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Abstract
In recent years the concept of multiresolution-based adaptive discontinuous Galerkin (DG) 
schemes for hyperbolic conservation laws has been developed. The key idea is to perform 
a multiresolution analysis of the DG solution using multiwavelets defined on a hierarchy of 
nested grids. Typically this concept is applied to dyadic grid hierarchies where the explicit 
construction of the multiwavelets has to be performed only for one reference element. For 
non-uniform grid hierarchies multiwavelets have to be constructed for each element and, 
thus, becomes extremely expensive. To overcome this problem a multiresolution analysis is 
developed that avoids the explicit construction of multiwavelets.

Keywords Discontinuous Galerkin · Grid adaptivity · Multiwavelets · Multiresolution 
analysis · Conservation laws

Mathematics Subject Classification 35L65 · 65M60

1 Introduction

Solutions of hyperbolic conservation laws and convection-dominated problems often 
reveal a heterogeneous structure: in some regions solutions are smooth whereas in other 
regions strong gradients or even discontinuities occur. In smooth regions a coarse resolu-
tion is sufficient to realize a certain target accuracy whereas in non-smooth regions a fine 
resolution is required. Thus, considering uniform grids for non-smooth solutions results in 
unnecessary high computational cost. To reduce the computational cost, dynamical local 
grid adaptation can be performed. The majority of the available adaptive strategies can be 
categorized into the following three different paradigms: 
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 (i) Adaptive methods based on local error estimators. A posteriori error estimates have 
been developed in [1, 14, 30, 38, 45–47, 71]. Since the estimators are in general only 
bounded up to some constant by the error from below but not from above, these are 
not reliable and efficient. The existence of an upper bound requires a stable vari-
ational formulation of the underlying partial differential equation that is still lacking 
for the weak formulations of nonlinear systems of conservation laws.

 (ii) Sensor-based adaptive methods. A sensor is used to trigger local grid adaptation. 
Examples for “sensors” are gradients, jumps or curvature of the solution, cf. [7, 49, 
60–62]. These methods do usually not provide any control of the error but are used 
frequently in practice due to their simplicity.

 (iii) Perturbation methods. The key idea here is to improve the efficiency of a given refer-
ence scheme on a uniformly refined reference grid by computing only on a locally 
refined adapted subgrid, while preserving the accuracy of the discretization on the 
full uniform grid, cf. [16, 17, 40, 43, 48]. This paradigm allows at least some control 
of the perturbation error between reference and adaptive scheme. In this context, 
the terms efficiency and reliability are used, however, with different meaning from 
in the context of a posteriori estimator based grid adaptation, see class (i). The term 
efficiency is interpreted here as the reduction of the computational cost in comparison 
to the cost of the reference scheme. The term reliability is used here in the sense of 
the capability of the adaptation process to maintain the accuracy of the reference 
scheme.

In this work, we focus on multiresolution-based grid adaptation. This concept belongs to 
the class of perturbation methods and does not rely on error estimates. To decide where to 
coarsen the reference grid, a reliable indicator to control local grid refinement is required. 
To this end, a multiresolution analysis (MRA) is performed, where the data corresponding 
to the current solution are represented as data on a coarse level and difference information 
called details corresponding to data on successive refinement levels. This new represen-
tation of the data reveals insight into the local behavior of the solution. It can be shown 
that the details become locally small with increasing refinement level when the underlying 
function is locally smooth. As suggested by this so-called cancellation property, we may 
determine a locally refined grid performing data compression on local details using hard 
thresholding. This significantly reduces the amount of the data. Based on this threshold-
ing, local grid adaptation is performed, where we refine an element whenever there exist 
significant details. The core issue of this strategy is to avoid using the fully refined grid at 
any point of the computation. Moreover, a repetition of time steps as frequently considered 
in estimator based adaptive schemes is not necessary.

The concept of multiresolution-based grid adaptation has originally been developed for 
finite volume schemes, cf. [25, 26, 33, 40, 52, 53, 56, 57, 63, 64]. It is motivated by the 
pioneering work of Harten [41–44] on the construction of cost-effective hybrid finite vol-
ume schemes for conservation laws using an MRA. The underlying idea of this adaptation 
strategy is to perform an MRA of the reference scheme and evolve only significant local 
contributions in time. Later on, the concept has been extended to discontinuous Galerkin 
(DG) schemes in [17, 48, 65]. In [48, 65] an adaptive DG scheme for one-dimensional sca-
lar conservation laws has been derived and analyzed. In [35–37] it has been generalized to 
nonlinear systems of conservation laws in multiple space dimensions.

In contrast to this approach, adaptive multiresolution DG methods in the spirit of the 
work of Alpert et al. [3, 15] have been reported in [5, 66]. The basic idea in these works 
is to design an adaptive DG method by representing the numerical solution as well as the 
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operators from the partial differential equation in a multiresolution representation. Thus, 
the evolution is carried out on the multiresolution coefficients. For that reason, their 
approaches strongly differ from the work of [17, 48, 65]. For the multiresolution repre-
sentation multiwavelets are considered in both schemes. Both works can be considered as 
preliminary, since the presented adaptive strategy is not analyzed and only applied to very 
few numerical configurations.

A crucial part in the realization of the adaptive scheme is the construction of genera-
tors for the contributions of the orthogonal complements containing the difference infor-
mation, i.e., the details between two successive refinement levels. Previous works, cf. [48, 
65], are based on the explicit construction of multiwavelets, i.e., orthogonal basis functions 
for these complement spaces. When considering an MRA on a hierarchy consisting of rec-
tangular elements or triangles this construction can be performed on a single reference ele-
ment and then the multiwavelets are transferred to the local element by an affine transfor-
mation. However, when considering the setting of more general non-uniform hierarchies, 
e.g., curvilinear grids or stretched grids, the local bases functions for the orthogonal com-
plements have to be constructed independently on each cell in the hierarchy. In principle, 
this is possible, but computationally expensive.

To overcome this issue we propose an alternative approach to realize the grid adaptation 
which does not rely on the construction of basis functions for the complements. The key 
idea thereby is to represent the local contributions from the orthogonal complements in 
terms of the basis functions for the piecewise polynomial DG space on the next finer level. 
To this end, we formulate the MRA in terms of projectors to enable a realization independ-
ent of the local generators. In previous work the significance of local contributions was 
characterized by coefficients in the basis expansion of the detail information from orthog-
onal complements using multiwavelets. Here, we consider a local function norm for the 
characterization of significance. Thereby the construction of wavelets has become superflu-
ous. This approach enables a very efficient realization of the adaptive concept to arbitrarily 
shaped elements since the explicit construction of generators for the complement spaces is 
avoided.

The outline of the paper is thus as follows. In Sect. 2 we briefly summarize our refer-
ence DG scheme for the discretization of hyperbolic conservation laws. This scheme is 
going to be accelerated by incorporating local grid adaptation. The indicator for local grid 
refinement is based on an MRA applied to the solution of the DG scheme. The underly-
ing concept of the MRA is presented in Sect. 3. The novelty of this work is addressed in 
Sect. 4 where we discuss several options how to realize the MRA. In particular, we present 
a wavelet-free strategy that avoids the explicit construction of multiwavelets. The MRA 
is then applied to the reference DG scheme, see Sect. 5, resulting in the adaptive MR-DG 
scheme. To compare the influence of the MRA using either the classical approach or the 
wavelet-free approach we perform computations for well-known benchmark problems in 
one and two space dimensions. We conclude in Sect. 7 with a summary of our findings.

2  DG Discretization of Hyperbolic Conservation Laws

For convenience of the reader and to fix some notation we introduce the underlying prob-
lem of interest and briefly summarize its discretization by a DG scheme.

Conservation laws. We are interested in the numerical solution of the initial-boundary 
value problem for hyperbolic systems of conservation laws 
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with the conserved quantities � ∶ �+ × Ω → D defined on the domain Ω ⊂ �d , the vec-
tor of fluxes �(�) = (�1(�),⋯ , �d(�))

T , �i ∈ C1(D,�m) , i = 1,⋯ , d , the initial data 
�0 ∶ Ω → �m and the boundary data �bc ∶ [0, T] × �Ωbc ×D → D . Here D ⊂ �m denotes 
the set of admissible states and 𝜕Ωbc ⊂ 𝜕Ω is the inflow boundary.

DG discretization. To discretize the problem (1) we apply a Runge-Kutta discontinuous 
Galerkin (RKDG) scheme following the ideas of Cockburn et al. [20–23]. The key ingre-
dients are the discretization of the domain Ω , the introduction of a finite-dimensional DG 
space and the derivation of a weak formulation,

Spatial discretization. We partition the domain Ω by Gh ∶= {V�}�∈Ih with a finite num-
ber of cells V� all of them having a Lipschitz boundary. The corresponding grid is charac-
terized by the index set Ih : Ω =

⋃
�∈Ih

V� with h ∶= inf
�∈Ih

diam(V�) the smallest diameter of 

the cells in the grid. The partition determines the skeleton resulting from the union of all 
faces by Γh ∶=

⋃
�∈Ih

�V� and ΓI ∶= Γh ⧵ �Ωbc.

Following [32], we define a unit normal vector �Γ for each face in Γh such that it coin-
cides with the outward pointing normal vector on �Ωbc . In particular, we fix the orientation 
of the normal vector on the inner faces.

DG Space. On the partition Gh of Ω we define a finite-dimensional DG space consisting 
of piecewise polynomials

where Πp−1(V�) is the space of all polynomials up to total degree p − 1 on the cell V� . Thus, 
functions in Sh may contain discontinuities and are not uniquely defined on the boundaries 
of the cells V� , � ∈ Ih . For reasons of stability and efficiency, the DG space is assumed to 
be spanned by an orthogonal basis of locally supported functions Sh = span

�∈Ih ,i∈P

��,i , where 

the local degrees of freedom of Πp−1 are enumerated with the index set P.
Weak formulation. To determine an approximate solution in the finite-dimensional 

space Sh instead of solving the infinite dimensional problem (1), we derive a weak formu-
lation following [6, 32]. This approach leads to a variational problem defining the semi-
discrete DG solution of (1): find �h(⋅, t) ∈ Sm

h
, t ∈ [0, T] such that for all v ∈ Sh , there holds

with the right-hand side L̂ ∶ Sm
h
× Sh → � given by

Here, the L2-inner products ⟨⋅, ⋅⟩∗ are applied component-wise for vectors and row-wise for 
the matrix �(�h) , respectively. The jump operator [[⋅]] is defined on the skeleton as the dif-
ference of two adjacent values, cf. [6, 32]. Note that the weak formulation (3) is stabilized 

(1a)�t �(t, �) + ∇ ⋅ �(�(t, �)) = 0, (t, �) ∈ �+ × Ω,

(1b)�(0, �) = �0(�), � ∈ Ω,

(1c)�(t, �) = �bc(t, �, �
−(t, �)), � ∈ 𝜕Ωbc, t > 0

(2)Sh ∶= {f ∈ L2(Ω) ∶ f |V�
∈ Πp−1(V�), ∀� ∈ Ih},

(3)⟨𝜕t �h, v⟩Ω = L̂(�h, v), ⟨�h(0, ⋅), v⟩Ω = ⟨�0, v⟩Ω

(4)
L̂(�h, v) ∶= ⟨�(�h),∇hv⟩Ω − ⟨�̂�(�+

h
, �−

h
, �Γ), [[v]]⟩ΓI

− ⟨�̂�(�bc(t, ⋅, �
−
h
), �−

h
, �Γ), v⟩𝜕Ωbc

.
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by replacing the normal fluxes at the cell edges as well as the boundary integrals with 
numerical fluxes �̂� . For our computations we use the classical local Lax-Friedrichs flux.

Fully discrete DG scheme. The DG solutions of (3) are expanded in the basis

where the coefficients are defined by u�,i(t) ∶= ⟨�h(⋅, t),��,i⟩V�
 . Since the basis is not time-

dependent, the temporal evolution of the DG solution is described by the evolution of the 
coefficients. Choosing a single basis function ��,i for v in (3) and using the orthogonality 
of the basis, we obtain a system of ordinary differential equations for the coefficients in the 
basis expansion of the solution (5)

where all coefficient vectors ��,i and right-hand sides L̂ are comprised in the vectors 
U ∶= (��,i)�∈Ih,i∈P and L(U) ∶= (L̂(�h,𝜙𝜆,i))𝜆∈Ih,i∈P . Then we derive the fully-discrete DG 
scheme by discretizing and stabilizing the evolution equation for the coefficients (6). For 
that purpose, we discretize [0,  T] by discrete time levels {tn}Nn=0 . At each time level the 
semi-discrete DG solution �h(tn, ⋅) is approximated by �n

h
∈ Sm

h
 applying a strong-stability-

preserving Runge-Kutta (SSP-RK) scheme to (6), cf. [39]. Using an explicit time discre-
tization requires a restriction of the time step size Δt . In case of a purely hyperbolic prob-
lem the largest possible time step size is limited by the well-known Courant-Friedrichs-Levy 
(CFL) condition [20, 22]: Δt ⩽ hCCFL∕Chyp , where the CFL number CCFL depends on the 
polynomial degree and Chyp is a bound for the spectral radius of the Jacobian of � . In the 
nonlinear case this depends on the current solution and is recomputed in each time step.

To control oscillations near discontinuities, which typically arise in high-order schemes for 
hyperbolic conservation laws, we have to stabilize the fully discrete DG scheme locally by 
modifying high-order coefficients where we apply a projection limiter after each stage of the 
Runge-Kutta scheme. For our computations we choose the limiter by Cockburn et al. [21, 23], 
because it is comparably simple, computationally efficient and effectively suppresses oscil-
lations. It can be applied to quadrilateral grids as well as triangular grids, cf. [23]. Instead of 
using a limiter for stabilization, artificial viscosity might be used, cf. [8, 9, 59, 76]. However, 
in numerical tests it turned out that typically this causes spurious oscillations that spoil the 
efficiency of our multiresolution-based grid adaptation.

3  Multiresolution Analysis

To accelerate the DG scheme presented in Sect. 2, we want to sparsify the grid G . To trigger 
grid refinement and grid coarsening we employ the MRA and perform data compression. In 
contrast to previous works, cf. [35–37, 48], we outline the concept without specifying a wave-
let basis.

Hierarchy of nested grids. The concept of the MRA introduced in [55] is based on a 
sequence S = {Sl}l∈�0

 of nested spaces

that are closed linear subspaces of L2(Ω) and the union of these spaces is dense in L2(Ω) . In 
the context of RKDG schemes, an appropriate multiresolution sequence can be set up by 

(5)��(t, �) =
∑
�∈I

∑
i∈P

��,i(t)��,i(�),

(6)U�(t) = L(U),

(7)S0 ⊂ S1 ⊂ ⋯ ⊂ S
𝓁
⊂ S

𝓁+1 ⊂ ⋯ ⊂ L2(Ω)
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introducing a hierarchy of nested grids G
�
∶= {V�}�∈Il characterized by the index sets Il . 

These are all partitions of the domain Ω , i.e., Ω =
⋃
�∈Gl

V� . The cells of two successive lev-

els are assumed to be nested, i.e., each cell V� , � ∈ Il, is composed of cells V� , � ∈ M� , 
where the refinement set M𝜆 ⊂ Il+1 is characterized by V� =

⋃
�∈M�

V� . Obviously, the res-

olution becomes finer with the increasing refinement level l. For each of these grids we 
introduce a DG space

By definition these spaces are closed subsets of L2(Ω) and due to the nestedness of the 
grids Gl they are nested. The union of these spaces is dense in L2(Ω) whenever it holds 
lim
l→∞

max
�∈Il

diam (V�) = 0.
We emphasize that the concept is not confined to uniform dyadic hierarchies but non-uni-

form hierarchies via grid mappings, cf. [34], such as triangulations are possible as well. Note 
that for a uniform dyadic hierarchy it holds |M�| = 2−d and |V�| = 2−d|V�| , � ∈ M� , � ∈ Il.

Multi-scale decomposition. To investigate the difference between two successive refine-
ment levels, we consider the orthogonal complement space W

�
 of S

�
 with respect to S

�+1 
defined by

Since S
�+1 is finite dimensional, we decompose S

�+1 into the direct sum of S
�
 and its 

orthogonal complement W
�
 , i.e., S

�+1 = S
�
⊕W

�
 , � ∈ �0.

Recursively applying this two-scale decomposition yields the multi-scale decomposition of 
the space SL , L ∈ � , into the coarse discretization space S0 and complement spaces W

�
 , 

0 ⩽ � ⩽ L − 1 : SL = S0 ⊕W0 ⊕⋯⊕WL−1. Thus, each function u ∈ L2(Ω) can be repre-
sented by an (infinite) multi-scale decomposition u = u0 +

∑
l∈�0

dl with its contributions given 

by the orthogonal projections

where PV ∶ L2(Ω) → V  denotes the L2-projection to some closed linear subspace 
V ⊂ L2(Ω) . In particular, it holds ul+1 = ul + dl , l ∈ �0.

Applying this relation recursively we can express uL ≡ PSL
(u) for L ∈ �0 in terms of the 

contributions of the orthogonal complement spaces and the coarsest discretization space S0 , 
i.e.,

Separation of local contributions. Since the spaces Sl as well as Wl are piecewise poly-
nomials, i.e., discontinuities are present at element interfaces, the orthogonal projections 
(9)  can be computed locally on each element. This allows to spatially separate the local 
contributions in the multiscale decomposition. For l ∈ �0 the compactly supported local 
contributions of the projections (9) are defined by

Sl ∶= {f ∈ L2(Ω) ∶ f |V�
∈ Πp−1(V�), � ∈ Il}.

(8)W
�
∶= {d ∈ S

�+1∶ ⟨d, u⟩Ω = 0, ∀u ∈ S
�
}.

(9)ul ∶= PSl
(u) = PSl

(ul+1), dl ∶= PWl
(u) = PWl

(ul+1), l ∈ �0,

(10)uL = u0 +

L−1∑
�=0

d� .

(11)ul
�
∶= ul ⋅ �V�, dl

�
∶= dl ⋅ �V�,
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where �V� denotes the characteristic function on cell V� . Consequently, we may decom-
pose u� and d� into the sum of their local contributions, i.e.,

Based on the infinite multi-scale decomposition (9) we formulate a localized multi-scale 
decomposition

We emphasize that the local contributions dl
�
 may become small when the underlying func-

tion is locally smooth. To see this, we note that as a consequence of Whitney’s theorem, 
cf. [31], we can estimate the local approximation error by

for any u|V�
∈ Hp(V�) on a convex cell V� , � ∈ Il , l ∈ �0 . From this result we infer by the 

Cauchy-Schwartz inequality the cancellation property

Thus, the local smoothness implies that the norm of the local contributions d� decrease 
with order p for increasing � . This fact allows for data compression and is the key of the 
multiresolution based grid adaptation.

Significance, thresholding and grid adaptation. By neglecting small contributions from 
the orthogonal complement spaces, we may locally sparsify the multiscale decomposition of 
uL corresponding to an arbitrary but fixed refinement level L ∈ �0 and define an approxima-
tion uL,� . For this purpose, we have to find a suitable norm to measure the local significance of 
d�
�
 to decide if the contribution can be neglected. First of all, we define for � ∈ I

�
 , � ∈ �0 , a 

local complement space

equipped with a local norm ‖ ⋅ ‖� ∶ Wl,� → � defined by

In principle, any equivalent norm can be used giving us some flexibility and also covering 
the results from previous works [37, 48].

By introducing local threshold values ��,L ⩾ 0 we distinguish between significant and non-
significant contributions. To retain flexibility, we require only a weak constraint on the choice 
of the local thresholds assuming that there exists an 𝜀max > 0 such that for all L ∈ � there 
holds

(12)u� =
∑
�∈I

�

u�
�
, d� =

∑
�∈I

�

d�
�
.

(13)u =
∑
�∈I0

u0
�
+

∑
�∈�0

∑
�∈I

�

d�
�
.

(14)‖u − ul
�
‖L2(V�)

⩽ diam (V�)
p

�
‖�‖1=p

1

�!
‖D�u‖L2(V�)

(15)‖dl
�
‖L2(V�)

⩽ diam (V�)
p

�
‖�‖1=p

1

�!
‖D�u‖L2(V�)

.

(16)W
�,𝜆 ∶= {d|V𝜆

∶ d ∈ W
�
} ⊂ L2(V𝜆)

(17)‖d�
�
‖� ≡ ‖d�

�
‖L2(Ω)√�V��

.
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Then a local contribution dl
�
∈ Wl is called ‖ ⋅ ‖�-significant if

For a uniform dyadic hierarchy a straightforward choice of the local thresholds is given by 
��,L = 2�−L�L with �L ⩾ 0 as considered in previous works, cf. [35–37, 48].

If a local contribution d�
�
 is not ‖ ⋅ ‖�-significant, we discard it and, thus, sparsify 

the multi-scale decomposition. For this purpose, we define the sparse approximation 
uL,� ∈ SL of uL by

where the index set D𝜀 ⊂
L−1⋃
�=0

I
�
 is defined as the smallest set containing the indices of 

‖ ⋅ ‖�-significant contributions, i.e.,

and being a tree, i.e.,

The set D� can be determined by adding additional indices of non-significant contributions 

to 

�
𝜆 ∈

L−1⋃
�=0

I
�
∶ ‖d�

𝜆
‖𝜆 > 𝜀𝜆,L

�
 such that the tree condition (22) is fulfilled. Then, in 

analogy to classical wavelet analysis, cf. [24], the error introduced by the thresholding pro-
cedure can be estimated by

for q ∈ {1, 2} using (18). Moreover, by definition of the L2-norm the thresholding proce-
dure is L2-stable, i.e., ‖uL,�‖L2(Ω) ⩽ ‖uL‖L2(Ω).

Since D� has a tree structure, we can identify uL,� with the orthogonal projection to 
a piecewise polynomial space corresponding to an adaptive grid. Hence, uL,� can be 
written as

where the adaptive grid G� =
⋃
�∈I�

V� is characterized by the index set

(18)
L−1∑
�=0

max
�∈I

�

��,L ⩽ �max.

(19)‖d�
𝜆
‖𝜆 > 𝜀𝜆,L.

(20)uL,� ∶=
∑
�∈I0

u0
�
+

L−1∑
�=0

∑
�∈D�∩I�

d�
�
,

(21)

�
𝜆 ∈

L−1�
�=0

I
�
∶ ‖d�

𝜆
‖𝜆 > 𝜀𝜆,L

�
⊂ D𝜀,

(22)𝜇 ∈ D𝜀 ⇒ 𝜆 ∈ D𝜀, ∀𝜆 with V𝜇 ⊊ V𝜆.

(23)‖uL − uL,�‖Lq(Ω) ⩽ �Ω�1∕q Cloc,M �max

(24)uL,� =

L∑
�=0

∑
�∈I�∩I�

u�
�
,

(25)I� ∶=

{
� ∈

L⋃
�=0

I
�
∶ ∃� ∈ D� such that � ∈ M� and � ∉ D�

}
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satisfying Ω =
⋃
�∈I�

V� with V� ∩ V�� = � for � ≠ �� ∈ I� . Then, the sparsified representa-

tion uL,� can be characterized equivalently by either the index set I� or the index set D� cor-
responding to the cells of the adaptive grid (25) and the significant local contributions of 
the orthogonal complements, respectively. The adaptive grid is illustrated in Fig. 1.

4  Realization of the Multiresolution Analysis

To implement the MRA basis functions or rather generators for the spaces S
�
 and W

�
 , 

� ∈ �0 are required. For that purpose, we consider the general framework of stable bi-
orthogonal bases for multiresolution representations that has been established in [18, 27]. 
The choice of the basis determines how to compute the projections (9). Thus, it strongly 
influences the efficiency of the implementation.

Orthogonal bases. In the following, we refer to the basis functions �� for S
�
 as scaling 

functions and to the basis functions �� for W
�
 as multiwavelets, i.e.,

with index sets IS
�
 and IW

�
 corresponding to the global degrees of freedom of S

�
 and W

�
 , 

respectively. The local degrees of freedom of S
�
 and W

�
 on a cell V� are enumerated with 

index sets P and P∗
�
 , respectively. In particular, the local degrees of freedom of the orthog-

onal complement spaces can be enumerated by

Due to the definition of the spaces there holds

Then we encode the spatial and polynomial degrees of freedom, i.e., IS
�
∶= I

�
× P and 

I
W
�
∶= I

�
× P

∗
�
 . For reasons of stability it is convenient to consider orthonormal bases, i.e.,

(26)
S
�
= span

�∈IS
�

��, W
�
= span

�∈IW
�

��

P
∗
𝜆
∶= P × {e ∈ � ∶ 1 ⩽ e < |M𝜆|}.

|P| = dim(Πp−1) =
(
p+d−1

d

)
, |P∗

�
| = |P| (|M�| − 1

)
.

Level 0

Level 1

Iε

Level 3

Level 2

Dε

Fig. 1  Relation between the adaptive grid I� and the index set of significant contributions D� . Cells cor-
responding to indices in I� and D� are highlighted in orange (on the left) and in blue (on the right), respec-
tively
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This setting is a special case of [18, 27]. Moreover, for efficiency reasons we require that 
the basis functions are compactly supported, i.e.,

For technical reasons, we additionally require that the zeroth scaling function is constant, 
i.e.,

Since the multiwavelets form a basis of W
�
 , they are orthogonal to the scaling functions

We expand the global functions u� and d� , � ∈ �0 in the bases (26), i.e.,

Since u� ≡ PS
�
(u) and d� ≡ PW

�
(u) are defined by orthogonal projections of u ∈ L2(Ω) , the 

coefficients are given by

Next, we make use of the locality of the bases (28) and expand the local contributions u�
�
 , 

u�+1
�

 and d�
�
 as

For ease of notation, we comprise all local scaling functions and multiwavelets correspond-
ing to a cell V� in vectors, i.e.,

Additionally, we merge the vectors of scaling functions �� of all subcells in the refinement 
set M� = {�1,⋯ ,�|M�|} in

Thus, we may rewrite (33) in a more compact way as

where the coefficients are comprised in vectors u
�
∈ �|P| , d

�
∈ �|P∗

�
| and u

M�
∈ �|P| |M�| , 

respectively. Due to  (32) and (34), these vectors are given by

where the inner products are applied component-wise.

(27)⟨��,���⟩Ω = ���� , ⟨��,���⟩Ω = ���� , ∀ �, �� ∈ I
S
�
and �, �� ∈ I

W
�
.

(28)supp(��,i) = supp(��,j) = V�, ∀ � ∈ I
�
, i ∈ P, j ∈ P

∗
�
.

(29)��,0 = 1∕
√�V��, ∀ � ∈ I

�
.

(30)⟨��,���⟩Ω = 0, �� ∈ I
W
�
, � ∈ I

S
�
.

(31)u� =
∑
�∈IS

�

u� ��, d� =
∑
�∈IW

�

d� ��.

(32)u� = ⟨u,��⟩Ω, d� = ⟨u,��⟩Ω.

(33)u�
�
=
∑
i∈P

u�,i ��,i, d�
�
=

∑
i∈P∗

�

d�,i ��,i, u�+1
�

=
∑

�∈M�

∑
i∈P

u�,i ��,i.

(34)�� ∶=
(
��,i

)
i∈P

∈
(
S
�

)|P|
, �� ∶=

(
��,i

)
i∈P∗

�

∈
(
W

�

)|P∗
�
|
, � ∈ I

�
,� ∈ �0.

(35)�M�
∶=

(
�T

�1
,⋯ ,�T

�|M� |

)T

∈
(
S
𝓁+1

)|P| |M�|, � ∈ I
𝓁
,𝓁 ∈ �0.

(36)u𝓁
�
= u

�
⋅��, d𝓁

�
= d

�
⋅��, u𝓁+1

�
= u

M�
⋅�M�

,

(37)u
�
= ⟨u,��⟩Ω, d

�
= ⟨u,��⟩Ω, u

M�
= ⟨u,�M�

⟩Ω,
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Based on the nestedness of the spaces, we derive two-scale relations between the scal-
ing functions and multiwavelets of successive refinement levels. To this end, we rewrite �� , 
� ∈ I

S
�
 , and �� , � ∈ I

W
�

 , in terms of scaling functions on level � + 1 by

Due to the locality of the bases (28), this reduces to

where � = (�, i) and � = (�, j) . Then, we comprise the inner products in (38) in matrices 
��,0 ∈ �|P|×|P| |M�| and ��,1 ∈ �|P∗|×|P| |M�| , respectively. Thereby, we can write (38) 
equivalently in matrix-vector notation as

Since the bases are assumed to be orthonormal, the matrix

is an orthogonal matrix. Thus, �� is invertible and, consequently, scaling functions on a 
finer level can be represented by the sum of scaling functions and multiwavelets on the next 
coarser level, i.e.,

Furthermore, we deduce from the orthogonality of �� that

where by �|M�|×|P| ∈ �|M�| |P|×|M�| |P| we denote the identity matrix.
Based on (39) and (41) we derive the following relations linking the coefficient vectors 

(37) of successive refinement levels corresponding to the multi-scale decomposition (36):

for � ∈ I
�
 , � ∈ �0 with local transformation matrices ��,0 and ��,1 defined by (38) and 

(39). This provides an explicit representation of the local projections (11), i.e.,

Thus, in the discrete setting of coefficient vectors and basis expansions, cf. (36), these pro-
jections can be realized with matrix-vector multiplications. Due to the orthogonality of �� 
there holds ‖��‖2 = ‖�T

�
‖2 = 1 . Hence, the two-scale transformation and its inverse, i.e.,

�� =
�

�∈IS
�+1

⟨��,��⟩Ω ��, �� =
�

�∈IS
�+1

⟨��,��⟩Ω ��.

(38)��,i =
�

�∈M�

�
k∈P

⟨��,i,��,k⟩Ω ��,k, ��,j =
�

�∈M�

�
k∈P

⟨��,j,��,k⟩Ω ��,k,

(39)�� = ��,0�M�
, �� = ��,1�M�

.

(40)�� ∶=

(
��,0

��,1

)
∈ �|P| |M�|×|P| |M�|

(41)�M�
= �T

�,0
�� +�T

�,1
��.

(42)�T
�,1
��,1 = �|M�|×|P| −�T

�,0
��,0,

(43)u
�
=��,0 uM�

,

(44)d
�
=��,1 uM�

,

(45)u
M�

=�T
�,0

u
�
+�T

�,1
d
�

(46)u𝓁
�
≡ PS

𝓁
(u𝓁+1

�
) =

(
��,0 uM�

)
⋅��, d

𝓁

�
≡ PW

𝓁
(u𝓁+1

�
) =

(
��,1 uM�

)
⋅��.
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are well-conditioned.
Construction of multiwavelets. To determine appropriate bases with the desired proper-

ties, i.e., orthonormal and compactly supported, where in particular the construction can be 
performed efficiently and stable, we first need to construct the scaling functions. These can 
be easily computed by orthogonalization and a following normalization of a local mono-
mial basis. A well-known example in one spatial dimension is the shifted and normalized 
Legendre polynomials. Since the multiwavelets are not uniquely defined by the required 
conditions, cf. [29], several approaches for the construction of multiwavelets, i.e., the bases 
for the orthogonal complement spaces, are possible.

Algebraic approach. Following the ideas of [2, 3, 75] leads to an algebraic algorithm for 
an explicit construction of multiwavelets: in [2] Alpert proposed an algorithm for multi-
wavelets on uniform dyadic hierarchies in one spatial dimension. Yu et al. applied this idea 
in [75] for the construction of multiwavelets on a triangle with a uniform subdivision. The 
idea can easily be extended to the general multi-dimensional case, cf. [37]. The basic steps 
in this approach are: (i) construction of a local basis ��,i , � ∈ I

�
 and i ∈ P , for S

�+1 ⧵ S� 
ensuring that W

�,𝜆 ⊂ span
i∈P∗

𝜆

𝜓𝜆,i , � ∈ I
�
 , (ii) contribution of S

�
 in the basis functions are fil-

tered by an orthogonalization with respect to the coarser scaling functions, (iii) orthogo-
nalization of the basis functions among each other using a QR-decomposition, e.g., via 
Householder transformations, and (iv) normalization of the multiwavelets. Examples of 
multiwavelets are shown in Fig. 2.

Stable completion. Another possibility for the construction of multiwavelets comes from 
a discrete point of view. The basic idea is to find a completion of �� , i.e., for a given ��,0 
find ��,1 ∈ �|P∗|×|P| |M�| such that

is an orthogonal matrix. Then, due to (39) the multiwavelets can be determined by

(47)u
M�

= �T
�

(
u
�

d
�

)
and

(
u
�

d
�

)
= �� uM�

�� =

(
��,0

��,1

)

�� = ��,1�M�
.

−1.0 −0.5 0 0.5 1.0
−2

−1

0

1

2

d = 1)

0
0.5

1.0 0

0.5

1.0
−5

0

5

(a)Alpert’s multiwavelets ( (b)A two-dimensional multiwavelet

Fig. 2  Examples of multiwavelets constructed with Alpert’s construction principle for uniform dyadic hier-
archies and p = 2
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This idea originates from [18], where a very general setting is considered. It has been car-
ried out in the particular setting of DG spaces for the one-dimensional uniform dyadic hier-
archy in [13] and for the one-dimensional non-uniform dyadic case in [4]. In both works 
an explicit formula for ��,1 is derived. The drawback of this idea is that it cannot be easily 
realized in the multi-dimensional case. To find a completion for the general non-uniform 
multi-dimensional case is not trivial and it is open whether an explicit formula similar to 
the one-dimensional case can be derived. Furthermore, the computation of the completions 
from [4, 13] for the one-dimensional case is still costly since it requires the inversion of a 
matrix.

Wavelet-free approach. With increasing polynomial order p and spatial dimension d 
the local degrees of W

�
 are increasing dramatically, e.g., in case of the dyadic hierarchy 

we have |P∗| = (2d − 1) |P| . Hence, the algebraic construction or the completion of the 
matrix separately for all cells in the hierarchy is computationally expensive. Therefore, 
we are interested in reducing the computational cost for the construction of multiwave-
lets. Whenever V� and its subcells V� , � ∈ M� , can be mapped by the same affine linear 
transformation �� to a reference cell V ref

�
 and its subcells V ref

�
 , respectively, the construc-

tion can be performed on the reference element V ref
�

 . Then the multiwavelets on V� can 
be obtained by shifts and rescaling of the multiwavelets constructed on the reference 
element. Typical examples are dyadic grid hierarchies or regular triangulations, cf. [37, 
75].

For reasons of efficiency it is thus of major interest to avoid the explicit construction 
of a basis for the complement spaces. To this end, we propose an alternative approach 
avoiding the explicit use of multiwavelets: since W

�
⊂ S

�+1 , we may express d�
�
 in terms 

of scaling functions on level � + 1 using (39) by

where due to (36) and (39) the coefficients are given by

Applying (44) and (42) leads to

Notice that the rows of M�,0 and M�,1 in (40) are orthonormal with one another, hence 
matrices MT

�,0
M�,0 and MT

�,1
M�,1 = I −MT

�,0
M�,0 are orthogonal projectors. Then, (50) 

becomes very natural. Since (� − (��,0)
T ��,0) ∈ �|M�| |P|×|M�| |P| , the computation of (50) 

is more costly than the classical approach using (44) with multiwavelets. Since u
�
 has to be 

computed from u
M�

 by (43) in the two-scale decomposition, we may compute d
M�

 in a 
more efficient way by

Note that the MRA is based merely on the local contributions d�
�
 and is not influenced by 

the choice of the local basis functions. Due to (48) and (51), we can represent d�
�
 without 

an explicit use of multiwavelets �M�
 or the matrix ��,1 . Thus, the construction of the 

(48)d𝓁
�
= d

M�
⋅�M�

,

(49)d
M�

∶= ⟨d�
�
,�M�

⟩Ω = (��,1)
Td

�
.

(50)d
M�

=
(
� − (��,0)

T ��,0

)
u
M�

.

(51)d
M�

= u
M�

− (��,0)
Tu

�
.
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multiwavelets can be avoided using (48) with (51). From the orthogonality of �� , in par-
ticular (40), (49) and (47), we conclude that this alternative representation of d�

�
 is well-

conditioned, i.e., ‖d
M�

‖2 ⩽ ‖u
M�

‖2.
Implementation aspects. The computational cost for the realization of the MRA 

essentially relies on the approach chosen for the representation of the local wavelet 
spaces. In the following we discuss the classical approach based on an explicit construc-
tion of the multiwavelets, cf. (36) and (44), and the alternative wavelet-free approach by 
(48) and (51) avoiding the costly construction of multiwavelets or rather the completion 
of the matrix ��.

The starting point for an MRA is some given function uL ∈ SL ⊂ L2(Ω) on a fixed 
refinement level L ∈ �0 . This might come from a numerical scheme or from a projec-
tion of an L2-function. The task is to compute the multi-scale decomposition (10), i.e., 
u0 , d0,⋯ , dL−1 . Due to (9), the projections in the multiscale decomposition can be com-
puted recursively from fine to coarse, cf. Fig. 3.

Consequently, the computation of the multi-scale decomposition consists of repeated 
two-scale transformations. The two-scale transformation, i.e., the projections to the next 
coarser spaces, can be performed cell-wise.

The implementation of the multi-scale transformation depends on the basis expan-
sions for the different spaces. The difference between the classical and the wavelet-
free approach is the choice of the generating set for the orthogonal complement spaces 
W

�
 . In the classical approach the multiwavelets are used, whereas in the wavelet-free 

approach the scaling functions of S�+1 are used.

Algorithm 1 (classic)

Input u�+1
λ = uMλ

·ΦMλ
.

Compute

1) uλ = Mλ,0 uMλ

2) dλ = Mλ,1 uMλ

Output u�
λ = uλ ·Φλ, d�λ = dλ ·Ψλ.

,

.

uL uL−1

dL−1

uL−2

dL−2 · · ·

· · · u1

d1

u0

d0

PSL−1

PWL−1

PSL−2

PWL−2

PSL−2

PWL−3

PS1

PW1

PS0

PW0

Fig. 3  Level-wise realization of the multi-scale decomposition
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Algorithm 2 (wavelet free)

Input u�+1
λ = uMλ

·ΦMλ
.

Compute

1) uλ = Mλ,0 uMλ

2) dMλ
= uMλ

−MT
λ,0 uλ

Output u�
λ = uλ ·Φλ, d�λ = dMλ

·ΦMλ
.

,

Thus, the implementation of the local two-scale transformation in Algorithms 1 and 2 
and its inverse in Algorithms 3 and 4, respectively, is different for the two approaches.

Algorithm 3 (classic)

Input u�
λ = uλ ·Φλ, d�λ = dλ ·Ψλ.

Compute

1) uMλ
= MT

λ,0 uλ +MT
λ,1dλ

Output u�+1
λ = uMλ

·ΦMλ
.

,

Algorithm 4 (wavelet free)

Input u�
λ = uλ ·Φλ, d�λ = dMλ

·ΦMλ
.

Compute

1) uMλ
= MT

λ,0 uλ + dMλ

Output u�+1
λ = uMλ

·ΦMλ
.

,

To compare the computational cost and memory requirements of the two approaches 
we focus on a local two-scale transformation on a single element described by Algo-
rithms 1–4 neglecting the expensive multiwavelet construction in the classical approach. 
By this comparison the computational cost and memory requirements of the full trans-
formations can be estimated.

In Table 1 the memory requirement, i.e., the number of coefficients for the storage of d�
�
 , 

u�
�
 and u�+1

�
 for � ∈ I

�
 and the number of matrix entries needed for the transformations, are 

compared.

Table 1  Comparison of memory 
requirement for a two scale 
decomposition on a single cell

Approach # coefficients # matrix entries

Classical 2|P||M�| |P|2|M�|2
Wavelet free 2|P||M�| + |P| |P|2|M�|
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To quantify the overhead in storing more coefficients in the wavelet-free approach, we con-
sider the ratio of the number of coefficients,

The reduction of memory requirement resulting from storing less matrix entries in the 
wavelet-free approach can be quantified by analyzing the ratio of matrix entries,

For dyadic hierarchies the ratios (52) and (53) are listed in Table 2 for d = 1, 2, 3.
On the one hand, avoiding the explicit construction of multiwavelets has the advantage that 

M�,1 is not needed anymore, cf. (51), and therefore |M�|-times less matrix entries have to be 
stored. On the other hand, there is more memory needed for the storage of the coefficients, 
since d�

�
 is expanded in the basis of the larger spaces S

�+1.
Next, we compare the computational cost for the two-scale transformation and its 

inverse in Table 3. For that purpose, we compare the number of multiplications and addi-
tions for the computation of d�

�
 , u�

�
 from u�+1

�
 in Algorithms 1 and 2 and of its inverse in 

Algorithms 3 and 4.
To quantify the difference of the number of operations needed, we consider the ratio of 

number of total operations

(52)ratiocoeff ∶=
# coefficients for wavelet-free approach

# coefficients for classical approach
= 1 +

1

2 |M�| .

(53)ratiomat ∶=
# matrix entries for wavelet-free approach

# matrix entries for classical approach
=

1

|M�| .

Table 2  Ratio of number of 
coefficients and matrix entries 
in case of a dyadic hierarchy for 
different spatial dimensions d 

d 1 2 3

ratiocoeff 1.25 1.125 1.062 5
ratiomat 0.5 0.25 0.125

Table 3  Comparison of the number of operations for a two-scale decomposition on a single cell

Approach # operations for T # operations for T−1 Total # operations

Classical 2|P|2|M�|2 − |P||M�| 2|P|2|M�|2 − |P||M�| 4|P|2|M�|2 − 2|P||M�|
Wavelet free 4|P|2|M�| − |P| 2|P|2|M�| 6|P|2|M�| − |P|

Fig. 4  Ratio of number of opera-
tions according to (54) for dyadic 
sub-division, i.e., |M�| = 2d

1 2 3 4 5 6
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In Fig. 4 the ratio of the total number of the operations ratioop is plotted for different spatial 
dimensions d and polynomial degrees p.

The realization of the multi-scale decomposition using the wavelet-free approach avoids 
the multiplication with ��,1 and �T

�,1
 , respectively. With increasing polynomial degree p 

and space dimension d the number of operations needed for the transformation is reduced 
significantly compared to the classical approach using multiwavelets.

In summary, we conclude that the wavelet-free approach not only avoids the costly con-
struction of multiwavelets, but also is less expensive in terms of the computational cost 
in comparison with the classical approach based on multiwavelets. The only advantage of 
the classical approach over the wavelet-free approach is that less coefficients in the basis 
expansions have to be stored. However, in the classical approach more matrix entries, i.e., 
storage of submatrix ��,1 , have to be stored. Consequently, one may benefit from this 
advantage whenever it is not necessary to store �� on each cell separately, e.g., in the case 
of a uniform dyadic hierarchy. Apart from that, the reduction of memory requirements for 
storing less matrix entries compensates for the overhead of storing more coefficients in 
the wavelet-free approach. Thus, even in terms of memory requirement, the wavelet-free 
approach is more efficient than the classical approach. Hence, it seems to be preferable to 
use the wavelet-free approach for the realization of the MRA.

5  Adaptive Multiresolution DG Scheme

We now intertwine the DG scheme and the MRA introduced in Sects. 2 and 3, respectively. 
The key idea is to apply the MRA to the evolution equations of the DG scheme. Then 
a multiscale decomposition is performed for the resulting evolution equations. We omit 
all equations for detail coefficients in a cell that is considered to be non-significant. The 
remaining evolution equations are projected back to an adaptive grid corresponding to the 
significant cells.

Reference scheme. The starting point for the grid adaptation is a hierarchy of nested 
grids. Corresponding to the grid on a fixed maximum refinement level L, we consider an 
MRA of the semi-discrete DG solution �L defined by (3). The weak formulations defining 
the evolution of this solution can be written in a compact form as

where the inner product is applied component-wise and L̂ ∶ (SL)
m × SL → �m is defined in 

(4). Note that L̂(⋅, ⋅) is linear in the second argument. Due to (10) and (11) we can rewrite 
the semi-discrete DG solutions in terms of the single-scale coefficients of the coarsest 
mesh and detail coefficients as

In the following we refer to this scheme as well as to its fully-discrete counterpart as the 
reference scheme.

(54)ratioop ∶=
total # operation wavelet-free approach

total # operation classical approach
=

6 |P| |M�| − 1

4|P||M�|2 − 2|M�|
.

(55)
⟨
𝜕�L

𝜕t
, v

⟩

Ω

= L̂(�L, v), ∀v ∈ SL,

(56)�L(t, �) =
∑
�∈I0

�0
�
(t, �) +

L−1∑
�=0

∑
�∈I

�

��
�
(t, �), � ∈ Ω and t ∈ (0, T].
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Significant local contributions. Next, we derive weak formulations for the local contri-
butions. By choosing test functions v ∈ S0 and w ∈ W

�
 , 1 ⩽ � ⩽ L − 1 , with compact sup-

port and using orthogonality, we conclude that the evolution of �0
�
 , � ∈ I0 , and the evolu-

tion of the local contribution ��
�
 , � ∈ I

�
 , 1 ⩽ � ⩽ L − 1 , are specified by

Here, the local contributions of the test functions are defined similarly to (11) by 
w� ∶= w �V�

 and v� ∶= v �V�
.

To reduce the computational cost of the reference scheme (55), we only consider signifi-
cant contributions ��

�
 in (58). While dealing with systems of equations, we have to account 

for the fact, that individual quantities might have different orders of magnitude. Thus, 
we augment the definition of significance (19) with a rescaling factor for vector-valued 
� ∈

(
SL
)m : we call a local contribution ��

�
 ‖ ⋅ ‖�-significant iff

For this purpose, we proceed analogously to (20) and define a sparsified representation of 
��(t, �) by

where evolution equations for the local contributions of the complements are partially 
neglected. Note that the significance of local contributions ��

�
 may change in time.

Fully discrete scheme. Note that the above ideas can be directly migrated to the fully 
discrete scheme where at each time step tn we consider only significant contributions in the 
local multi-scale decomposition (13) of the solution of the fully-discrete scheme �n

L
 , i.e.,

where the associated index set corresponding to significant local contributions Dn
�
≈ D�(tn) 

approximates the index set of local contributions in the semi-discrete DG formulation. 
According to (24) and (25) this sparsified representation corresponds to a projection of �n

L
 

to an adaptive grid. Here we omit the details and refer to [34] instead.
Prediction of significant contributions. To determine which local contributions become 

significant in the next time step, in principle the solution of the reference scheme ��n+1 is 
required. However, the computation of the reference scheme has to be avoided. Thus, we 
have to predict the index set Dn+1

�
 of significant contributions for the next time step tn+1 by 

an index set Dn+1 . The prediction of significant contributions at the new time step tn+1 can 
only be based on available information corresponding to the old time step tn , i.e., the set 

(57)
⟨𝜕�0

𝜆

𝜕t
, v𝜆

⟩
V𝜆

= L̂(�L, v𝜆), ∀v ∈ S0,

(58)
⟨𝜕��

𝜆

𝜕t
,w𝜆

⟩
V𝜆

= L̂(�L,w𝜆), ∀w ∈ W
�
.

(59)max
1⩽i⩽m

‖���
𝜆

�
i
‖𝜆

ci
> 𝜀𝜆,L, ci ∶= max

�
1,

1

�Ω� ∫Ω

ui(�)d�

�
.

(60)�L,�(t, �) ∶=
∑
�∈I0

�0
�
(t, �) +

L−1∑
�=0

∑
�∈D�(t)∩I�

��
�
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D
n
�
 . To ensure the reliability of the prediction, we have to avoid that future significant con-

tributions are lost. For that purpose we want to ensure

where Dn+1 is as small as possible. Otherwise the prediction results in excessive grid 
refinement causing unnecessary computational overhead. Thus, the “over-prediction” has 
significant influence on the efficiency of the adaptive scheme. For scalar hyperbolic con-
servation laws in one spatial dimension a prediction strategy has been proposed in [48, 
65]. This strategy is intertwined with the limiting process to ensure the reliability condition 
(62). For the proof of reliability of this strategy properties of the reference scheme that are 
only available for the scalar case in one spatial dimension are essential and therefore the 
extension to the multidimensional case is not trivial. Thus, we modify the idea of Harten’s 
heuristic strategy [43] and define Dn+1 as the smallest superset of Dn

�
 fulfilling the follow-

ing constraints: 

1) significant contributions remain significant, i.e., Dn
𝜀
⊂ D

n+1;
2) contributions in a local neighborhood of a significant contribution become significant, 

i.e., if � ∈ D
n
�
 , then {�̃� ∶ V�̃� neighbor of V𝜆} ⊂ D

n+1;
3) new discontinuities may develop causing significant contributions on higher refinement 

levels, i.e., if max
1⩽i⩽m

‖���
𝜆

�
i
‖𝜆 > 2p+1𝜀𝜆,L , then M𝜆 ⊂ D

n+1;
4) D

n+1 is a tree, i.e., if � ∈ D
n+1 , then {𝜆 ∶ V𝜇 ⊊ V𝜆} ⊂ D

n+1.

This type of strategy has been originally developed for finite volume schemes. Although 
the reliability of this heuristic strategy has never been proven to hold, it turned out that 
it gives satisfactory results in the context of finite volume schemes [16, 56, 57] as well 
as for DG schemes [19, 35–37].

Adaptive MR-DG scheme. By the prediction set Dn an adaptive grid characterized 
by the index set In is defined at each time step tn according to (25). Associated to this 
locally refined grid there exists a discretization space Sn ⊂ SL . Analogously, we denote 
by In

�
 the index set characterizing the adaptive grid defined by Dn

�
 at time step tn . Fur-

thermore, we denote by Sn
𝜀
⊂ Sn ⊂ SL the associated discretization space. Thus, the adap-

tive DG solution �n
L,�

∈ (Sn
�
)m can be written equivalently in two different ways, i.e.,

A time step of the adaptive scheme consists of three steps. 

1) Refinement. The grid is refined via prediction of significant contributions using the 
multi-scale representation. Consequently, �n

L,�
 is represented in the basis of the richer 

space Sn+1 ⊃ Sn
𝜀
 corresponding to the refined grid In+1 of the next time step tn+1 , i.e., 

(62)D
n
𝜀
∪D

n+1
𝜀

⊂ D
n+1,
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2) Evolution. The evolution of the DG scheme with an RK scheme including local projec-
tion limiting at each Runge-Kutta stage is computed using the single-scale representation 
(64). The outcome of the evolution is denoted by �̃n+1

L,𝜀
.

3) Coarsening. Significant contributions might turn out to be non-significant, i.e., �̃n+1
L,𝜀

 
might contain non-significant contributions. Thus, we apply the thresholding procedure 
(20) using the rescaled definition of significance in (59) to compute 

 corresponding to a coarser grid.
For a detailed representation of the adaptive MR-DG scheme we refer to previous works 
[34, 65], where it is discussed how to efficiently compute the integrals and how to ini-
tialize the adaptive grid avoiding the complexity of the fully refined grid. We emphasize 
that the MRA and the adaptive DG scheme are very much intertwined. In particular, 
performing the time evolution on the adaptive grid cannot be considered a DG scheme 
on an unstructured grid because the local numerical flux computation is connected to 
the numerical fluxes on the finest level by the multi-scale transformation. In the follow-
ing we highlight two important conceptual issues.

Remark 1 (Choice of threshold value) Most crucial for the performance of the adap-
tive scheme is the choice of the local threshold values ��,� . For reasons of efficiency and 
accuracy, it should be chosen neither too small nor too large to avoid over-refinement and 
under-refinement, respectively. Following previous works for uniform dyadic grid hierar-
chies, cf. [35–37, 48], we choose

where h
�
 and hL denote the (uniform) diameters of the cells on level � and L, respectively. 

To determine the threshold value 𝜀L > 0 we follow Harten’s idea [42] of preserving the 
order of accuracy � of the reference solution on the uniformly refined grid at the final time 
step t = tN for L → ∞ , i.e.,

For this purpose a heuristic strategy was developed in [50]: �L = Cthrh
�

L
 with a constant 

Cthr and an exponent � . For a non-smooth solution we choose � = 1 and � = p otherwise. 
Note that a rigorous a-priori strategy was developed in [48] for scalar conservation laws 
that turns out to be too pessimistic in general. Furthermore, numerous computations veri-
fied that in most cases Cthr = 1 is a suitable choice. However, if the solution exhibits weak 
discontinuities, then it is recommended to choose Cthr in the order of the strength of this 
discontinuity. For a more detailed discussion on the choice of the threshold and the exten-
sion to non-uniform grid hierarchies we refer to [34].

Remark 2 (Adaptation and limiting) It is well-known that the MRA provides a reliable 
shock detector, cf. [41, 42]. This motivates to combine adaptation and limiting: we add the 
MRA as an additional indicator for the detection of troubled cells, i.e., the minmod indica-
tor and the limiter are only applied to cells on the finest refinement level, i.e., In ∩ IL . In 

(65)�n+1
L,�

=

L∑
�=0

∑
�∈In+1

�
∩I

�

�
�,n

�

��,L =
hL
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,
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the one-dimensional adaptive scheme proposed in [48] limiting and prediction were inter-
twined: whenever a cell is indicated for limiting, the prediction enforces a refinement of 
this cell up to the finest level. Thereby, the stability of the scheme considering the addi-
tional troubled cell indicator can be ensured. Since our prediction strategy is not inter-
twined with the limiting process, we cannot prove the reliability of the additional troubled 
cell indicator. However, it turned out that if the threshold value is chosen carefully this 
strategy gives satisfactory results in practice, cf. [19, 35, 37].

6  Numerical Results

In [19, 35–37] numerical results are presented for numerous test cases using the adaptive 
MR-DG scheme. There, the classical approach (36) has been applied with the local norms

based on the explicit use of multiwavelets. Here we focus on the validation of the newly 
developed wavelet-free approach (48) with the alternative choice for the local norms (17) 
and compare it to the classical approach using (67). For validation purposes we first com-
pare the classical approach and the wavelet-free approach for classical one-dimensional 
problems, see Sect. 6.1. Then, for real applications we consider the well-known benchmark 
problems of a double Mach reflection and a shock-vortex interaction with a boundary layer 
in Sects. 6.2 and 6.3, respectively.

6.1  One‑Dimensional Test Cases

To compare the classical approach and the wavelet-free approach we first consider clas-
sical one-dimensional test cases: the Sod Riemann problem [69], the Woodward interac-
tion problem of two blast waves [73, 74] and the Shu-Osher problem of the interaction 
between a moving shock and a density sine wave [67]. For each test case we determine the 
empirical order of accuracy to validate our reference scheme. For the “exact” solution we 
perform uniform computations on a very fine mesh corresponding to 12 refinement levels, 
i.e., 40 960 cells, instead of the analytical solution.

Problem. The system of nonlinear conservation laws (1a) is determined by the one-
dimensional compressible Euler equations with the vector of conserved quantities 
� = (�, �v, �E)T and the flux �(�) = (�v, �v2 + p, �v(E + p∕�))T . These equations express 
conservation of mass, momentum and total energy density. Here � , v, E = e +

1

2
v2 and e 

denote the density, velocity, specific total energy and specific internal energy, respectively. 
The system is closed by the equation of state for the pressure p = �e(� − 1) for a ther-
mally and calorically perfect gas with the ratio of specific heats � = 1.4 for air at standard 
conditions.

Configuration. The three test cases differ in the initial data, the boundary conditions and 
the computational domain. 

1) Sod problem: 

(67)‖d�
�
‖� ≡ ‖d

�
‖∞∕

√�V��
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with �0,L = (1, 0, 2.5)T and �0,R = (0.125, 0, 0.25)T . Constant boundary conditions are 
imposed at the boundaries of the domain Ω = [−0.5, 0.5].

2) Woodward problem: 

with �0,L = (1, 0, 2 500)T , �0,C = (1, 0, 0.025)T and �0,R = (1, 0, 250)T corresponding to 
pressure values pL = 1 000 , pC = 0.01 and pR = 100 . Reflecting boundary conditions 
are imposed at the boundaries of the domain Ω = [0, 1].

3) Shu-Osher problem: 

with �0,L = (3.857 143, 10.141 852, 39.166 66)T and �0,R(x) = (1 + 0.2 sin(5x), 0, 2.5)T 
corresponding to the pressures p0,L = 10.333 33 and p0,R = 1 . Constant boundary con-
ditions are imposed at the boundaries of the domain Ω = [−5, 5].

Discretization. Simulation parameters are the following. We consider a dyadic one-
dimensional grid hierarchy with uniform cells on each level, i.e., |M�| = 2 . The com-
putations have been performed using a third-order scheme, i.e., p = 3 . For the time dis-
cretization an explicit third-order SSP-RK method with three stages and CCFL = 0.1 is 
used. For limiting we apply the Cockburn-Shu limiter [21, 23] with an Shu constant of 
M = 50 for the Shu-Osher problem and M = 0 otherwise. The computations have been 
performed on an Intel(R) Xeon(R) Platinum 8160 CPU with 2.10 GHz CPU frequency.

�0(x) =

{
�0,L, if x ⩽ 0,

�0,R, if x > 0

�0(x) =

⎧
⎪⎨⎪⎩

�0,L, if x ⩽ 0.1,

�0,C, if 0.1 < x ⩽ 0.9,

�0,R, if x > 0.9

�0(x) =

{
�0,L, if x ⩽ −4,

�0,R(x), if x > −4,
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Fig. 5  Sod’s test case: adaptive solutions with L = 9 at time t = 0.25 . Top: density profile. Bottom: refine-
ment of the grid after thresholding, represented by level of a cell
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Computations. We perform adaptive computations starting with a grid on level 0 con-
taining N0 = 10 cells. We perform computations up to t = 0.25 , t = 0.038 and t = 0.8 for 
the Sod problem, the Woodward problem and the Shu-Osher problem, respectively, with 
varying maximum refinement levels 5 ⩽ L ⩽ 9 . Since this test case contains disconti-
nuities, we consider the heuristic strategy with � = 1 and Cthr = 1 for the choice of the 
threshold value, i.e., �L = hL . In Figs. 5, 6 and 7 the solutions (density � ) and the adap-
tive grid after thresholding corresponding to the index set Dn

�
 are exemplarily shown for 
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Fig. 6  Interaction of two blast waves: adaptive solutions with L = 9 at time t = 0.038 . Top: density profile. 
Bottom: refinement of the grid after thresholding, represented by level of a cell
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L = 9 for both the classical and the wavelet-free approach. For all test cases we observe 
that the grids are locally refined up to the finest level only near discontinuities. For both 
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approaches the adaptive grids are almost the same, although the thresholding is per-
formed using different local norms.

To confirm that the adaptive computations maintain the asymptotic behavior of the 
reference scheme we compare in Figs. 8a, 9a and 10a the L1-error in the density of the 
adaptive solution with the error of the reference solution. We observe that for Sod’s Rie-
mann problem and Woodward’s interaction problem the errors of the adaptive solutions 
are very close to the discretization error of the reference scheme. For the Shu-Osher 
problem the error of the adaptive solutions is larger as the error of the reference scheme 
but the asymptotic behavior is the same. This confirms that by the choice of the thresh-
old value the asymptotic convergence behavior of the reference scheme is maintained. 
This holds for both the classical and the wavelet-free approach.

To examine the efficiency of the classical approach and the wavelet-free approach, we 
compare the error in the density with the number of cells in the adaptive grids. Since the 
adaptive grids change dynamically, we consider in Figs.  8b, 9b and 10b the maximum 

Table 4  CPU times for the Sod problem

L Reference Classic/s Wavelet-free/s Classic·(ref)−1/% Wavelet-free·(ref)−1/%

5 3.49 0.62 0.60 17.77 17.19
6 11.14 1.59 1.55 14.27 13.91
7 37.73 3.95 3.84 10.47 10.18
8 135.95 9.64 9.40 7.09 6.91
9 502.47 24.52 23.79 4.88 4.73

Table 5  CPU times for the Woodward interaction problem

L Reference Classic/s Wavelet-free/s Classic·(ref)−1/% Wavelet-free·(ref)−1/%

5 13.8 2.33 2.25 16.88 16.30
6 44.53 6.94 6.71 15.58 15.07
7 128.76 18.76 18.29 14.57 14.20
8 433.43 50.29 49.00 11.60 11.31
9 1 480.14 147.58 132.73 9.97 8.97

Table 6  CPU times for the Shu-Osher problem (right)

L Reference Classic /s Wavelet-free /s Classic·(ref)−1/% Wavelet-free·(ref)−1/%

5 5.74 1.50 1.51 26.13 26.31
6 18.08 4.16 4.14 23.01 22.90
7 68.50 12.36 11.96 18.04 17.46
8 231.61 32.42 31.38 14.00 13.55
9 866.28 89.47 90.48 10.33 10.44
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number of cells over all time steps performing computations with different numbers 
of refinement levels L. We note that to realize a given error tolerance both the adaptive 
schemes using the classical and the wavelet-free approach require about the same number 
of grid cells whereas the reference scheme needs significantly more cells.

This is also reflected in the CPU times recorded in Tables  4, 5 and 6. We note that 
for all test cases the adaptive computations outperform the non-adaptive computation. The 
computations using the wavelet-free approach are only slightly faster than those using the 
classic approach. Here the potential of the wavelet-free approach does not become evident 
because for the one-dimensional-dyadic grid hierarchy the multiwavelets can be computed 
on a reference element once and for all.

6.2  Double Mach Reflection

Problem. Again, we consider the compressible Euler equations. In the two-dimensional 
case they are determined by the vector of conserved quantities � = (�, ��T, �E)T and the 
vector of fluxes �(�) = (𝜌�, 𝜌�⊗ � + p�, 𝜌�(E + p∕𝜌))T with velocity vector � = (vx, vy)

T 
and total energy E = e +

1

2
�2 . The system is closed by the equation of state for the pressure 

p = �e(� − 1) with � = 1.4.
Configuration. We consider the reflection of a shock making a 60◦ angle with a reflect-

ing wall. This test case has been introduced by Woodward and Colella in [74]. Although 
the exact solution is not known, it is a well-known benchmark test case for numerical 
schemes for compressible Euler equations. Induced by the reflection of the shock wave 
complex wave structures develop. The computational domain is Ω = [0, 4] × [0, 1] . The 
initial data consists of two constant states separated by a shock at x1 = 1∕6 + tan(30◦) x2 , 
i.e., �(0, �) = �l if x1 < 1∕6 + tan(30◦) x2 and �(0, �) = �r otherwise. The values for �l and 
�r are depicted in Fig. 11. This flow is challenging because the flow on the left-hand side 
of the separating shock is supersonic, whereas the flow on the right-hand side is subsonic. 
This change of the flow regime is known to cause problems in the numerical simulation, 
cf. [23, 58].

At the lower boundary, i.e., x2 = 0 we impose a reflecting wall between x1 = 1∕6 and 
x1 = 4 . Since the shock position in the free flow away from the wall is explicitly known, 
it is used to specify suitable boundary conditions for the flow field at all other boundaries, 
i.e.,

�ext(t, �) ∶=

{
(𝜌−, (𝜌v1)

−,−(𝜌v2)
−, (𝜌E)−)T, if x2 = 0 and x1 > 1∕6,

�(0, (x1 − 10∕ cos(30◦) t, x2)
T), otherwise,

30◦

Solid wall

urul
ul =





8
66 cos(30◦)
−66 sin(30◦)

563.5





ur =





1.4
0
0
2.5





Fig. 11  Double Mach reflection: initial configuration
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where �ext depends on the solution �− = (�−, (�v1)
−, (�v2)

−, (�E)−)T itself. From �ext we 
compute a suitable boundary condition �bc . The overall configuration is shown in Fig. 11.

Discretization. Simulation parameters are the following. We consider quadrilateral Car-
tesian grids with uniform cells on each level. The subdivision is dyadic, i.e., |M�| = 2d . 
The computations have been performed using a third-order scheme, i.e., p = 3 . For the 
time discretization an explicit third-order SSP-RK method with three stages and CCFL = 0.1 
is used. To exactly compute the integrals in the scheme we use a tensor product based 
Gaussian quadrature formula with (p + 1)d points. To avoid limiting in regions, where the 
solution is smooth, we consider a Shu constant of M = 50 , see  [21, 23]. To reduce the 

Fig. 12  Double Mach reflection: adaptive solution (density) and corresponding grid for L = 6 using the 
wavelet-free approach

Fig. 13  Double Mach reflection: comparison of fine structures and adaptive grids on successive refinement 
levels
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computational cost, the computations have been performed in parallel applying the paral-
lelization strategy described in [34] on a 16 × Intel Xeon Gold 5118 cluster with 2.3 GHz 
CPU frequency using 280 nodes.

Computations. We perform adaptive computations starting with a grid on level 0 con-
taining 20 × 5 cells. We perform computations up to t = 0.2 with different maximum 
refinement levels 5 ⩽ L ⩽ 7 . Since this test case contains discontinuities, we consider the 
heuristic strategy with � = 1 and Cthr = 1 for the choice of the threshold value, i.e., �L = hL . 
In Fig. 12 the adaptive solution (density � ) and the corresponding adaptive grid are exem-
plarily shown for L = 6.

First, we find that all relevant structures of the solution are present in our results by 
comparing our adaptive results using L = 6 with the (uniform) results from other works, 
for instance [23, 51]. Furthermore, we note that the grid is only refined near to discontinui-
ties or in areas where the solution consists of small structures needing a high resolution. In 
regions with less fluctuations the adaptive grid is relatively coarse.

In Fig. 13 we compare the adaptive solutions and the corresponding grids for different 
maximum refinement levels L in the blow-up region on the right-hand side of the domain. 
Thereby we note that the structures are more sharply resolved with increasing resolution. 
Moreover, instabilities occur at the bottom of the “red triangle” with increasing resolution. 
It is well-known and observed by many others that these instabilities occur, cf.  [23, 58]. 
In fact, the absence of these instabilities is usually related to a too coarse resolution or too 
diffusive stabilization in the scheme, cf. [51, 70]. Thus, it seems to be reasonable that we 
observe the instabilities only if the maximum refinement level is sufficiently large. More-
over, this shows that the adaptive scheme is capable of resolving these features even if they 
develop during the computation and are not present from the very beginning.

To assess the efficiency of the adaptive scheme and to bring out the difference between 
the classical and the wavelet-free approach we list the maximum number of cells in the 
grid Nmax ∶= max{|In| ∶ n = 0,⋯ ,N} for the different computations in Table  7. For 

Table 7  Double Mach reflection: comparison of the maximum number of cells in the adaptive scheme dur-
ing the computation

Adaptive Uniform

Computation N
max

 (wavelet-free) N
max

 (classical) N
max

 (reference grid)

L = 4 6 022  (23.52%) 5 341   (20.86%) 25 600
L = 5 15 520  (15.16%) 13 573  (13.25%) 102 400
L = 6 40 768  (9.95%) 33 469  (8.17%) 409 600
L = 7 124 447  (7.60%) 91 888  (5.61%) 1 638 400

Table 8  Double Mach reflection: 
comparison of the CPU times for 
adaptive computations

Classic Wavelet-free

Computation Total /s Per timestep /s Total /s Per timestep /s

L = 4 37.13 0.094 234 21.77 0.077 551
L = 5 226.13 0.092 909 530.75 0.108 270
L = 6 2 007.89 0.121 220 2 244.05 0.135 620
L = 7 5 307.80 0.155 910 5 675.14 0.166 710
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instance, the adaptive grid for L = 6 consists of at most 40 768 and 33 469 cells using the 
wavelet-free approach and the classical approach, respectively. Again, we observe that the 
grids using the wavelet-free approach are slightly more refined than the grids using the 
classical approach. However, the uniform grid of the reference scheme on level L = 6 con-
sists of 409 600 cells. Thus, the adaptive grids contain only approx 9.95% and 8.17% of the 
cells of the uniform grid of the reference scheme. For all considered maximum refinement 
levels the difference between both approaches is around 2%~3% points. Compared with the 
computational complexity of the reference scheme, i.e., Nmax = |IL| , this difference is of 
minor relevance, since the computational costs are reduced significantly with both 
approaches. The difference can be explained by the different local norms (17) and (67) that 
are equivalent but not identical. Note that due to Parseval’s identity, (17) can be computed 
equivalently by either ‖d

�
‖2∕

√�V�� or ‖d
M�

‖2∕
√�V�� avoiding the costly computation of 

��,1.
Finally, we summarize in Table 8 the CPU times for the adaptive computations. We note 

that wavelet-free computations are faster than the classic approach on lower refinement 
levels but become more expensive with increasing number of refinement levels. This is 
caused by the fact that the adaptive grids for the wavelet-free computations become denser 
with increasing refinement levels in comparison to the classic computations. As can be 
concluded from Table 7 the ratio of the maximum number of cells Nmax for the wavelet-
free approach and the classic approach increases from 1.13% ( L = 4 ) to 1.35% ( L = 7 ). 
We emphasize that the difference is not significant as was already observed for the 1D 
test cases. As it was to be expected, on Cartesian grid hierarchies the classic approach is 
slightly preferable. To demonstrate the benefit of the wavelet-free approach we consider the 
following test case.

6.3  Shock‑Vortex Interaction with a Boundary Layer

So far, all computations were performed on dyadic grid hierarchies. We emphasize that 
for a dyadic grid hierarchy the cost for the explicit construction of multiwavelets can be 
significantly reduced because it needs to be done only once for a reference cell. Then the 
multiwavelets are mapped to the local elements by an affine mapping. Thus, the benefit 
of the wavelet-free approach is limited. However, in case of grid hierarchies with a non-
uniform subdivision, e.g., using stretched grids, there does not exist an affine mapping to 
a reference element and the multiwavelets have to be constructed element wise. Then it is 
mandatory to apply the wavelet-free approach because for this configuration the computa-
tional costs for the classical approach are prohibitively high. For an example we consider 
the test case of a shock-vortex interaction with a boundary layer using stretched Cartesian 
grids. For this configuration we do not perform the computation for the classical approach 
because the construction of the multiwavelets and the evaluation is too costly as can be 
concluded from Tables 2 and 3 and Fig. 4.

Problem. Here we consider the two-dimensional compressible Navier-Stokes equations 
in dimensionless form with the vector of dimensionless conserved quantities 
� = (�, ��T, �E)T and the vector of fluxes �(�) = �inv(�) − �vis(�,∇ ⋅ �) composed of an 
inviscid and viscous part. The inviscid flux vector is given by 
�inv(�) = (𝜌�, 𝜌�⊗ � + p�, 𝜌�(E + p∕𝜌))T . The viscous flux vector is determined by 
�vis(�,∇ ⋅ �) = Re−1(0,�,�� − �) with the shear stress tensor 
� = �(T)

(
∇� + (∇�)T −

2

3
∇ ⋅ �I

)
 and the dimensionless heat flux � = −

�(T)�

Pr
∇T  with a 



137Communications on Applied Mathematics and Computation (2022) 4:108–142 

1 3

constant Prandtl number Pr, heat capacity ratio � and dynamic viscosity � and thermal con-
ductivity � depending on the dimensionless temperature T ∶= E −

1

2
�2 . The non-dimen-

sionalization is performed such that there holds �(T) = �(T) . The viscosity coefficient is 
specified by the power law �vis(T) = (T∕Tref)

0.7 where the reference temperature 
Tref = 1∕(Ma2�(� − 1)) is based on the reference Mach number Ma and the heat capacity 
ratio � . Due to the viscous terms we need to modify the reference DG scheme, see Sect. 5, 
where we stabilize the viscous fluxes applying the BR-2 scheme by Bassi et al.  [10–12]. 
Again, the system is closed by the equation of state for the pressure for a thermally and 
calorically perfect gas with � = 1.4.

Configuration. We investigate the interaction of a shock wave with the boundary layer of 
an adiabatic wall in two dimensions ( d = 2) which is a well-known test case for compress-
ible Navier-Stokes equations, cf. [28, 54, 68, 72]. For this purpose, we consider a quadratic 
shock tube [0, 1]2 bounded by insulated adiabatic walls. The tube is filled with ideal gas at 
rest. Initially, a membrane is located at x1 = 0.5 separating two reservoirs containing gas 
with different densities and pressures. After removing the membrane at t = 0 , a shock wave 
followed by a weak contact discontinuity and a weak right-moving rarefaction wave is 
moving to the right. Due to the presence of viscosity, boundary layers develop at the solid 
walls at x2 = 0 and x2 = 1 . When the shock reaches the wall at x1 = 1 it is reflected. Then, 
the reflected wave interacts with the boundary layer resulting in complex wave structures.

Due to the symmetry of the problem, we compute the numerical solution only on the 
lower half of the tube, i.e., Ω = [0, 1] × [0, 0.5] and consider symmetry boundary condi-
tions at x2 = 0.5 . The initial configuration is shown in Fig. 14. The symmetry boundary 
conditions are realized by imposing �bc = (�−, (�v1)

−,−(�v2)
−, (�E)−)T as boundary state 

for the evaluation of the fluxes in the boundary integrals. The adiabatic wall boundary 
condition is prescribed by using the boundary state �bc = (�−, 0, 0, (�E)− − �− (�−)2)T. 
The Reynolds number is Re = 1 000.

Discretization. To adequately resolve the thin boundary layer developing at the 
wall y = 0 the grid hierarchy consists of stretched Cartesian meshes determined 
by applying a dyadic subdivision on the parameter domain Ω of the grid mapping 
�(�) = (x1, 0.5 + tanh(� (2 x2 − 1))∕(2 tanh(� )))T , � ∈ Ω where the strength of the stretch-
ing is specified by � . For � tending to zero the stretching coincides with the identity 
resulting in a uniform dyadic hierarchy, whereas for increasing � , the cells are more and 
more condensed toward x2 = 0 . Here, we use � = 1.8 . The time step is calculated by 
Δt = min(Cvisch

2,CCFL∕Chyph) with Cvisc = 0.01∕� and CCFL = 0.01 . The computations 
have been performed on a 16 × Intel Xeon Gold 5118 cluster with 2.3 GHz CPU fre-
quency using 280 nodes.

Computations. We perform adaptive computations up to t = 1 with different maxi-
mum refinement levels 3 ⩽ L ⩽ 5 based on a grid consisting of 30 × 15 cells on level 0. 
Due to the stretching we apply a localized strategy for the threshold value choosing 

Insulated wall

Symmetry line

urul
ul =





120
0
0

120
γ (γ−1)



 , ur =





1.2
0
0
1.2

γ (γ−1)





Fig. 14  Shock vortex interaction: initial configuration
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��,L = Cthr h
1+�

L,�
∕h� with hL,𝜆 ∶= min

𝜇∈IL∶V𝜇⊂V𝜆

|V𝜇|1∕d and h� ∶= |V�|1∕d . For details we refer 

to [34], Sect. 4.5.2. For the choice of the threshold value we again apply the heuristic 
strategy using Cthr = 1 and � = 1 . To realize the MRA and grid adaptation, we only con-
sider the wavelet-free approach to avoid the costly cell-wise construction of multiwave-
lets on the non-uniform hierarchy.

The adaptive solutions and the corresponding grids at t = 1 are shown in Fig.  15. 
First of all, we note that with sufficient resolution, i.e., sufficiently large L, our solu-
tions reveal the same structures as computed by other groups using solvers with uniform 
grids, cf. [28, 68, 72]. Hence, we observe that the grid adaptation is capable of refining 
the relevant structures in the solution. The solution using L = 5 reveals some indications 
that this flow might be unstable. This is backed up by observations in [28, 68].

To access the efficiency of the grid adaptation, we again focus on the maximum 
number of cells during the computation in the adaptive grid Nmax provided in Table 9. 
Here, we note that the adaptation is capable of reducing the computational cost signifi-
cantly. For sake of completeness, we record in Table 10 the CPU times for the adaptive 

Fig. 15  Shock vortex interaction: adaptive solutions and grids at t = 1 for 3 ⩽ L ⩽ 5 using a stretched-
dyadic subdivision

Table 9  Shock vortex 
interaction: comparison of the 
maximum number of cells in 
the adaptive scheme during the 
computation

Adaptive Fully refined
Computation N

max
 (stretched-hierarchy) N

max
 (reference grid)

L = 3 12 438  (43.19%) 28 800
L = 4 43 989   (38.18%) 115 200
L = 5 146 937  (31.88%) 460 800

Table 10  Shock vortex 
interaction: CPU times for 
adaptive computations

Computation Total /s Per timestep /s

L = 3 43 036.88 0.068 859
L = 4 81 690.23 0.090 369
L = 5 384 742.51 0.132 510
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computations. Since the full grids are at least three times the size of the adaptive grids, 
we refrain from performing the computations on the fully refined grids.

7  Conclusion

The wavelet-free approach enables a straight forward application of the adaptation concept 
to general hierarchies of nested grids. This approach requires only the construction of the 
single-scale basis functions which have to be constructed for the (adaptive) DG scheme 
anyhow.

The numerical results presented here lead to the conclusion that the wavelet-free 
approach is a suitable alternative to the classical wavelet-based approach to overcome the 
issues related to the construction of wavelets. However, the grids resulting from the use of 
the classical approach are slightly coarser than the ones using the more general wavelet-
free approach. Thereby, both approaches maintain the accuracy of the reference scheme. 
For that reason, the classical approach might be a good choice whenever the construction 
of the multiwavelets can be realized efficiently, e.g., when it is sufficient to construct them 
only on a single reference element. However, the additional refinement of the wavelet-free 
approach is comparably small in comparison to the overall gain from the grid adaptation. 
Thus, in most situations, especially when employing non-dyadic grids, this overhead is 
negligible. Moreover, the realization of the MRA and the adaptive scheme using the wave-
let-free approach is computationally less costly than using the classical approach. There-
fore, the wavelet-free approach is the preferable approach in the general case.
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