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Abstract
The purpose of this note is to give a linear algebra algorithm to find out if a rank of a given 
tensor over a field �  is at most k over the algebraic closure of �  , where k is a given positive 
integer. We estimate the arithmetic complexity of our algorithm.
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tensor · Tensor rank
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1 Introduction

In the last fifty years, it became clear that multiarrays with more than two indices, known 
as tensors, are vital tools in data processing [19], mathematical biology [1], numerical 
linear algebra [29], quantum physics [4], theoretical computer science [5] and theoretical 
mathematics [18]. Formally, we define a d-tensor, as a multiarray with d ⩾ 3 indices. One 
of the simple criteria of the complexity of a given tensor is its rank. (The concept of ten-
sor rank has been introduced in the early twentieth century [16].) Recall that the rank of 
a nonzero tensor is the minimum number of terms in a decomposition of tensor as a sum 
of rank-one tensors. The famous Strassen algorithm for multiplication of two matrices of 
order two using seven multiplication [28] and not less is equivalent to the statement that 
the corresponding 4 × 4 × 4 tensor has rank seven. The 3-satisfiability problem with n vari-
ables and m clauses can be stated if a given 3-tensor has a specific rank [15]. This result 
yields that the computation of the rank of tensor over any finite field is NP-complete, and is 
NP-hard over fields of rational, real and complex numbers.
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On the other hand, the rank of a matrix is a well-understood notion, which has many equiv-
alent definitions. The computation of the rank of matrix is usually obtained by applying the 
Gaussian elimination process. Namely, it is the number of nonzero rows in the row echelon 
form obtained from the Gaussian elimination process. See [11] for classical results on matrix 
rank.

The point of this note is the following statement. Suppose that T  is a d-tensor over a given 
field �  . Denote its rank by rank

�
T  . Assume that � is an extension field of �  . Then, rank

𝔾
T ⩽

rank
�
T  , and strict inequality may hold [12]. Denote by �̂  the algebraic closure of �  . Let k ⩾ 2 

be an integer. Then, rank
�̂
T > k if and only if certain systems of linear equations are solvable 

over �  . Since rank
�̂
T  is NP-hard to compute one expects the linear system is exponential in 

number of variables. Our techniques also apply to symmetric tensors and their symmetric rank 
[7]. Our main result is a consequence of an effective Nullstellensatz [17].

The main drawback of our approach is a huge number of variables and equations that one 
encounters in trying to apply an effective Hilbert Nullstellensatz. We hope that our approach 
can be further improved to a smaller number of variables and equations for the specific prob-
lem of tensor rank.

Over finite fields, one can study directly the problem of determining if the rank of a given 
tensor is at most k. A recent paper [20] gave a probabilistic algorithm to find solution of poly-
nomial equations over a finite field with high probability. We will compare the complexity of 
our method with the above result.

2  Preliminary Results

Let �  be a field and d ∈ ℕ . Denote

The entries of T ∈ �
� are denoted by Ti1,⋯,id

, ij ∈ [nj], j ∈ [d] , and we view T  as [Ti1,⋯,id
] . 

Then, T  is a matrix for d = 2 and a tensor for d ⩾ 3 . A tensor T ∈ �
�⧵{0} is called a rank-

one tensor if T = ⊗d
j=1

�j for �j ∈ �
nj⧵{�}, j ∈ [d] . Recall that for a tensor T ∈ �

�⧵{0} , the 
rank of T  is the minimal number of terms in the decomposition T =

r∑
i=1

⊗d
j=1

�j,i . (The rank 

of zero tensor is zero.)
The unfolded rank of T ∈ �

� in mode j ∈ [d] denoted as rj(T) is defined as follows. For 
simplicity of exposition, let us explain the notion r1(T) . View tensor T  as a matrix 
T ∈ �

n1 ⊗ (⊗d
j=2

�
nj ) . Then, r1(T) is rankT . We denote by �1,1,⋯ , �r1(T),1 a column basis of T. 

Clearly, r1(T) ⩽ n1 . Let �1 = span (�1,1,⋯ , �
r1(T),1

) ⊆ �
n1 . Similarly, we define the rank rj(T) , 

the column space �j ⊆ �
nj , and a basis �1,j,⋯ , �rj(T),j in �j . It is known that for d ⩾ 3 , it is 

possible that all rj(T), j ∈ [d] are different. Observe that T  can be viewed as a tensor  in   
⊗d

j=1
�j . Introduce a new basis in � nj , such that a basis of �j is part of this basis. Hence, we can 

convert the tensor T  to a “smaller” tensor T � ∈ �
� , � = (r1(T),⋯ , r

d
(T)) . For simplicity of 

the exposition, we assume

[d] ={1,⋯ , d}, � = (n1,⋯ , nd) ∈ ℕ
d, [�] = [n1] ×⋯ × [nd],

N(�) =

d∏
j=1

nj, L(�) =

d∑
j=1

ni, 𝔽
� = ⊗

d
j=1

𝔽
nj .

(1)1 ⩽ n1 ⩽ ⋯ ⩽ nd, rj(T) = nj for j ∈ [d].
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It is well known that nd ⩽ rank T ⩽

d−1∏
i=1

ni [9]. Thus, we are going to assume that

Clearly, rank T > r if and only if the system

is not solvable over � .
Assume that n1 = ⋯ = nd = n . Denote n×d ∶= � . A tensor S ∈ �

n×d is called symmetric 
if Si1,⋯,id

= Si�(1),⋯,i�(d)
 for each i1,⋯ , id ∈ [n] and each bijection � ∶ [d] → [d] . We denote 

by Sd� n ⊂ �
n×d the subspace of symmetric tensors. It turns out that dimSd� n =

(
n+d−1

d

)
 . As 

Sd� n ⊂ �
n×d , it follows that 

(
n+d−1

d

)
⩽ nd . It is well known that a symmetric tensor has rank 

one if S = a⊗d � , where a ∈ �⧵{0}, � ∈ �
n⧵{�} . Also if �  has at least d elements, then 

each S ∈ Sd� n is a sum of rank-one symmetric tensors [13, Proposition 7.2]. (It is shown in 
[13, Proposition 7.1] that for a fixed finite field �  and n ⩾ 2 , there exist symmetric tensors 
which are not sum of rank-one symmetric tensors for sufficiently large d.) In the following 
passage, we assume that |𝔽 | ⩾ d . We define srankS, the symmetric rank of S ∈ Sd� n⧵{0} , 
as the minimal number in the decomposition of S as a sum of rank-one symmetric tensors. 
For matrices over a field of characteristic ≠ 2 , the symmetric rank of S ∈ S2� n is equal 
to the (standard) rank of S, whereas for d ⩾ 3 there are examples of 3-symmetric tensors 
whose symmetric rank is greater than their tensor rank [27]. Observe that for a symmetric 
S ∈ Sd� n one has the equality rj(S) = r(S) for each j ∈ [d] . In this case, we assume that 
n = r1(S) and n ⩽ r.

Let f (�) be a homogeneous polynomial of degree d in n variables:

Every symmetric tensor S ∈ Sd� n defines a homogeneous polynomial of degree d in n-var-
iables, which is given by the scalar product of S and ⊗d�.  Conversely, a homogeneous 
polynomial f (�) of degree d in n variables defines a unique symmetric S ∈ Sd� n , such 
that f (�) is given by the scalar product of the symmetric tensors S and ⊗d� . (See part (4) 
of Lemma 1 in [14].) Denote by P(d, n, � ) the space of all homogeneous polynomials of 
degree d in n variables over � .

A polynomial in n variables of degree at most d has the representation

Let �� = (x1,⋯ , xn+1) = (�, xn+1) . Then, f (�) of the above form is g(�, 1) for a unique 
g(��) ∈ P(d, n + 1, � ).

(2)nd ⩽ r ⩽

d−1∏
i=1

ni.

(3)
r∑

i=1

⊗
d
j=1

�j,i − T = 0

f (�) =
∑

jk+1∈[d+1],k∈[n],j1+⋯+jn=d

d!

j1!⋯ jn!
fj1,⋯,jn

x
j1
1
⋯ xjn

n

=
∑

�∈J(d,n)

c(�)f��
�, �� = x

j1
1
⋯ xjn

n
, c(�) =

d!

j1!⋯ jn!
, f� = fj1,⋯,jn

,

J(d, n) ={� = (j1,⋯ , jn) ∈ ℤ
n
+
, j1 +⋯ + jn = d}.

(4)f (�) =
∑

jk+1∈[d+1],k∈[n],j1+⋯+jn⩽d

d!

j1!⋯ jn!
fj1,⋯,jn

x
j1
1
⋯ xjn

n
.
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Assume that � is an extension field of �  . Given T ∈ �
�⧵0 , one can ask what the rank 

of T  over � is? That is, what is the minimum number of terms in a decomposition of T  
as a sum of rank-one tensor, where each rank-one tensor is in �� . We denote this rank 
by rank

�
T  . (When no ambiguity arises we denote rank

�
T  by rank T  .) Clearly, rank

𝔾
T ⩽

rank
�
T  . It is well known that in some cases strict inequality holds [12]. Similar results 

hold for symmetric rank of symmetric tensors.

3  Outline of Our Approach

It is well understood that matrices are closely related to linear transformations, while ten-
sors are closely related to polynomial maps [9]. More precisely, as we have mentioned, it 
is a classical result that the rank of a matrix is polynomially computable, using the Gauss 
elimination. In contrast to matrix rank, the tensor rank is unfortunately NP-hard to com-
pute, as proven by Hastad [15]. Later, Schaefer and Stefankovic [24] showed that determin-
ing the rank of a tensor over a field has the same complexity as deciding the existential 
theory of the field, which implies Hastad’s NP-hardness results. Another result of Hastad 
states that the rank decomposition problem is NP-complete in the case of finite fields. 
Recently, Shitov [26] showed that rank over a field �  is complete for the existential theory 
of �  and is also uncomputable over ℤ.

Let �  be a given field and �̂  be its algebraic closure. Let d ⩾ 3. We aim to find the upper 
bounds for the bit complexities for the following problems: 

 (i) for a tensor T ∈ �
�, to determine if rank T  over the field �̂  is ⩽ r, for a fixed integer 

r ⩾ 2;

 (ii) for a symmetric tensor S ∈ Sd� n , to determine if srankS over �̂  is ⩽ r, for a fixed 
integer r ⩾ 2.

We start with the following obvious lemma.

Lemma 1 Let 3 ⩽ d and 2 ⩽ n1 ⩽ ⋯ ⩽ nd be integers. Assume that T ∈ �
� . Then 

r < rank T  if and only if the system of N(�) polynomial equations (3) in rd vector vari-
ables �1,1,⋯ , �d,1,⋯ , �1,r,⋯ , �d,r , with a total number of rL(�) variables, of degree d is 
not solvable.

Note that to decide the rank of 3-mode tensor T  over ℂ is an NP-hard problem, while 
deciding the rank of 3-mode tensor over 𝔽 = ℤ∕(pℤ) is an NP-complete problem.

Over an algebraically closed field, this statement is equivalent to the fact that the ideal 
generated by N(�) polynomials which are entries of the left-hand side of (3) contains the 
constant function 1. Thus, for a given r ⩾ nd , the system (3) reduces to N(�) equations, 
with M(r) = rL(�) variables. Note that M(r,�) ⩽ dr2 variables. For simplicity of the expo-
sition, we are going to assume that r is small enough so that the number of variables is less 
than or equal to the number of equations:

We now recall an efficient version of Hilbert Nullstellensatz [17, 1.9. Corollary]. (See [2, 3, 
8] for recent improvements on Hilbert’s Nullstellensatz.) Assume first that 𝔽 = ℂ . Denote 
by ℤ[�] the Gaussian integers.

M(r,�) = rL(�) ⩽ N(�).
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Lemma 2 Let T ∈ ℤ[�]� be given. Then, the complexity of deciding if rank T > r is at most 
the complexity of finding if the linear system in the coefficients of polynomials g1,⋯ , gN(�)

is solvable over ℚ[�] in precise arithmetic.

Proof Lemma 1 yields that the system of N(�) polynomial equations (3) is not solvable if 
and only if rank T > r . As ℂ is algebraically closed the assumption that rank T > r yields 
that there exist N(�) polynomials g1,⋯ , gN(�) such that the system (5) is solvable. The effi-
cient version of Hilbert Nullstellensatz [17, 1.9. Corollary] yields that the degree of each 
gi is at most dM(r,�)−1 . Write each gi(�) in the form (4) of degree dM(r,�)−1 , where the mono-
mial coefficients of each gi(�) are unknown variables. Then, the existence of g1,⋯ , gN(�) 
of degrees at most dM(r,�)−1 that satisfy (5) is equivalent to the solvability of the system of 
linear equations in the monomial coefficients of each gi(�) induced by (5).

Thus, for a fixed r, the complexity of determining the solvability of this system of linear 
equations is as follows.

One can view a polynomial p(�) of degree dM(r,�)−1 in M(r,�) variables as a homogene-
ous polynomial of degree dM(r,�)−1 with M(r,�) + 1 variables, where the variable x0 has 
value 1. Hence, the number of monomials appearing in p(�) is (
M(r,�)+dM(r,�)−1

dM(r,�)−1

)
=
(
M(r,�)+dM(r,�)−1

M(r,�)

)
 . As we observed,

 Here e = lim
m→∞

(1 + 1∕m)m = 2.718⋯ . Hence, the total number of coefficients of monomi-
als in each gi(z) is bounded above by ed(M(r,�)−1)M(r,�) . We call these coefficients linear vari-
ables. Thus, the total number of linear variables is bounded above by eN(�)dM(r,�)(M(r,�)−1) . 
The number of equations is the number of monomials which is bounded above by 
edM(r,�)(M(r,�)−1) . Thus, if we use the Gauss elimination to determine if this system of linear 
equations is solvable or not, we need O(N(�)d3M(r,�)(M(r,n)−1)) flops. Ignoring the factor 
N(�) , we will need O(d3M(r,�)(M(r,n)−1)) flops. To estimate the computational complexity, we 
also need to take into account the storage space in terms of the entries of T  . This is done in 
the next section.

It seems that in some cases, it would be beneficial to reduce the number of variables as 
follows. Note that the number of variables for rank-one tensor �1 ⊗⋯⊗ �d is 

−d + 1 +
d∑
i=1

ni . Indeed, we can always assume that for i < d , one of the coordinates of �i is 

1. However, we do not know which coordinate is 1. Therefore, we need to choose the place 
of this coordinate. There are ni choices. Hence, we need to take N(��) = n1 ⋯ nd−1 choices 
for each rank-one tensor. (Here �� = (n1,⋯ , nd−1) .) Thus, for rank r, we have N(��)r 

(5)

⎧
⎪⎨⎪⎩

N(�)∑
i=1

gi(�)fi(�) = 1,

gi(�) ∈ ℂ[ℂM(r,�)], deg gi ⩽ dM(r,�)−1, i ∈ [N(�)]

(
M(r,�) + dM(r,�)−1

M(r,�)

)
=

(
(d(M(r,�)−1 + 1) +M(r, �) − 1

M(r, �)

)
⩽ (d(M(r,�)−1 + 1)M(r,�)

=(1 + d−(M(r,�)−1))M(r,�)d(M(r,�)−1)M(r,�)

⩽(1 + 1∕M(r, �))M(r,�)d(M(r,�)−1)M(r,�)

⩽ed(M(r,�)−1)M(r,�).
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choices to consider. Hence, we can replace our complexity estimate O(d3M(r,�)(M(r,n)−1)) by 
O(N(��)rd3(M(r,�)−d+1)(M(r,n)−d)).

Assume that � is algebraically closed. A rank-one symmetric tensor in Sd�n is of the 
form �⊗d = �⊗⋯⊗ �, � ∈ �

n . A Waring decomposition of S ∈ Sd�n⧵{0} is S =
r∑

i=1

�⊗d

i
 

[22]. Since every algebraically closed field has an infinite number of elements, it follows 
that every symmetric tensor has a Waring decomposition [13]. The minimal number of 
rank-one symmetric tensors in the decomposition of S is called a symmetric rank and is 
denoted as srankS . Clearly, rankS ⩽ srankS . It is shown in [10, 30] that in certain cases, 
one has an equality rankS = srankS . However, even for d = 3 , one can have an inequality 
rankS < srankS [27].

Hence, an analog of Lemma 1 is

Lemma 3 Let 3 ⩽ d and 2 ⩽ n be integers. Assume that S ∈ �
� , where � is an algebrai-

cally closed field. Then, r < srankS if and only if the following system of 
(
n+d−1

d

)
 polyno-

mial equations

is not solvable.

Assume that S ∈ Sd� n . Thus, srankS > r over �̂  if the above system is not solvable over 
�̂  . Let fi1,⋯,id

(�1,⋯ , �r) be the left-hand side of (i1,⋯ , id) ∈ [n]d entry. Since we are deal-
ing with symmetric tensors, we can assume that 1 ⩽ i1 ⩽ ⋯ ⩽ id ⩽ n . Hence, the unsolv-
ability of (6) is equivalent to

Note that the total number of variables is rn. The efficient Nullstellensatz [17] gives an 
upper bound on deg gi1,⋯,id

fi1,⋯,id
⩽ drn . The arguments above yield that the number of 

monomials of degree at most di = deg gi1,⋯,id
 is less than ed(rn)(rn−1) . Viewing the coeffi-

cients of gi1,⋯,id
 as linear variables, we deduce that the total number of linear variables in 

all gi1,⋯,id
 is at most 

(
n+d−1

d

)
d(rn)(rn−1) . In Sect. 2, we showed that 

(
n+d−1

d

)
⩽ nd . Observe next

Hence, the number of linear variables is bounded above by O(min(nd, (d + 1)n−1)d(nr)(nr−1)) . 
The number of equations is as the number of monomials which is bounded above by 
d(nr)(nr−1) . Thus, if we use the Gauss elimination to determine if this system of linear equa-
tions is solvable or not, we need O

((
n+d−1

d

)
d3(nr)(nr−1)

)
 flops.

A complementary question is: suppose that we know that rank
�̂
T = r using the above 

approach. Does the complexity of finding its rank decomposition in some explicit way have 
roughly the same complexity as finding that rank

�̂
T = r ? This is a much harder problem 

discussed in [14]. In [21] Nie gave an algorithm on finding solvability of such a decompo-
sition for symmetric tensor over ℂ . No complexity analysis is investigated though.

(6)
r∑

i=1

�⊗d

i
− S = 0

(7)
∑

1⩽i1⩽⋯⩽id⩽n

gi1,⋯,id
(�1,⋯ , �r)fi1,⋯,id

(�1,⋯ , �r) = 1.

(
n + d − 1

d

)
=

(
n + d − 1

n − 1

)
=

(
d + 1 + (n − 1) − 1

n − 1

)
⩽ (d + 1)n−1.
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4  Complexity of Solvability of Linear Systems Over Integers

We provide a simple complexity result on the solvability of nonhomogeneous linear system 
of equations

We represent each rational number by p/q, where p ∈ ℤ and q ∈ ℕ . We do not assume that 
p, q are coprime. The storage for p/q that can be also written as (p, q) is

We denote by H the maximum height of the augmented matrix Â = [A�].
The system is solvable if and only if one does not have pivots in the last column of Â . 

Equivalently, the Kronecker-Capelli theorem claims that the system is solvable if and 
only if rankA = rank Â . The number of operations that one needs is O(mn2) . However, if 
n > m , then one can compute rankA and rank Â using the equalities rankA = rankAT and 
rank Â = rank ÂT . This will give the number of operations O(nm2) . Hence, the number of 
flops we need to carry out is O(min(mn2, nm2)) . We need to address the storage of the entries, 
whose h function is growing when we perform the Gauss elimination.

Recall the complexity of computation of the product of two positive integers p and q. The 
standard algorithm would take O(h(p)h(q)). However, there are better algorithms: Karatsuba 
algorithm, Toom-Cook multiplication algorithm, and Schonhage-Strassen algorithm. Basi-
cally, if one assumes the Schonhage-Strassen algorithm, it follows that the number of opera-
tions for the product of two numbers of height at most H is O(H logH log logH) . For sim-
plicity of notation, we will ignore the logarithmic factors by denoting the complexity of the 
Schonhage-Strassen algorithm as O(H).

Proposition 1 Consider the system of linear equations (8). Then, the complexity of deter-
mining the solvability of this system is O(max(m, n)min(m, n)4H) , where the logarith-
mic terms taking into account the Schonhage-Strassen algorithm are suppressed. If A 
and � are integers, then the complexity of determining the solvability of this system is 
O(max(m, n)min(m, n)3(H + log2 min(m, n))).

Proof We first assume that A and � have integer entries. We compute ranks of A and Â and 
use the Kronecker-Capelli theorem. By considering AT, ÂT , if needed, we will assume that 
n ⩾ m . We perform the standard Gauss elimination on A, without normalizing the pivots, 
as in [6, 25, §3.3] or [11, §1.3.2]. Let Dk be the determinant of the k × k submatrix of A 
that contains the k pivots. Then, |Dk| ⩽ 2kHk! . Hence, log2 |Dk| = O(k(H + log2 k)) . The 
main observation is that the value of k-th pivot is the ratio of the corresponding Dk∕Dk−1 , 
where D0 = 1 . Hence, the height of k-th pivot is O(k(H + log k)) . The Schonhage-Strassen 
algorithm for multiplying two integers by this height is O(k(H + log2 k)) . As k ⩽ m , we get 
that the storage of all entries is O(nm2(H + log2 m)) . As we need O(nm2) flops, we deduce 
that the total complexity is O(nm3(H + log2 m)).

Assume now that A and � have rational entries. Then, we multiply each nonzero column 
of A by the product of the numerators of the entries of this column to obtain A1 ∈ ℤ

m×n . 
Similarly we obtain �1 ∈ ℤ

m . Clearly, rankA1 = rankA and rank Â1 = rank Â . Observe that 
H1 , the height of Â1 is O(mH). Hence, the complexity of determining the solvability of (8) 
is O(nm3(mH + log2 m)) = O(nm4H) . 

(8)A� = �, A ∈ ℚ
m×n, � ∈ ℚ

m⧵{�}.

h(p∕q) = ⌈log2 q⌉ +max(1, ⌈log2(2�p�)⌉).
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5  Polynomial Equations of Finite Field

Let �q be a finite field with q = pl elements, where p is a prime number and l a positive 
integer. Assume that T ∈ �

�
q

 . Then, r ⩾ rank T  over �q if and only if the system of polyno-
mial equations (3) is solvable. A brute force method by checking all possible values of 
M(r,�) variables is O(qM(r,�)) . In a recent paper [20], a somewhat better result is given. 
Namely, there is a randomized algorithm of running time O(q(1−�(r,p,l))M(r,�)) with 
high  probability of finding a solution of the system if it is solvable. For q = 2 one has that 
�(r, 2, 1) ≈ 0.113 5 . For q ⩽ 24erl one has that �(r, p, l) = O(1∕r) . Otherwise, 
�(r, p, l) =

l log(log(q∕4erl))

log q
.

Note that for our method, we need to determine the solvability of the system of linear 
equations over �q . Thus, the storage needed for each entry is O(log2 q) . The complexity of 
multiplying using two elements in �q is O(q) ignoring the logarithmic factors. Hence, the 
complexity for determining the solvability of system of m equations in n unknowns using 
the Gauss elimination is O(max(m, n)min(n,m)2q) . Thus, for q > d3M(r,�) , our complexity 
for finding if rank

�̂
T > r is comparable or better than the complexity of finding if 

rank
�q
T > r.

Similar results hold for symmetric tensors. Assume that S ∈ Sd� n
q
 . Then, srank

�q
S > r if 

and only if the following system of 
(
n+d−1

d

)
 polynomial equations is not solvable over �q:

where ti ∈ �q, �i ∈ �
n
q
 for i ∈ [r] . Note that the total number of variables is (r + 1)n.

6  Open Problems

The first major problem is whether we can reduce the number of monomials appearing in 
gi1,⋯,id

 . The insight behind this problem is that each fi1,⋯,id
 consists of a constant term and 

−Ti1,⋯,id
 and sum of r multilinear monomials which are invariant under the permutation of 

the r vectors {�j,1,⋯ , �j,r} → {�j,�(1),⋯ , �j,�(r)} for j ∈ [d] , and � ∶ [d] → [d] . The second 
problem: is it true that each monomial of gi1,⋯,id

 is a monomial in the entries of rank-one 
tensors ⊗d

j=1
xj,i ? Further investigation along those lines could prove to be worthwhile.
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