1.90E−03 9.90E−05 5.97E−05
20 2.39E−04 3.02 2.38E−04 3.00 4.43E−06 4.48 3.73E−06 4.00
40 2.97E−05 3.01 2.97E−05 3.00 2.45E−07 4.18 2.33E−07 4.00
80 3.71E−06 3.00 3.71E−06 3.00 1.48E−08 4.05 1.46E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 6.21E−05 5.97E−05 8.68E−05 8.96E−05
20 3.72E−06 4.06 3.73E−06 4.00 5.49E−06 3.98 5.60E−06 4.00
40 2.33E−07 4.00 2.33E−07 4.00 3.48E−07 3.98 3.50E−07 4.00
80 1.46E−08 4.00 1.46E−08 4.00 2.18E−08 3.99 2.19E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 1.94E−03 1.90E−03 9.90E−05 5.97E−05
20 2.39E−04 3.02 2.38E−04 3.00 4.43E−06 4.48 3.73E−06 4.00
40 2.97E−05 3.01 2.97E−05 3.00 2.45E−07 4.18 2.33E−07 4.00
80 3.71E−06 3.00 3.71E−06 3.00 1.48E−08 4.05 1.46E−08 4.00
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Table 10  Errors at Lobatto points for the symmetric DDG method with P3 polynomials ( �
0
= 24)

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 4.84E−06 4.95E−06 3.10E−07 3.18E−07
20 1.53E−07 4.98 1.55E−07 5.00 1.01E−08 4.94 9.95E−09 5.00
40 4.81E−09 5.00 4.83E−09 5.00 3.20E−10 4.98 3.11E−10 5.00
80 1.50E−10 5.00 1.51E−10 5.00 1.01E−11 4.98 9.71E−12 5.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 4.82E−06 5.12E−06 7.73E−07 7.66E−07
20 1.59E−07 4.92 1.60E−07 5.00 2.40E−08 5.01 2.39E−08 5.00
40 5.03E−09 4.98 5.00E−09 5.00 7.50E−10 5.00 7.48E−10 5.00
80 1.58E−10 4.99 1.56E−10 5.00 2.34E−11 5.00 2.34E−11 5.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 4.82E−06 5.12E−06 7.73E−07 7.66E−07
20 1.59E−07 4.92 1.60E−07 5.00 2.40E−08 5.01 2.39E−08 5.00
40 5.03E−09 4.98 5.00E−09 5.00 7.50E−10 5.00 7.48E−10 5.00
80 1.58E−10 4.99 1.56E−10 5.00 2.34E−11 5.00 2.34E−11 5.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
4

Order e
r
4

Order e
r
4

Order e
r
4

Order

10 4.84E−06 4.95E−06 3.10E−07 3.18E−07
20 1.53E−07 4.98 1.55E−07 5.00 1.01E−08 4.94 9.95E−09 5.00
40 4.81E−09 5.00 4.83E−09 5.00 3.20E−10 4.98 3.11E−10 5.00
80 1.50E−10 5.00 1.51E−10 5.00 1.01E−11 4.98 9.71E−12 5.00
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In Table 11, we list the analytically calculated errors at Lobatto points for the nonsymmet-
ric DDG method. Two choices of the �1 coefficient of (8) are investigated. For P2 approxi-
mations, two settings of (�0, �1) = (2,

1

8
) and (�0, �1) = (2,

1

12
) are considered. For P3 

approximations, two settings of (�0, �1) = (24,
1

8
) and (�0, �1) = (24,

1

24
) are considered. For 

P2 approximations, with �1 =
1

2k(k+1)
=

1

12
 , the errors of the nonsymmetric DDG method at 

Lobatto points are superconvergent of order k + 2 = 4 , while other �1 coefficients, the accu-
racy of the errors drop to second order. For P3 approximations, the error is observed with 
the optimal k + 1 = 4 order of accuracy at the Lobatto points. The convergence order does 
not depend on the choice of �1 for the P3 case.

We apply the nonsymmetric DDG scheme (7) to solve the model problem (1) numeri-
cally, and compare the errors at Lobatto points of the numerical solution and the errors 
predicted by Fourier analysis. In Tables 12 and 13 we list the errors of the nonsymmetric 
DDG solution at Lobatto points with piecewise P2 and P3 polynomials, respectively. The 
numerical results agree well with those predicted by Fourier analysis.

With the intensive study on analytical and numerical errors of DDG methods in 
Sects.  3.1–3.4, we observe the choice of the numerical flux coefficient �1 has an impact 
on the error behavior of the numerical solution. We further explored the relation of the L∞ 
errors of the four DDG methods with respect to �0 or �1 in Fig. 1. With different �0 choices, 
we observe the errors stay the same for all DDG methods with both P2 and P3 polynomials, 
see Fig.  1a and c. For P2 polynomial approximations, the errors of all four DDG methods 
are sensitive to the choice of the �1 coefficient. The error is superconvergent with �1 =

1

12
 , 

while the errors stay the same with different �1 coefficients for the P3 case, see Fig.   1b 
and d. These tests further confirm the analytical and numerical results studied in previous 
sections.

3.5  IPDG Method

In this section, we perform the Fourier analysis for the IPDG method [4] with (10) as the 
numerical flux. Since the IPDG method equals to the DDGIC method with �1 = 0 in (6), 
we refer to the matrices A, B, C of (14) in Sect. 3.2 for the IPDG method. In Table 14, we 
list the analytically calculated errors of the IPDG method at Lobatoo points. We choose the 
penalty coefficient �0 = 3 for the P2 case and �0 = 12 for the P3 case, which are the same 
settings as the DDGIC method. For P2 polynomial approximations, the error of the IPDG 
solution is superconvergent of order k + 2 at the cell center and is optimally convergent of 
order k + 1 at the other two Lobatto points. For P3 polynomial approximations, the error of 
the IPDG method is superconvergent of order k + 2 at all Lobatto points. In Table 15, we 
list numerically calculated errors of the IPDG method at Lobatto points with piecewise P2 
and P3 approximations. The numerical results agree well with the analytical ones. 

4  Conclusion

In this paper, we discuss supercovergence properties of various DDG methods for one-
dimensional heat equation via Fourier analysis approach. By investigating the quantitative 
errors at Lobatto points, we show that as follows. 
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Table 11  Analytical error 
estimate at Lobatto points for the 
nonsymmetric DDG method

P
k �

1
≠ 1

2k(k+1)
�
1
=

1

2k(k+1)

k = 2 �1 =
1

8
, �0 = 2 �1 =

1

12
, �0 = 2

e
r1

1

36
e−t tΔx2 + O

(
Δx4

)
e−t (4t+1)

2 880
Δx4 + O

(
Δx6

)
e
r2

1

36
e−t tΔx2 + O

(
Δx4

)
e−t (8t−1)

5 760
Δx4 + O

(
Δx6

)
e
r3

1

36
e−t tΔx2 + O

(
Δx4

)
e−t (4t+1)

2 880
Δx4 + O

(
Δx6

)
k = 3 �1 =

1

8
, �0 = 24 �1 =

1

24
, �0 = 24

e
r1

4.54 × 10−4e−t tΔx4 + O
(
Δx5

)
3.02 × 10−5e−t tΔx4 + O

(
Δx6

)
e
r2

4.54 × 10−4e−t tΔx4 + O
(
Δx5

)
3.02 × 10−5e−t tΔx4 + O

(
Δx6

)
e
r3

4.54 × 10−4e−t tΔx4 + O
(
Δx5

)
3.02 × 10−5e−t tΔx4 + O

(
Δx6

)
e
r4

4.54 × 10−4e−t tΔx4 + O
(
Δx5

)
3.02 × 10−5e−t tΔx4 + O

(
Δx6

)

Table 12  Errors at Lobatto points for the nonsymmetric DDG method with P2 polynomials ( �
0
= 2)

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 3.91E−03 4.03E−03 9.10E−05 9.95E−05
20 1.00E−03 1.97 1.01E−03 2.00 6.04E−06 3.91 6.22E−06 4.00
40 2.52E−04 1.99 2.52E−04 2.00 3.86E−07 3.97 3.89E−07 4.00
80 6.30E−05 2.00 6.30E−05 2.00 2.43E−08 3.99 2.43E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 4.03E−03 4.03E−03 6.95E−05 6.97E−05
20 9.96E−04 2.02 1.01E−03 2.00 4.30E−06 4.02 4.35E−06 4.00
40 2.51E−04 1.99 2.52E−04 2.00 2.71E−07 3.99 2.72E−07 4.00
80 6.30E−05 2.00 6.30E−05 2.00 1.70E−08 4.00 1.70E−08 4.00

N �
1
=

1

8
�
1
=

1

12

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 3.91E−03 4.03E−03 9.10E−05 9.95E−05
20 1.00E−03 1.97 1.01E−03 2.00 6.04E−06 3.91 6.22E−06 4.00
40 2.52E−04 1.99 2.52E−04 2.00 3.86E−07 3.97 3.89E−07 4.00
80 6.30E−05 2.00 6.30E−05 2.00 2.43E−08 3.99 2.43E−08 4.00
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i) For piecewise P2 polynomials with �1 =
1

12
 chosen in the numerical flux, the errors of 

DDG, DDGIC, symmetric/nonsymmetric DDG methods at Lobatto points are super-
convergent of order k + 2.

ii) For piecewise P2 polynomials, the errors of DDGIC and symmetric DDG methods with 
�1 ≠ 1

12
 and the errors of the IPDG method, are of order k + 2 superconvergence at the 

cell center and are of order k + 1 optimal convergence at other Lobatto points. The errors 
of DDG and nonsymmetric DDG methods are of order k convergence at all Lobatto 
points.

Table 13  Errors at Lobatto points for the nonsymmetric DDG method with P3 polynomials ( �
0
= 24)

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 2.50E−05 2.60E−05 1.51E−06 1.73E−06
20 1.61E−06 3.96 1.63E−06 4.00 1.05E−07 3.85 1.08E−07 4.00
40 1.01E−07 3.99 1.02E−07 4.00 6.72E−09 3.96 6.76E−09 4.00
80 6.35E−09 4.00 6.36E−09 4.00 4.22E−10 3.99 4.23E−10 4.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 2.55E−05 2.60E−05 1.94E−06 1.73E−06
20 1.61E−06 3.99 1.63E−06 4.00 1.12E−07 4.11 1.08E−07 4.00
40 1.01E−07 3.99 1.02E−07 4.00 6.84E−09 4.04 6.76E−09 4.00
80 6.35E−09 4.00 6.36E−09 4.00 4.23E−10 4.01 4.23E−10 4.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 2.55E−05 2.60E−05 1.94E−06 1.73E−06
20 1.61E−06 3.99 1.63E−06 4.00 1.12E−07 4.11 1.08E−07 4.00
40 1.01E−07 3.99 1.02E−07 4.00 6.84E−09 4.04 6.76E−09 4.00
80 6.35E−09 4.00 6.36E−09 4.00 4.23E−10 4.01 4.23E−10 4.00

N �
1
=

1

8
�
1
=

1

24

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
4

Order e
r
4

Order e
r
4

Order e
r
4

Order

10 2.50E−05 2.60E−05 1.51E−06 1.73E−06
20 1.61E−06 3.96 1.63E−06 4.00 1.05E−07 3.85 1.08E−07 4.00
40 1.01E−07 3.99 1.02E−07 4.00 6.72E−09 3.96 6.76E−09 4.00
80 6.35E−09 4.00 6.36E−09 4.00 4.22E−10 3.99 4.23E−10 4.00
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iii) For piecewise P3 polynomials, the errors of IPDG, DDGIC and symmetric DDG meth-
ods are superconvergent of order k + 2 at all Lobatto points, while the errors of DDG 
and nonsymmetric DDG methods are of order k + 1 optimal convergence at the Lobatto 
points.

Numerical errors agree well with analytical ones. Fourier analysis depends on periodic 
boundary conditions and uniform mesh, but can serve as a guidance to problems under 
general settings.
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Fig. 1  L∞ error of the four DDG methods with P2 polynomials (top) and P3 polynomials (bottom) approxi-
mations and different choices of �

0
 (left) and �

1
 (right) coefficients in the numerical flux. N = 40
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Table 14  Analytical error 
estimate at Lobatto points for the 
IPDG method (9)
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e
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Table 15  Errors of the IPDG method at Lobatto points

N k = 2 k = 3

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
1

Order e
r
1

Order e
r
1

Order e
r
1

Order

10 2.04E−03 1.90E−03 1.00E−05 1.04E−05
20 2.42E−04 3.08 2.38E−04 3.00 3.29E−07 4.93 3.26E−07 5.00
40 2.98E−05 3.02 2.97E−05 3.00 1.04E−08 4.98 1.02E−08 5.00
80 3.72E−06 3.00 3.71E−06 3.00 3.27E−10 5.00 3.19E−10 5.00

N k = 2 k = 3

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
2

Order e
r
2

Order e
r
2

Order e
r
2

Order

10 2.24E−04 2.09E−04 4.95E−06 5.51E−06
20 1.31E−05 4.09 1.31E−05 4.00 1.69E−07 4.87 1.72E−07 5.00
40 8.17E−07 4.00 8.17E−07 4.00 5.39E−09 4.97 5.38E−09 5.00
80 5.10E−08 4.00 5.10E−08 4.00 1.69E−10 4.99 1.68E−10 5.00

N k = 2 k = 3

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
3

Order e
r
3

Order e
r
3

Order e
r
3

Order

10 2.04E−03 1.90E−03 4.95E−06 5.51E−06
20 2.42E−04 3.08 2.38E−04 3.00 1.69E−07 4.87 1.72E−07 5.00
40 2.98E−05 3.02 2.97E−05 3.00 5.39E−09 4.97 5.38E−09 5.00
80 3.72E−06 3.00 3.71E−06 3.00 1.69E−10 4.99 1.68E−10 5.00

N k = 2 k = 3

Numerical results Predicted by analysis Numerical results Predicted by analysis

e
r
4

Order e
r
4

Order

10 – – – – 1.00E−05 1.04E−05
20 – – – – 3.29E−07 4.93 3.26E−07 5.00
40 – – – – 1.04E−08 4.98 1.02E−08 5.00
80 – – – – 3.27E−10 5.00 3.19E−10 5.00
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