
Vol:.(1234567890)

Communications on Applied Mathematics and Computation (2023) 5:532–572
https://doi.org/10.1007/s42967-020-00087-1

1 3

ORIGINAL PAPER

Neural Network‑Based Limiter with Transfer Learning

Rémi Abgrall1 · Maria Han Veiga2 

Received: 19 December 2019 / Revised: 9 June 2020 / Accepted: 17 June 2020 /
Published online: 18 September 2020
© Shanghai University 2020

Abstract
Recent works have shown that neural networks are promising parameter-free limiters for
a variety of numerical schemes (Morgan et al. in A machine learning approach for detect-
ing shocks with high-order hydrodynamic methods. https​://doi.org/10.2514/6.2020-2024;
Ray et al. in J Comput Phys 367: 166–191. https​://doi.org/10.1016/j.jcp.2018.04.029,
2018; Veiga et al. in European Conference on Computational Mechanics and VII European
Conference on Computational Fluid Dynamics, vol. 1, pp. 2525–2550. ECCM. https​://doi.
org/10.5167/uzh-16853​8, 2018). Following this trend, we train a neural network to serve as
a shock-indicator function using simulation data from a Runge-Kutta discontinuous Galer-
kin (RKDG) method and a modal high-order limiter (Krivodonova in J Comput Phys 226:
879–896. https​://doi.org/10.1016/j.jcp.2007.05.011, 2007). With this methodology, we
obtain one- and two-dimensional black-box shock-indicators which are then coupled to a
standard limiter. Furthermore, we describe a strategy to transfer the shock-indicator to a
residual distribution (RD) scheme without the need for a full training cycle and large data-
set, by finding a mapping between the solution feature spaces from an RD scheme to an
RKDG scheme, both in one- and two-dimensional problems, and on Cartesian and unstruc-
tured meshes. We report on the quality of the numerical solutions when using the neural
network shock-indicator coupled to a limiter, comparing its performance to traditional lim-
iters, for both RKDG and RD schemes.

Keywords  Limiters · Neural networks · Transfer learning · Domain adaptation

Mathematics Subject Classification  65M99 · 65Y15 · 65Y20

 *	 Maria Han Veiga
	 mhanveig@umich.edu

	 Rémi Abgrall
	 remi.abgrall@math.uzh.ch

1	 University of Zurich, Zurich, Switzerland
2	 University of Michigan, Ann Arbor, USA

http://orcid.org/0000-0002-7562-7014
https://doi.org/10.2514/6.2020-2024
https://doi.org/10.1016/j.jcp.2018.04.029
https://doi.org/10.5167/uzh-168538
https://doi.org/10.5167/uzh-168538
https://doi.org/10.1016/j.jcp.2007.05.011
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-020-00087-1&domain=pdf

533Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

1  Introduction

When dealing with nonlinear conservation laws, it is well known that discontinuous solu-
tions can emerge, even for smooth initial data [14]. The numerical approximation of the
discontinuous solution will develop non-physical oscillations around the discontinuity,
which in turn will negatively impact the accuracy of the numerical scheme. There exist
many different stabilisation methods to control these oscillations, for example, through the
addition of a viscous term (as denoted by the right-hand side of (1)) or use of limiters:

Neural networks regained popularity in the past decade due to the computational tracta-
bility of the back-propagation algorithm, used for the learning of weights and biases in a
deep neural network. Deep neural networks have been shown to generate robust models for
classification in many areas of applications [23, 39] and theoretically, to generate universal
classifiers and function approximators [34, 35, 38]. In the context of computational fluid
dynamics, the idea of using artificial neural networks as troubled-cell indicators has been
explored first in [31], motivated by the objective to find a universal troubled-cell indicator
that can be used for general conservation laws. The authors show that this type of approach
is promising, performing better than traditional, parameter-dependent limiters. Further
studies following a similar idea have been conducted for other numerical schemes [4, 28].

Using limiters is a common way to perform shock capturing in a numerical scheme. In
the context of the discontinuous Galerkin (DG) method, we can point out, among many,
the high-order (HIO) limiter [6, 22], which does the limiting in a hierarchical manner. In
particular, [22] relies on the modal representation of the numerical solution and it is formu-
lated specifically for the modal DG method using Legendre polynomials as basis functions.
For high-enough resolution, it does not clip the solution extrema.

Transfer learning is concerned with using a model built using a particular source data
distribution on a different (but related) target data distribution [42]. One simple example is
the task of spam filtering, where a model is used to discriminate between spam and non-
spam emails—a model can be trained on the data of a particular user and adapted to be
used on the data of a new user, who might receive significantly different emails. Following
the same reasoning, we are interested in training shock-indicators that work in different
numerical schemes, while using only (or the majority of the) training data from a particular
numerical scheme. This can be useful, for example, in the case where there is access to a
solver for which labeled data are easy to obtain.

In this work, we are interested in studying two main questions.

(i)	� Is it possible to learn a data-driven shock-indicator function which requires minimal
user input once trained?

(ii)	� Can this shock-indicator be used in different numerical schemes, leading to stabilisa-
tion methods which are agnostic to the underlying numerical scheme?

The paper is structured as follows: we start some preliminaries in Sect. 2, the methodol-
ogy of training a data-driven shock-indicator and its integration with existing computa-
tional fluid dynamics (CFD) codes are presented in Sect. 3; in Sect. 4, the construction
of the dataset is described (as well as the extension to two-dimensional problems) and
Sect. 5 describes the transfer learning strategy. In Sects. 6 and 7, numerical results for

(1)
�

�t
u + ∇ ⋅ f (u) = ∇ ⋅ (�(u)∇u).

534	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

one-dimensional and two-dimensional problems, respectively, are shown. We conclude the
paper with a discussion and outlook in Sect. 8 and finally, our conclusions are drawn in
Sect. 9.

In the spirit of open and reproducible science, all the datasets, trained models and some
solvers1 are made available in a public repository [15].

2 � Preliminaries: the Runge‑Kutta Discontinuous Galerkin (RKDG)
Scheme

Let us consider the classical modal RKDG method [10] using a simple scalar problem in
one space dimension:

Let � ∈ ℝ be a regular domain which is discretised by N elements Kp = [xp−1∕2, xp+1∕2] for
p = 1,⋯ ,N . Consider the local space V given by the set {�i}

n
i=0

 of one-dimensional Leg-
endre polynomials with degree of at most n in x. For any element K, the numerical solution
is written as

where the modal coefficient ûK
i
(t) is obtained by the L2 projection of the solution u(x) in

element K on the ith Legendre basis polynomial. The DG method is based on a weak form
of (2), projecting it on the polynomial basis, followed by an integration by parts. We obtain
the following semi-discrete formulation of the DG method as

where we exploited the fact that Legendre polynomials form an orthonormal basis. Note
that the surface term in the previous equation needs a Riemann solver to compute a con-
tinuous numerical flux at element boundaries, noted here f̂  . Once the spatial component
has been discretised, we are left with an ordinary differential equation of the form

where L denotes the DG discretisation operator. Integration in time is performed using
a strong stability preserving (SSP) RK method [17]. The time step has to fulfill a Cou-
rant–Friedrich–Lewy (CFL) condition to achieve the numerical stability, which for the
RKDG scheme reads [11]

(2)

⎧⎪⎨⎪⎩

�tu + �xf (u) = 0, (x, t) ∈ � × [0,∞],

u(t = 0) = u0,

u�� = g.

uK(x, t) =

n∑
i=0

ûK
i
(t)𝜙i(x),

dûK
i

dt
+
[
f̂ (uK(x, t))𝜙i(x)

]xp+1∕2
xp−1∕2

− ∫Kp

f (uK(x, t))𝜕x𝜙i(x)dx = 0, i = 0,⋯ , n,

d

dt
u = L(u),

1  Some of the solvers used are still under development and not publicly available.

535Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

where n is the polynomial degree and C is a constant usually set to C = 0.8.
The method described above can compute solutions to (2) which are smooth (or con-

tain weak shocks or other discontinuities). However, if the discontinuities are strong, the
numerical solution will become significantly oscillatory. To surpass these difficulties, a
slope limiter is used after each RK inner stage.

Now we describe the limiting procedure for a modal RKDG scheme as in [36], consid-
ering the minmod (MIN) limiter [18].

The coefficient u1 for the linear term of the DG basis is modified as

here ũK
1

 is the new weight, Kl denotes the left neighbouring cell and Kr the right neighbour-
ing cell, and the MIN function is defined as

In a system, each component of the conserved variables is limited separately. The
√
3-

factors account for the scaling of the Legendre polynomial. If the limited weights are the
same as the old weights (i.e., ũK

1
= ûK

1
 ), the solution uK is unlimited. Otherwise, the limited

numerical solution becomes

discarding further HIO information. Although this limiter effectively reduces over-shoot-
ings and oscillations, it can also be triggered at smooth extrema and lead to an unnecessary
loss of HIO information. To avoid clipping of the solution at smooth extrema, the limiter
presented above can be improved by a bounded version [11],

Here M is a user-defined parameter that gives an estimate of the smoothness of the solution
u(x). It is to note that M can take a value in a large range of positive numbers, and that it
is usually a global quantity fixed in the beginning of the numerical experiment. Thus, this
can be a drawback if the solution has different smoothness properties across the domain (in
space and time).

Conceptually, a limiter can be thought of having two sub-steps:

(i)	� a shock-indicator procedure C that identifies a “troubled cell” (a cell which needs
limiting);

(ii)	� a reconstruction procedure � that modifies the solution polynomial in those troubled
cells into a reconstructed polynomial which is less oscillatory.

Δt =
C

2n + 1

Δx
||vmax

||
,

ũK
1
=

1√
3
minmod

�√
3ûK

1
,
1

2

�
û0 − û

Kl

0

�
,
1

2

�
û
Kr

0
− ûK

0

��
,

minmod(a, b, c) =

{
smin(|a|, |b|, |c|), s = sign(a) = sign(b) = sign(c),

0, otherwise.

ũK = ûK
0
+ ũK

1
𝜙K
1
,

minmodB(a, b, c) =

{
a, if |a| ⩽ M(ΔxK)2,

minmodB(a, b, c), otherwise.

536	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Then we can write a limiter as a function s that takes some local properties of the solution
(let us denote this with the map X(u(x))), and returns a modified solution ũ(x) , which has
some desired properties (e.g., non-oscillatory, maximum principle preserving, etc.):

For example, as detailed above, the MIN-based limiting procedure can be understood
in these two sub-steps: C(X(u)) checks if ũ1 = û1 , there is an equality, no troubled cell is
detected, otherwise, the cell is troubled. Then if the cell is troubled, the reconstruction
𝛱(X(u(x))) = ûK

0
+ ũK

1
𝜙K
1

 is used. The map X(u(x)) encodes local properties of the solution
around the interval K. In this case,

In the following section, we describe how to construct a data-driven shock-indicator func-
tion C which is parameter-free once it has been trained.

3 � Data‑Driven Method

In the following section, we focus on the three main aspects of the proposed method.

–	 The setup of the learning algorithm to generate a shock-indicator function (Sect. 3.1).
–	 The integration of a neural network that serves as a shock-indicator with an existing

CFD code (Sect. 3.2).
–	 A description of the performance measures used to validate the proposed data-driven

method (Sect. 3.3).

3.1 � Setup of the Learning Algorithm

In this section, we describe the details of the learning algorithm to generate a data-driven
shock-indicator.

We wish to learn a map C ∶ X → Y , where X denotes an arbitrary set containing exam-
ples that we wish to label with possible outcomes Y . The task at hand is a binary classi-
fication (i.e., is there a troubled cell/is there a shock in this cell?), thus C will be a binary
classifier and Y = {0, 1}.

We choose C to be defined by the composition of a sequence of functions g1, g2,⋯ , gn ,
yielding the function form

This is known as the multilayer perceptron (MLP) neural network (a type of deep neu-
ral network [16]). There are many different classifiers which can be used, but it has been
shown that deep neural networks perform well on a variety of classification tasks, in par-
ticular when the classification plane is nonlinear.

Each function gi(wi, bi, hi(⋅)) is parameterised by a matrix wi , called the weights matrix,
a vector bi called the bias vector and an activation function hi(⋅) which introduces the non-
linearity on the neural network.

s(u(x),X(u(x))) =

{
u(x), if C(X(u)) does not identify a troubled cell,

�(u(x)), if C(X(u)) identifies a troubled cell.

X(u(x)) =
�
ûK
1
,
1

2

√
3(û0 − û

Kl

0
),
1

2

√
3(û

Kr

0
− ûK

0
)
�
.

C(x) = gn(⋯ g2(g1(x))).

537Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

These parameters are tuned through the minimisation of a loss function L(x) , which meas-
ures how well the mapping C performs on a given dataset D of inputs and outputs, using back-
propagation and gradient descent algorithms.

The gradient descent [37] is a first-order iterative optimization algorithm for finding a
local minimum of a function (in this case, the loss function L(x) ), relying on the fact that
for a small enough update �,

then

for a differentiable and convex loss function L . Because we cannot guarantee the convexity
of our loss function, a stochastic gradient descent [7] like procedure is used. It is not the
standard stochastic gradient descent because instead of using a global learning rate � , the
Adam algorithm [21] is used, which chooses the learning rate adaptively for each param-
eter (in this case, for the weights and biases).

Furthermore, two different loss functions are considered:

–	 the standard cross-entropy

–	 the weighted cross-entropy

We consider the weighted cross-entropy loss function as we expect that there will be a
class imbalance in the dataset (both during the training phase and prediction phase). In
particular, it is more likely to find cells which are in no need for stabilisation than ones
which are in need for stabilisation. Furthermore, it is more desirable to overlimit than to
miss a cell that needs limiting, as it might lead to unphysical results and potentially crash
the code. To account for this class imbalance, it is common practice to use a weighted cost
function, which increases the penalty of mislabeling a positive label [20]. The asymmetry
in the loss function is added through the coefficient �.

Finally, we specify the activation functions used, for the initial n − 1 hidden layers, rec-
tified linear units (ReLU) are used:

Although there exist more sophisticated activation functions, typically modifications to
ReLU, e.g., leaky ReLU, parametric ReLU or randomised leaky ReLU, these require fur-
ther parameter estimation, adding at least one more dependence to the saved model, and
the empirical improvement on the performance is not extremely significant [43].

For the last layer (output layer), a sigmoid function is used:

an+1 = an − �∇L(an),

L(an+1) ⩽ L(an)

(3)L(D) = −
1

N

N∑
i

yi log(p̂i) + (1 − yi) log(1 − p̂i);

(4)L(D) = −
1

N

N∑
i

yi log(p̂i)𝜔 + (1 − yi) log(1 − p̂i)(1 − 𝜔).

h(x) = max(0, x).

h(x) =
1

1 + e−x
,

538	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

to attain a value that can be interpreted as a probability.
Lastly, the datasets (described in Sect. 4) are split into disjoint sets of training, valida-

tion and test sets.
The training phase is detailed in Algorithm 1. The hyper-parameters, such as batch-size

(required the stochastic gradient descent type of minimization procedure), number of train-
ing epochs and general architecture of the neural network are fixed at run-time. We also
add a early stopping criteria to minimize the risk of overfitting to the training data. This is
triggered when the empirical generalisation error (measured through the loss on the valida-
tion set) increases for several training cycles [30].

3.1.1 � Architecture

The architecture of the neural network is a hyperparameter as well. There is the general
empirical wisdom that deep networks (more hidden layers) generalise better than shallow
networks, even with the same amount of degrees of freedom [26].

There are, in addition, works which aim to establish lower bounds for the shape and
size of deep neural networks, for example, [29], which establish lower bounds for the num-
ber of required non-zero weights and layers necessary for an MLP (using ReLU activation
functions).

However, to use those estimates, assumptions about the classification function’s regular-
ity and desired approximation accuracy (in the L2 norm) must be made, and those change
the shape and size of the network dramatically, leading to very different lower bounds for
the number of layers and number of neurons. In practice, we choose networks which are
deeper and have small width, mainly with the intent to reduce the computational complex-
ity of the model evaluation in mind. In Appendix A, the explicit architectures are detailed.

3.1.2 � Directional Invariance

To introduce the feature invariance (see Fig. 1), the models tested use an aggregate way to
estimate the label. For a given feature vector � , several copies of this vector are generated
�1,⋯ , �n where permutations between the features are performed and their prediction is
evaluated. The final label estimation is given by the majority label produced when evaluat-
ing the classifier on samples �, �1,⋯ , �n . This ensures the response of the model does not
depend on the orientation of the stencil.

539Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

3.2 � Integration of the Method on a CFD Code

Assuming that an MLP has been trained, then the model can be fully specified by the com-
position of the functions gi . Furthermore, each gi can be fully characterized by the follow-
ing information:

where wi denotes the weights matrix, bi the bias vector, and hi the activation function.
There are two necessary steps to integrate a trained neural network with an existing code.

(i)	� Generation of features: given the local solution u, generate the feature quantities X(u).
(ii)	� Prediction routine: given the features X(u), the classifier C is evaluated on the given

feature vector. Once the neural network has been trained offline, the weights and
biases can be loaded onto a CFD code. What remains to be implemented are the
activation functions for the hidden layers and the activation function for the output
layer to evaluate C at some given input.

Now that the neural network-based shock-indicator has been described, the full limiting
strategy is detailed in Algorithm 2. We will refer to this procedure as the neural network
limiter. Furthermore, the limiter which we use in conjunction with the neural network
shock-indicator is the HIO limiter.

For systems, each variable is limited independently as in Sect. 2.

wi, bi, hi(⋅),

Fig. 1   Example of desired invariance, with respect to a reflection through the y-axis

540	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

3.3 � Measuring Performance of Model

We use two sets of performance measures, namely

(i)	 label prediction measures;
(ii)	 the L1-norm of the numerical solution.

For the first set of measures, we can use typical metrics used in computational statistics
and machine learning communities:

where tp is the number of correctly predicted positive labels, tn the number of correctly
predicted negative labels, fp the number of incorrectly predicted positive labels, and fn the
number of incorrectly predicted negative labels. We note that it is important to consider
recall and precision because the distribution of labels is expected to be imbalanced. Judg-
ing the performance of a classifier only through the accuracy could be misleading, as a
classifier can have a high accuracy by always predicting the majority label.

For the second performance measure, we consider the L1-norm because it is the rel-
evant measure for a CFD code and we can study the effect of this method on the error of
the numerical solution.

4 � Dataset

The dataset is an integral part of data-driven studies. It contains the data for which we
want to learn a mapping for. The task is to learn a function which indicates whether a
discontinuity is present in the solution or not. The dataset is the set containing N sam-
ples {Xi, yi}

N
i=1

 , where Xi denotes some local properties of the solution u(x) (features)
and yi (labels) indicates the existence (or not) of a discontinuity.

For the one-dimensional case, the dataset is generated by performing many runs on a
one-dimensional DG code solving the advection equation for different initial conditions,
orders and mesh sizes (see Table 1), and the labels are obtained by running the HIO

tp + tn

tp + tn + fp + fn
(accuracy),

tp

tp + fn
(recall),

tp

tp + fp
(precision),

Table 1   Runs used to generate the one-dimensional dataset

Initial condition
� = sin(2�x),

{
8, 0.25 ⩽ x ⩽ 0.75,

2, otherwise,

{
1

2
sin(2�x), x ⩽ 0.3,

0, otherwise,
x ∈ [0, 1]

Advection speed −1, 1

Mesh size 8, 16, 32, 64, 128
Order 2, 3

541Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

limiter [22]. Because the HIO limiter is sometimes triggered (and modifies the solu-
tion) even when the solution is smooth, we introduced a further threshold to generate a
positive label: if the limited solution deviates from the unlimited solution by more than
� = 1% , then we get a positive label.

A visual representation of an entry on the dataset can be seen in Fig. 2, where each
discrete point in x, the associated solution u(x) and its local properties generate a data
point in the feature space, and the corresponding label is denoted by the presence of
a cross (if the cell is troubled) or its absence (if the cell is not troubled). Empirically,
we noted that the cells which are flagged by the HIO limiter are similar to a well-tuned
TVD limiter with the chosen threshold �.

4.1 � Features

The features X are the different quantities used to describe the local solution u. For the
sake of generalisation, we choose features which are readily available in different numeri-
cal methods, such as the cell mean value, values at interface, divided differences between
neighbours (see Table 2 for the complete description of features).

Furthermore, to introduce some magnitude invariance, we normalise physical values
(such as averages or pointwise values):

where umax = max(ūi, ūi+1, ūi−1) and umin = min(ūi, ūi+1, ūi−1) (taken only over averages).
This is a very important step, as a naive normalisation can lead to a non-informative repre-
sentation of the feature vector. The reason why this normalisation was chosen was because
it made intuitive sense to measure the deviation of the degrees of freedom with respect to
the maximum and minimum of the local patch.

(5)unormal(u∗) =
u∗ − umin

∣ umax ∣ + ∣ umin ∣
−

umax − u∗

∣ umax ∣ + ∣ umin ∣
,

Fig. 2   Example of a dataset
entry. The dashed line denotes
the limited solution, whereas the
full line denotes the unlimited
solution. Furthermore, the
crosses “×” denote cells which
are flagged as troubled cells

542	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

4.2 � Extension to Two‑Dimensional Problems

The extension to two-dimensional problems is done in a straightforward manner, using the
initial conditions detailed in Table 3 to generate the dataset.

To obtain the labels, the HIO limiter is used again with a threshold � = 0.25% for maxi-
mal difference between the limited and unlimited solutions. This is necessary as although
the HIO limiter might not degrade smooth solutions, it is still triggered (Fig. 3).

Furthermore, the features used are shown on Table 4 and the features are normalised in
the same manner as in the one-dimensional case.

5 � Transfer Learning

With the objective to generate a shock-indicator function which does not depend on the
underlying numerical scheme, we are interested in using a shock-indicator function trained
with simulation data from a particular solver (numerical scheme and mesh type) and test-
ing its performance in a different solver (in particular, for a different numerical scheme

Table 2   Features table for the one-dimensional problem

ID Feature name Description

1 h Cell width
2 ūi Average value of solution at cell i
3 ūi+1 Average value of solution at cell i + 1

4 ūi−1 Average value of solution at cell i − 1

5 u+
i−

1

2

Value of solution at interface i − 1

2
 reconstructed in cell i

6 u−
i+

1

2

Value of solution at interface i + 1

2
 reconstructed in cell i

7 u−
i−

1

2

Value of solution at interface i − 1

2
 reconstructed at cell i − 1

8 u+
i+

1

2

Value of solution at interface i + 1 reconstructed at cell i + 1

9 dui+1 Undivided difference between ūi and ūi+1
10 dui−1 Undivided difference between ūi and ūi−1
11 dui Undivided difference between ūi+1 and ūi−1 , divided by 2

Table 3   Runs used to generate the two-dimensional dataset

Initial condition
{

8, 0.25 ⩽ |�| ⩽ 0.75,

2, otherwise,
exp(−10((x1 − 0.5)2 + (x2 − 0.5)2)2), � ∈ [0, 1]2

Advection speed (−1,−1) , (1, 1), (1, 0), (0, 1)
Mesh size 16, 32, 64, 128
Order 2, 3

543Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

Fig. 3   The HIO limiter wrongly
getting activated in a smooth
solution

Table 4   Features table for the two-dimensional problem

ID Feature name Description

1 Δx Cell x-width
2 Δy Cell y-width
3 ūi,j Average value of solution at cell i
4 ūi+1,j Average value of solution at cell i + 1, j

5 ūi−1,j Average value of solution at cell i − 1, j

6 ūi,j+1 Average value of solution at cell i, j + 1

7 ūi,j−1 Average value of solution at cell i, j − 1

8 u+
i−

1

2
,j

Value of solution at interface i − 1

2
 reconstructed in cell i, j

9 u−
i+

1

2
,j

Value of solution at interface i + 1

2
 reconstructed in cell i, j

10 u+
i−

1

2
,j

Value of solution at interface i − 1

2
 reconstructed at cell i − 1, j

11 u−
i+

1

2
,j

Value of solution at interface i + 1

2
 reconstructed at cell i + 1, j

12 u+
i,j−

1

2

Value of solution at interface j − 1

2
 reconstructed in cell i, j

13 u−
i,j+

1

2

Value of solution at interface i + 1

2
 reconstructed in cell i, j

14 u+
i,j−

1

2

Value of solution at interface i − 1

2
 reconstructed at cell i, j − 1

15 u−
i,j+

1

2

Value of solution at interface i + 1

2
 reconstructed at cell i, j + 1

16 dui+1,j Divided difference between ūi,j and ūi+1,j
17 dui−1,j Divided difference between ūi,j and ūi−1,j
18 dui,jx Divided difference between ūi+1,j and ūi−1,j , divided by 2
19 dui,j+1 Divided difference between ūi,j and ūi,j+1
20 dui,j−1 Divided difference between ūi,j and ūi,j−1
21 dui,jy Divided difference between ūi,j+1 and ūi,j−1 , divided by 2
22 umax Maximum value between the averages in the considered patch
23 umin Minimum value between the averages in the considered patch

544	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

and mesh type). Furthermore, we want to explore different strategies which can be used to
perform the transfer learning.

We describe how to adapt a neural network shock-indicator that has been trained on data
from a modal DG scheme on a Cartesian mesh to a neural network shock-indicator that
works on a residual distribution (RD) scheme ([1, 2, 32, 33] for a brief introduction) on a
Cartesian mesh and an unstructured triangular mesh.

The motivations to study this type of problem are, first, for some numerical schemes,
there are limiters which are designed to be parameter free which rely on a particular feature
of the underlying numerical scheme. It would be desirable if limiters designed for a par-
ticular numerical scheme could be generalised to be used for different numerical schemes.
Second, there might be a particular numerical solver for which it is easier to generate
labeled data.

Traditional supervised machine learning operates under the assumption that training and
testing data are taken from the same input space and the same data distribution. However,
this assumption does not always hold. Transfer learning aims to produce an effective model
for a target task with limited or no labeled training data, using knowledge from a different,
but related problem.

Formally, the problem of transfer learning can be written as let Xs be the source instance
space. In this space, each instance xs ∈ Xs is represented by a feature vector �s ∈ Xs , where
Xs denotes the source feature space. Let Xt be the target instance space and similarly,
xt ∈ Xt is represented by a feature vector �t ∈ Xt , where Xt denotes the target feature space.
In the case of heterogeneous transfer learning, we have that Xt ≠ Xs.

Most heterogeneous transfer learning solutions involve a transformation of the feature
spaces: a symmetric transformation takes both feature spaces Xt,Xs and learns a feature
transformation to project each vector onto a common space for adaptation purposes Xc
[42], whereas an asymmetric transformation transforms the source feature space to align
with the target feature space (or vice-versa). This approach is appropriate when the source
and target have the same class label space and one can transform between Xt and Xs.

In this case, the source dataset is generated as detailed in Sect. 4 and the target datasets
are described below (Sect. 5.2.1). The end goal is to understand to what extent a shock-
indicator designed for one specific class of numerical schemes (in this work, modal DG on
Cartesian meshes), can be effective on a different numerical scheme (RD, both for struc-
tured and unstructured meshes).

5.1 � One‑Dimensional Case

We use a trained neural network shock-indicator and we integrate it with a one-dimensional
RD code. Note, we must find a projection of the solution computed with the RD scheme
to the feature space of the considered neural network. The one-dimensional case is not
difficult, in particular, because when designing the feature space for the one-dimensional
limiter, quantities which are readily available in most numerical schemes were chosen.

5.2 � Two‑Dimensional Case

The two-dimensional case is not as simple, as the shock-indicator is trained using simula-
tion data from Cartesian meshes, and the target problems are defined not only on Cartesian
meshes but also on triangular, unstructured meshes.

545Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

To this end, we must find a common feature space between these two methods. In par-
ticular, we test the two simple strategies:

–	 mapping to feature space of the Cartesian model,
–	 followed by a retraining phase.

Mapping to unstructured mesh While the mapping to structured square meshes is
quite straightforward, for unstructured meshes, we project the numerical solution of
the RD scheme, defined on triangular elements, to the feature space of the classifier
(defined on a Cartesian mesh, as defined in Table 4). The feature transformation can be
found in Table 5.

Table 5   Features transformation

ID Feature Remapped Description

1 Δx
√
a Square root of element area

2 Δy
√
a Square root of element area

3 ūi,j ūi Average value of solution at triangle i
4 ūi+1,j ūi,1 Average value of solution at neighbouring cell 1 of cell i
5 ūi−1,j ūi,2 Average value of solution at neighbouring cell 2 of cell i
6 ūi,j+1 ūi,3 Average value of solution at neighbouring cell 3 of cell i
7 ūi,j−1 1

4

�
ūi,j +

∑
k

ūk

�
Average value of solution at patch

8 u+
i−

1

2
,j

u(xe1) Value of solution at mid-point of edge shared between triangle i and
neighbour 1

9 u−
i+

1

2
,j

u(xe2) Value of solution at mid-point of edge shared between triangle i and
neighbour 2

10 u+
i−

1

2
,j

u(xe3) Value of solution at mid-point of edge shared between triangle i and
neighbour 3

11 u−
i+

1

2
,j

ūi Average of solution at triangle i

12 u+
i,j−

1

2

u(xe1) Value of solution at mid-point of edge shared between triangle i and
neighbour 1

13 u−
i,j+

1

2

u(xe2) Value of solution at mid-point of edge shared between triangle i and
neighbour 2

14 u+
i,j−

1

2

u(xe3) Value of solution at mid-point of edge shared between triangle i and
neighbour 3

15 u−
i,j+

1

2

ūi Average of solution in triangle i

16 dui+1,j ūi − ūi,1 Undivided difference between ūi and ūi,1
17 dui−1,j ūi − ūi,2 Undivided difference between ūi and ūi,1
18 dui

1

2
(ūi,1 − ūi,2) Undivided difference between ūi,1 and ūi,2 , divided by 2

19 dui,j+1 ūi − ūi,3 Undivided difference between ūi and ūi,3
20 dui,j−1 ūi − ūi Placeholder undivided difference
21 duj

1

2
(ūi,1 − ūi,3) Undivided difference between ūi,1 and ūi,3 , divided by 2

22 umax umax Maximum value between the averages in the considered patch
23 umin umin Minimum value between the averages in the considered patch

546	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Again, as mentioned in Sect. 3.1.2, to enforce directional invariance, we perform the
aggregated prediction by permuting the stencil for the triangular meshes. This seems to
help with the asymmetry introduced by replacing a side of the rectangle (in the feature
space defined for the RKDG data) with the mean of the solution patch.

Retraining A model which was trained with the data generated by the DG scheme is
loaded and retrained using the dataset as described in Sect. 5.2.1.

To avoid the phenomena of catastrophic forgetting of neural networks [16], which
describes the lack of ability to learn different tasks in a sequence, in the retraining phase,
a hybrid dataset containing elements from the target and source dataset is used, with a
parameter � which determines the ratio to be taken from each dataset.

The retraining algorithm is detailed in Algorithm 3.

5.2.1 � RD Dataset

To generate the dataset, small meshes are constructed (see Fig. 4). We represent the solu-
tion in each control volume as a linear combination of the polynomial basis. Because there
is no straightforward way to generate a labeled dataset through simulations, we impose con-
tinuous and discontinuous functions, randomly varying the orientation of the discontinuity.

Fig. 4   Example meshes

(a) Triangular mesh (b) Cartesian mesh

547Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

Using this method, we can generate a large dataset of examples which is close to the
task at hand.

6 � One‑Dimensional Numerical Experiments

This section is split in three parts. First, we show the performance of several trained neural
networks on an unseen validation set by measuring the accuracy, recall and precision. In
the second part, we choose a model that performed well and we integrate it with a CFD
code. The model runs as a black-box (denoted as NN) limiter and we compare its perfor-
mance to the MIN limiter and the hierarchical HIO limiter through the L1 error norm. We
perform some tests for the linear advection equation and the Euler system of equations.
The initial conditions are chosen as different from the ones used for the training. Finally,
the transferred limiter is tested in the context of a one-dimensional RD scheme.

6.1 � Detection Rate

We measure the performance of several models (their architectures are given in Appendix
A) on an unseen test set. Their performances are detailed in Table 6). Going forward, we
select Model 4 as it performs well and the resulting size of the weights matrices per layer is
significantly smaller than Model 3. It is debatable whether the differences between Models
3, 4 and 5 are statistically significant. Furthermore, surprisingly, we note that the weighted
loss function did not improve the chosen performance metrics.

6.2 � Numerical Validation

6.2.1 � Linear Advection

Consider a linear advection equation with a ∈ ℝ:

and periodic boundary conditions.
Case of a Gaussian pulse We consider the following initial condition:

(6)
�

�t
u + a

�

�x
u = 0

Table 6   Performances

� denotes the estimate of the ratio between positive and negative labels, which could be measured empiri-
cally through the training data. Empirically, we have 𝜃̂ = 0.1.

Model Description Accuracy/% Recall/% Precision/%

Random Randomly guessing 50.00 �2 50.00
Model 1 2 hidden layers (HL) 77.96 69.17 24.13
Model 2 3 HL 95.52 80.66 84.19
Model 3 4 HL 95.15 79.26 82.67
Model 4 5 HL 95.14 81.71 81.01
Model 5 5 HL + weighted loss ( � = 5) 95.67 79.05 86.39

548	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

with the advection velocity a = 1.
The convergence is shown in Table 7 after one full crossing for orders 2 and 3. In

Fig. 5, we show how the maxima is clipped using different limiters for grid sizes of
N = 40 and N = 80 . We note that the MIN limiter clips the maximum value of the solu-
tion, as expected. The HIO limiter behaves as the MIN limiter for the second-order case,
but for the third order, it does not limit the solution. The neural network-based (NN)
limiter also limits the solution at the second order and N = 40 , but it improves as N
increases. The NN limiter seems to be slightly less diffusive than the HIO limiter for the
second-order case; furthermore, the performance does not depend (as much as the HIO
limiter) on the order of the method.

Case of a smooth pulse and square hat The following initial conditions contain a
smooth Gaussian pulse and a hat function:

again with the advection velocity a = 1.
The convergence is shown in Table 8 after one full crossing for orders 2 and 3.

Furthermore, in Fig. 6, we show how the different limiters perform, for a grid size of
N = 40 and N = 80 and at the second and the third order. Namely, we notice that at the
second order and N = 40 , the solution given by the NN limiter is similar to the unlim-
ited one, with less undershoots, however, increasing the resolution to N = 80 seems to
degrade the performance. Overall, in this case, the NN limiter seems able to get rid of
most under and overshoots associated with discontinuities, while having a similar per-
formance to the HIO limiter.

(7)u0(x) = 1 + 3 exp(−100(x − 0.5)2), (x, t) ∈ [0, 1] ×ℝ
+

(8)u0(x) =

{
2, |x − 0.7| ⩽ 0.1,

1 + exp
(
−

(x−0.25)2

2×0.052

)
, otherwise,

(x, t) ∈ [0, 1] ×ℝ
+,

Table 7   L1 error for one crossing of the Gaussian pulse (7) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 6.74E−02 0 1.26E−01 0 1.23E−01 0 6.79E−02 0
322 2.00E−02 0.5 4.81E−02 0.4 4.14E−02 0.4 1.97E−02 0.5
642 3.45E−03 1.7 1.31E−02 1.4 9.11E−03 1.6 3.45E−03 1.8
1282 5.42E−04 2.1 2.75E−03 1.6 1.59E−03 1.9 5.41E−04 2.1
(b) Order 3
162 6.92E−03 0 1.26E−01 0 1.17E−01 0 1.88E−02 0
322 4.58E−04 0.9 4.80E−02 0.4 2.92E−02 0.4 7.91E−04 0.7
642 7.93E−05 3.9 1.31E−02 1.4 6.85E−03 2.0 1.08E−04 4.6
1282 4.36E−05 3.2 2.75E−03 1.6 1.20E−03 2.0 5.15E−05 3.7

549Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

6.2.2 � One‑Dimensional Euler Equation

Now we consider the one-dimensional Euler equations, which describe the behavior of an
inviscid flow. This system of equations describes the evolution of a density � , a velocity v,
a pressure p and total energy E,

Un U

UU

N N

N N

x x

x x

Fig. 5   Maxima clipping of the Gaussian pulse (7) after one full crossing for approximation order of 2 (left)
and 3 (right) for grid size N = 40 and N = 80

Table 8   L1 error for one crossing of the Gaussian pulse and hat function (8) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 3.04E−02 0 5.37E−02 0 4.94E−02 0 3.20E−02 0
322 2.13E−02 0.6 2.63E−02 0.5 2.63E−02 0.5 2.12E−02 0.6
642 1.12E−02 0.5 1.16E−02 1.0 1.01E−02 0.9 1.11E−03 0.6
1282 8.33E−03 0.7 7.74E−03 1.1 7.74E−03 1.1 8.24E−03 0.8
(b) Order 3
162 1.17E−02 0 5.37E−02 0 5.27E−02 0 2.09E−02 0
322 7.61E−03 0.8 2.63E−02 0.5 1.63E−02 0.5 1.05E−02 0.7
642 4.63E−03 0.6 1.16E−02 1.0 7.58E−03 1.7 5.73E−03 1.0
1282 2.91E−03 0.7 7.74E−03 1.1 4.21E−03 1.4 3.37E−03 0.9

550	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

The system is closed with equation of state for an ideal gas

where e = E−1

2
�v2 is the internal energy.

The NN limiter is applied sequentially for each variable.
Case of Sod shock tube We consider the standard Sod shock tube test, given by the

initial conditions:

and � = 1.4 and gradient-free boundary conditions.

(9)
�

�t
� +

�

�x
(�v) = 0,

(10)
�

�t
(�v) +

�

�x
(�v2 + p) = 0,

(11)
�

�t
E +

�

�x
((E + p)v) = 0.

�e =
p

� − 1
,

(12)(𝜌, v, p)(x, 0) =

{
(1.0, 0, 1.0), 0 < x ⩽ 0.5,

(0.125, 0, 0.1), 0.5 < x < 1.0,
(x, t) ∈ [0, 1] × [0, 0.24],

Un U

UU

N N

N N

x x

x x

Fig. 6   Maxima clipping of the Gaussian and hat pulses (8) after one full crossing for approximation order
of 2 (left) and 3 (right) for grid size N = 40 and N = 80

551Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

Fig. 7   Density, velocity, and pressure fields for the Sod shock tube (12) at T = 0.24 for grid size N = 100
and approximation order 2

552	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Fig. 8   Density, velocity, and pressure fields for the Sod shock tube (12) at T = 0.24 for grid size N = 100
and approximation order 3

553Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

Fig. 9   Density, velocity, and pressure fields for the Sod shock tube (13) at T = 0.24 for grid size N = 100
and approximation order 2

554	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Fig. 10   Density, velocity, and pressure fields for the Sod shock tube (13) at T = 0.24 for grid size N = 100
and approximation order 3

555Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

Fig. 11   Density, velocity, and
pressure fields of the blast wave
interaction (14) at T = 0.038 for
grid size N = 100 and approxi-
mation order 2

556	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

For both the second- and third-order results and a fixed resolution N = 100 , the density,
velocity and pressure fields at T = 0.24 are shown in Figs. 7 and 8. We note the solution
produced by the NN limiter seems oscillation free and similar to the solution of the HIO
limiter at both orders.

Case of Lax shock tube We consider the Lax shock tube test [25], given by the initial
conditions:

and � = 1.4 and gradient-free boundary conditions.
In Figs. 9 and 10, we show the comparison between different limiters at T = 0.08 ,

for schemes of order 2 and 3, respectively. In Fig. 9, we show the density, velocity,
and pressure fields for a second-order scheme and resolution N = 100 . We note the NN
limiter seems less diffusive than the HIO limiter, but also not all overshoots are well
controlled. This is more obvious in the velocity and pressure fields. In Fig. 10, the same
quantities are shown, but for a third-order scheme. Again, we note both the HIO and NN
limiters are less diffusive than the MIN limiter.

Case of blast wave Next we consider the interacting blast waves test, given by the
initial conditions:

with � = 1.4 and reflexive boundary conditions.
In Figs. 11 and 12, we show the comparison between different limiters at T = 0.038 for

different orders. The unlimited solution is not shown because the code crashes due to the
pressure becoming negative shortly after the start of the simulation for orders higher than
1. The dashed line denotes a high-resolution solution, run with N = 1 000 , the third order
with the HIO limiter. We can note that the NN limiter is not as good at suppressing oscilla-
tions as the MIN limiter and the HIO limiter, but stabilises the solution enough to finish the
run. Furthermore, we note that the peak is better preserved, which means that it looks like
the limiting is less strong than the MIN limiter and the HIO limiter.

6.3 � Transfer to RD

In this section, we show the performance of the NN limiter applied to the RD scheme, and
we compare with a state of the art limiting technique, MOOD [3]. Other stabilisation strat-
egies for the RD require parameter tuning which are problem dependent.

Case of Sod shock The initial conditions are given as in (12). A qualitative result is
shown in Fig. 13. It can be noted that the NN limiter is slightly more diffusive than MOOD,
but that it seems to control some of the undershoots better.

(13)

(𝜌, v, p)(x, 0) =

{
(0.445, 0.698, 3.528), 0 < x ⩽ 0.5,

(0.5, 0, 0.571), 0.5 < x < 1.0,
(x, t) ∈ [0, 1] × [0, 0.08],

(14)(𝜌, v, p)(x, 0) =

⎧⎪⎨⎪⎩

(1.0, 0, 1 000.0), 0 < x ⩽ 0.1,

(1.0, 0, 0.01), 0.1 < x ⩽ 0.9,

(1.0, 0, 100.0), 0.9 < x < 1.0,

(x, t) ∈ [0, 1] × [0, 0.038]

557Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

Fig. 12   Density, velocity, and
pressure fields of the blast wave
interaction (14) at T = 0.038 for
grid size N = 100 and approxi-
mation order 3

558	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Case of blast wave The initial conditions are given as in (14). A qualitative result is
shown in Fig. 14. In this example, one can see that MOOD is significantly less diffusive
than the NN limiter.

7 � Two‑Dimensional Numerical Experiments

Similar to Sect. 6, we first train a set of neural networks varying the number of neurons and
layers, and select the one with best recall/precision score.

We then compare the performance of the NN limiter with the MIN limiter and the HIO
limiter through the L1 error norm. We perform some tests for the linear advection equation
and Euler system of equations. The initial conditions are chosen to be different from the
ones used for the training. In Sect. 7.3, we show the results for the transfer to a RD scheme,
for structured and unstructured meshes.

7.1 � Numerical Validation

7.1.1 � Linear Advection

Consider a linear advection equation with � ∈ ℝ2:

and periodic boundary conditions.
Smooth initial condition We consider the following initial conditions, which contain a

smooth function:

with the advection velocity � = (1, 1) and periodic boundary conditions.
The errors and convergence rates are shown in Table 9 after one full crossing for orders

2 and 3 and different methods. The key-point to note is that the error between the unlimited
case and the NN case are very similar, meaning that the shock-detector was not triggered as
much as in the cases of the MIN and the HIO.

Case of smooth pulse and square hat We consider the following initial conditions, which
contain a smooth Gaussian pulse and a hat function, defined in (�, t) ∈ [0, 1]2×ℝ+:

again with the advection velocity � = (1, 1) , �1 = (0.75, 0.5).
The errors and convergence rates are shown in Table 10 after one full crossing for orders 2

and 3 and different methods.

(15)
�

�t
u + � ⋅ ∇u = 0

(16)u0(x) = 1 + sin(2�r)10, (x, t) ∈ [0, 1] ×ℝ
+

(17)u0(x) =

⎧⎪⎨⎪⎩

2, (�� − 0.25�, �y − 0.5�) ⩽ (0.1, 0.1),

1 + exp
�
−100(��� − �1��2)

�
, x ⩾ 0.5,

1, otherwise,

559Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

Fig. 13   Density, velocity, and
pressure fields of the Sod shock

E
U

E
U

E
U

560	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

E
E

E
E

E
E

Fig. 14   Density, velocity, and pressure fields of the blast wave test case (14)

561Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

7.2 � Two‑Dimensional Euler Equation

Now we consider the two-dimensional Euler equations, which describe the behaviour of
an inviscid flow. This system of equations describes the evolution of a density � , a velocity
vector � = (v1, v2) , a pressure p and total energy E,

(18)�t� + ∇ ⋅ (��) = 0,

(19)𝜕t𝜌� + ∇ ⋅

(
𝜌�⊗ � + pI3

)
= 0,

Table 9   L1 error for one crossing of the smooth ring (16) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 6.74E−02 0 1.26E−01 0 1.23E−01 0 6.79E−02 0
322 2.00E−02 0.5 4.81E−02 0.4 4.14E−02 0.4 1.97E−02 0.5
642 3.45E−03 1.7 1.31E−02 1.4 9.11E−03 1.6 3.45E−03 1.8
1282 5.42E−04 2.1 2.75E−03 1.6 1.59E−03 1.9 5.41E−04 2.1
(b) Order 3
162 6.92E−03 0 1.26E−01 0 1.17E−01 0 1.88E−02 0
322 4.58E−04 0.9 4.80E−02 0.4 2.92E−02 0.4 7.91E−04 0.7
642 7.93E−05 3.9 1.31E−02 1.4 6.85E−03 2.0 1.08E−04 4.6
1282 4.36E−05 3.2 2.75E−03 1.6 1.20E−03 2.0 5.15E−05 3.7

Table 10   L1 error for one crossing of the Gaussian pulse and hat function (17) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 3.04E−02 0 5.37E−02 0 4.94E−02 0 3.20E−02 0
322 2.13E−02 0.6 2.63E−02 0.5 2.63E−02 0.5 2.12E−02 0.6
642 1.12E−02 0.5 1.16E−02 1.0 1.01E−02 0.9 1.11E−03 0.6
1282 8.33E−03 0.7 7.74E−03 1.1 7.74E−03 1.1 8.24E−03 0.8
(b) Order 3
162 1.17E−02 0 5.37E−02 0 5.27E−02 0 2.09E−02 0
322 7.61E−03 0.8 2.63E−02 0.5 1.63E−02 0.5 1.05E−02 0.7
642 4.63E−03 0.6 1.16E−02 1.0 7.58E−03 1.7 5.73E−03 1.0
1282 2.91E−03 0.7 7.74E−03 1.1 4.21E−03 1.4 3.37E−03 0.9

562	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Fig. 15   Detection comparison between HIO limiter (top row) and NN limiter (bottom row) at different
times (t = 0.01, 0.1, 0.2 and 0.24)

Fig. 16   Scatter plot of density
of the two-dimensional Sod
shock problem at T = 0.24 for
Nelem = 642 and Nelem = 1282
and approximation order 2

563Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

The system is closed equation of state for an ideal gas

where e = E −
1

2
�|�|2 is the internal energy.

Case of the two-dimensional Sod shock tube We consider the radial Sod shock tube
test, given by the initial conditions:

where r =
√
x2 + y2 , (x, y) ∈ [0, 1]2 , � = 1.4 and gradient-free boundary conditions.

The solution maps at different increasing times t = 0.01, 0.1, 0.2 and 0.24 are shown in
Fig. 15. In the top row, the solution maps using the HIO limiter are shown, as well as the
cells in which the limiter was triggered (dark regions). We note that there are regions with-
out discontinuities which are still being limited. In the bottom row, we show the solution
maps when using the NN shock detector and the areas where the shock-detector detects a
shock (and which are subconsequently limited) are overlaid. We note that at the initial time
the detection looks quite symmetric; however, over time, this is no longer the case. We also
note that the shock fronts are being tracked, while the smooth regions are not being limited.

In Fig. 16, we show the projection of the solution along the radial axis, for N = 642 and
N = 1282 . This allows us to see how the different limiters preserve the symmetry of the prob-
lem, as the perfect solution would have very little scatter. We see that both the NN shock detec-
tor and the HIO limiter appear to perform similarly, and the MIN limiter is more diffusive.

(20)�tE + ∇ ⋅ (E + p)� = 0.

�e =
p

� − 1
,

(21)(𝜌, vx, vy, p)(x, 0) =

{
(1.0, 0, 0, 1.0), 0 < r ⩽ 0.5,

(0.125, 0, 0, 0.1), 0.5 < r < 1.0,

Fig. 17   Detection comparison between HIO limiter (top row) and NN limiter (bottom row) at different
times (t = 0.01, 0.1 and 0.2)

564	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Case of the Riemann problem 12 We consider a two-dimensional Riemann problem
(configuration 12) [24]. The initial data are

for � = 1.4 and gradient-free boundary conditions.
The solution maps at different increasing times t = 0.01, 0.1 and 0.2 are shown in

Fig. 17. As before, the top row shows the simulation using the HIO limiter is shown, as
well as the cells in which the limiter was triggered. Similar to the previous case, there are
regions where there is no discontinuity which are still being limited. In the bottom row, we
show the solution map when using the NN shock detector and again, we denote the areas
where the shock detector detects a shock (and which are sub-consequently limited). We
note that the symmetry is quite well preserved across time.

(22)(𝜌, vx, vy, p)(x, 0) =

⎧
⎪⎨⎪⎩

(1, 0.727 6, 0, 1), x < 0, y > 0,

(0.8, 0, 0, 1), x < 0, y < 0,

(0.531 3, 0, 0, 0.4), x > 0, y > 0,

(1, 0, 0.727 6, 1), x > 0, y < 0,

Fig. 18   Detection comparison between the NN limiter without retraining (top row) and with retraining (bot-
tom row) on a structured mesh at different times (t = 0.01, 0.1, 0.2 and 0.24)

Fig. 19   Left: comparison
between different limiters for the
RD scheme on a structured mesh

565Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

7.3 � Transfer to RD

In this section, we report the results of the NN limiter applied to an RD scheme. In par-
ticular, we report on the performance of the NN shock detector when no retraining phase is
performed versus when it is retrained on a reduced dataset using data from numerical runs
of an RD scheme.

7.3.1 � Two‑dimensional Sod Shock Tube

In Fig. 18, we show the performance of the two-dimensional shock-indicator function on a
two-dimensional RD scheme on a Cartesian mesh which has been trained on RKDG data
alone (top row) and retrained using the RD data (bottom row), at different time snapshots
T = 0.01, 0.1, 0.2, and 0.24. We note that initially, the shock is well captured, but over time

Fig. 20   Zoom on unstructured grid used in numerical experiments shown in Fig. 21

Fig. 21   Detection comparison between the NN limiter without retraining (top row) and with retraining (bot-
tom row) on an unstructured mesh at different times (t = 0.01, 0.1, 0.2 and 0.24)

566	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

the shock front is no longer well captured. In particular, we can note that the symmetry
of the solution with retraining (bottom row) seems to be broken. This is more evident in
Fig. 19, where again, the radial projection of the solution is shown. The optimal solution
would show a thin spread. The � parameter shown in the figure provides the ratio between
the (re)training data coming from the RKDG scheme and RD scheme. We can see that the
more samples are taken from the RD scheme, the less effective the shock-detector becomes.
Comparing the performance of the NN limiter with other RD limiters, we can note that it
is less diffusive than the RD Psi-Galerkin scheme with Burmann jump stabilisation [8], but
significantly worse than the MOOD limiter [3].

Moving onto unstructured grids (see Fig. 20 for one of the grids used), we compare the
performance of the transferred neural network shock-indicator without and with retraining
on the RD data on an unstructured grid. In Fig. 21, we show again solution maps using
the shock-indicator trained only on RKDG data (top row) and retrained using the RD data
(bottom row), at different time snapshots T = 0.01, 0.1, 0.20, and 0.24. We can see that the
adapted limiter detects troubled cells in the shock fronts. In the unstructured case, the rar-
efaction is no longer limited. In Fig. 22, we show again the radial projection of the two-
dimensional Sod shock. In this case, it seems like retraining the shock-indicator yields a
solution which is more diffusive, but less oscillatory. Comparing with other limiters avail-
able for the RD, we can note that the performance seems similar to the MOOD limiter, and
the NN-based limiter is less diffusive than the Psi-Galerkin scheme with jump stabilisation.

8 � Discussion

We showed that it is possible to learn a parameter-free shock-detector (after the training
phase) from data. While the performance on the training set is relatively good (as observed
in Sect. 6.1), the on-the-fly performance could be improved. One way would be to have
a more representative training dataset in conjunction with the careful design of the loss
function during the training phase (for example, to include information on the maximum
preserving principle).

For the advection cases, we observed that this limiter was by far less diffusive than the
MIN limiter. In the systems cases, some oscillations were corrected but there were other
oscillations which were not stabilized enough, although none of the simulations crashed

Fig. 22   Comparison between dif-
ferent limiters for the RD scheme
on an unstructured mesh

567Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

(whereas the unlimited solution was too unstable, namely for the blast wave case). Overall,
the direct application of this model to unseen initial conditions for the advection equation
and to the Euler system was somewhat successful.

We then explored strategies of transferring a trained shock-indicator function to a dif-
ferent numerical scheme, namely to a RD scheme. We tested two strategies: one of simply
transforming the feature vector from a RD solution onto a feature vector from a RKDG
solution, and another one of retraining a trained classifier on a reduced RD dataset. What
we observed was that it was possible to use the shock-indicator function in a RD scheme,
but that retraining on a reduced dataset did not make significant difference (perhaps it even
deteriorated the performance of the shock-indicator). This is something to explore in future
work.

The attractive property of this type of shock-indicator is that, once trained, it can oper-
ate as a black-box, parameter-free shock detector. We have verified that both in one- and
two-dimensional problems we were able to attain better results when comparing to limiters
which have not been properly hand-tuned. However, in the case of the RD, the transferred
NN limiter did not perform as well as the MOOD limiter [3, 9, 41].

Some important difficulties we were faced with were as follows.

(i)	 Lack of theoretical guarantees and quality of the numerical solution
		  Throughout the time we worked on this problem, it became apparent that certain

properties of the shock capturing function do not arise without a certain amount
of careful considerations. For example, it was particularly concerning the fact that
the detection was not symmetric with respect to a defined stencil (see Fig. 23). To
overcome this problem, the literature typically suggests either a feature transforma-
tion which renders a certain property invariant or data augmentation by generating
training examples that cover such invariance [27]. We empirically observed that
merely performing data augmentation did not perform very well and it led to longer
training times (due to the enlargement of the dataset). We then used an ensemble
classification where the stencil is permuted and the prediction is averaged (as detailed

Fig. 23   No symmetry invariance considerations versus explicit symmetry invariance

568	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

in Sect. 3.1.2), such that, for example, a prediction on a particular stencil and the
same stencil mirrored along the x-axis yield the same response. This improved the
detection a lot in problems that had an obvious symmetry (like the two-dimensional
Sod shock).

	 (ii)	 Computational performance degradation
		  We verified that, when integrating the shock-indicator with existing codes, the

classification step was expensive (it entails, at best, a series of matrix multiplications,
and at worst, an additional feature vector computation). This meant that even if the
limiter was not triggered as often due to the shock-indicator step, the overall cost
of using this particular shock-indicator was higher than with a traditional limiter,
causing a slow down in all codes we considered.

	 (iii)	 Lack of supporting theory on how to optimize, tune and generate deep neural net-
works

		  To this day, the optimization of hyperparameters (such as architecture, shape, size,
learning rates related to the NN) is approached mostly through trial and error. While
several works [29] estimate lower bounds and necessary complexity of the network to
capture a given complexity of the function to be learned, these results remain rather
far from concrete applications.

8.1 � Future Developments

Taking the previous list of main difficulties that we were faced with during this work, we
can guide the discussion about our planned future developments and directions.

	 (i)	 Lack of theoretical guarantees and quality of the numerical solution
		  What we proposed in this work was exact invariance of the network with respect

to rotations of the stencil. This adds some cost to the method during the classification
phase. Recent ideas to introduce not invariance of the NN, but equivariance, has been
explored in [12, 13] in the context of computer vision, and could be an interesting
direction going forward.

	 (ii)	 Computational performance degradation
		  We verified integrating the shock-indicator with existing codes lead always to a

computational performance degradation. This is not to say it is always going to be too
computationally expensive—there have been some successful examples of learning
a reduced network from a larger NN, and with this, a large computational gain has
been observed [19].

	 (iii)	 Lack of supporting theory on how to optimize, tune and generate deep NNs
		  Using the python package hyperopt [5], designed to optimize hyperparameters

over awkward search spaces with real-valued, discrete, and conditional dimensions,
which makes it ideal for iterating machine learning hyper-parameters, we have been
able to obtain similar performing neural network-based shock-indicators without any
hand-tuning and which surprisingly had much less degrees of freedom than the one
used in this work.

		  In particular, defining the hyper-parameter space as

–	 number of hidden layers, n ∈ {1, 2, 3, 4};
–	 number of neurons per layers p ∈ {8,⋯ , 128} , allowed us to search for a good

configuration of the deep NN.

569Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

	 (iv)	 Better understanding of how to perform transfer learning
		  The transfer learning approach we took in this project was a very simple (and

possibly naive one). We are interested in exploring symmetric feature space trans-
formations, which take both (or many) feature spaces X1,⋯ ,Xn (one can imagine
coming from different numerical schemes) and finding a common feature space for
adaptation purposes.

9 � Conclusion

The purpose of this work was primarily to demonstrate the potential of using learning algo-
rithms in CFD codes to automate away some parameter tuning, which is a common prac-
tice when using stabilisation methods, as well as to explore the idea of transferring knowl-
edge across numerical schemes. In particular, we detailed the different stages necessary
to train a black-box shock-detector that can be integrated with a limiter in different codes.
To this end, we described how to construct a dataset for the training phase, how to set up
a deep NN (a multilayer perceptron) that detects shocks, and how to integrate the trained
model with existing CFD codes. We performed numerical experiments to validate the per-
formance of the shock-detector (paired with a limiter) in the context of scalar and systems
of equations. Furthermore, we use the model trained on the data generated with a DG code
on an RD code, exploring different ways to perform the domain adaptation.

We then explored strategies of transferring a trained shock-indicator function to a differ-
ent numerical scheme, namely, to an RD scheme.

We also found that for the exact task of shock-detection, a neural network-based limiter
has some notable drawbacks in comparison to some limiters which are both quite agnostic
to the underlying numerical method and require minimal parameter tuning (e.g., MOOD
[3]). In particular, due to the lack of a systematic way to introduce domain knowledge onto
the data-driven model (e.g., positivity of some quantities or the notion of maximum prin-
ciple, rotation invariance, to name a few), we are of the opinion this neural network-based
limiter is in the stage of being a prototype. However, it is our belief that these ideas can be
applied to other problems which depend on certain local properties of the numerical solu-
tion, ultimately contributing towards CFD codes which are robust to different initial condi-
tions and that require less parameter tuning to produce readily usable results.

With this in mind, we covered a few of the future improvements planned for this NN-
based limiter.

Acknowledgements  We want to thank the referees for the insightful discussion, feedback and comments
that hopefully lead to an improved manuscript. Majority of this work was done in University of Zurich,
where MHV was funded by the UZH Candoc Forschungskredit grant.

Compliance with Ethical Standards 

 Conflict of interest  On behalf of all authors, the corresponding author states that there is no conflict of inter-
est.

570	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Appendix A MLP Architectures

We detail the architectures tested in this work in Table A1. For this work, we found the
lower bound ( 228 ) for the number of weights and fixed the activation functions to be ReLU
(as detailed in Sect. 3.1.1). What we observed was that this quantity was not producing
very good models. Thus, we used ( 232 ) non-zero weights, which presupposes a constant C
of order 10. It is left to specify the distribution of the weights across the different layers.
The number of weights and neurons is related by multiplying d through the number of neu-
rons per layers to get the total number of weights.

References

	 1.	 Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7),
641–669 (2006). https​://doi.org/10.1016/j.compf​luid.2005.01.007

	 2.	 Abgrall, R., Bacigaluppi, P., Tokareva, S.: High-order residual distribution scheme for the time-
dependent Euler equations of fluid dynamics. Comput. Math. Appl. 78(2), 274–297 (2019). https​://doi.
org/10.1016/j.camwa​.2018.05.009

	 3.	 Bacigaluppi, P., Abgrall, R., Tokareva, S.: “A posteriori” limited high order and robust residual distri-
bution schemes for transient simulations of fluid flows in gas dynamics. arXiv​:1902.07773​ (2019)

	 4.	 Beck, A., Zeifang, J., Schwarz, A., Flad, D.: A neural network based shock detection and localization
approach for discontinuous Galerkin methods (2020). https​://doi.org/10.13140​/RG.2.2.20237​.90085​

	 5.	 Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in
hundreds of dimensions for vision architectures. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of
the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research,
vol. 28, pp. 115–123. PMLR, Atlanta (2013). http://proce​eding​s.mlr.press​/v28/bergs​tra13​.html

	 6.	 Biswas, R., Devine, K.D., Flaherty, J.E.: Parallel, adaptive finite element methods for conservation
laws. Appl. Numer. Math. 14(1), 255–283 (1994). https​://doi.org/10.1016/0168-9274(94)90029​-9

	 7.	 Bottou, L., Curtis, F., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev.
60(2), 223–311 (2018). https​://doi.org/10.1137/16M10​80173​

	 8.	 Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-depend-
ent Navier-Stokes equations: space discretization and convergence. Numer. Math. 107(1), 39–77
(2007). https​://doi.org/10.1007/s0021​1-007-0070-5

	 9.	 Clain, S., Diot, S., Loubère, R.: Multi-dimensional optimal order detection (MOOD)—a very high-
order finite volume scheme for conservation laws on unstructured meshes. In: Fořt, J., Fürst, J.,
Halama, J., Herbin, R., Hubert, F. (eds.) Finite Volumes for Complex Applications VI Problems &
Perspectives, pp. 263–271. Springer, Berlin (2011)

Table A1   Architectures

Memory requirements were too high when keeping the same amount
of weights (because in this case, weights = neurons), so this model
was reduced.

Model Layers Neurons per layer Description

Model 1 2 16 384:16 3843 –
Model 2 3 2 048:1 024:512 –
Model 3 4 512:256:256:128 –
Model 4 5 256:128:64:64:32 –
Model 5 5 256:128:64:64:32 With

weighted
loss � = 5

https://doi.org/10.1016/j.compfluid.2005.01.007
https://doi.org/10.1016/j.camwa.2018.05.009
https://doi.org/10.1016/j.camwa.2018.05.009
http://arxiv.org/abs/1902.07773
https://doi.org/10.13140/RG.2.2.20237.90085
http://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1016/0168-9274(94)90029-9
https://doi.org/10.1137/16M1080173
https://doi.org/10.1007/s00211-007-0070-5

571Communications on Applied Mathematics and Computation (2023) 5:532–572	

1 3

	10.	 Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989). http://
www.jstor​.org/stabl​e/20084​74

	11.	 Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V. J.
Comput. Phys. 141(2), 199–224 (1998). https​://doi.org/10.1006/jcph.1998.5892

	12.	 Cohen, T.S., Geiger, M., Weiler, M.: A general theory of equivariant CNNs on homogeneous spaces.
In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 32, pp. 9145–9156. Curran Associates, Inc. (2019). http://
paper​s.nips.cc/paper​/9114-a-gener​al-theor​y-of-equiv​arian​t-cnns-on-homog​eneou​s-space​s.pdf

	13.	 Cohen, T.S., Weiler, M., Kicanaoglu, B., Welling, M.: Gauge equivariant convolutional networks and
the icosahedral CNN. arXiv​:1902.04615​ (2019)

	14.	 Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen
Wissenschaften. Springer, Berlin (2009). https​://books​.googl​e.com/books​?id=49bXK​26O_b4C

	15.	 Github repository. https​://githu​b.com/hanve​iga/1d-dg-nn
	16.	 Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Massachusetts (2016).

http://www.deepl​earni​ngboo​k.org
	17.	 Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations.

J. Sci. Comput. 25(1), 105–128 (2005). https​://doi.org/10.1007/BF027​28985​
	18.	 Harten, A., Lax, P.D.: On a class of high resolution total-variation-stable finite-difference schemes.

SIAM J. Numer. Anal. 21(1), 1–23 (1984). http://www.jstor​.org/stabl​e/21570​43
	19.	 He, Y. et al.: Streaming end-to-end speech recognition for mobile devices. In: 2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6381–6385 (2019). https​://doi.
org/10.1109/ICASS​P.2019.86823​36

	20.	 Hoens, T.R., Chawla, N.V.: Imbalanced Datasets: From Sampling to Classifiers. Wiley, New York
(2013). https​://doi.org/10.1002/97811​18646​106.ch3

	21.	 Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ICLR (2015). arXiv​:abs/1412.6980
	22.	 Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226, 879–

896 (2007). https​://doi.org/10.1016/j.jcp.2007.05.011
	23.	 Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural

networks. In: Proceedings of the 25th International Conference on Neural Information Processing
Systems—Volume 1, pp. 1097–1105. Curran Associates Inc., USA (2012). http://dl.acm.org/citat​ion.
cfm?id=29991​34.29992​57

	24.	 Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics with-
out Riemann problem solvers. Numerical Methods for Partial Differential Equations 18(5), 584–608
(2002). https​://doi.org/10.1002/num.10025​.

	25.	 Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Com-
mun. Pure Appl. Math. 7(1), 159–193 (1954). https​://doi.org/10.1002/cpa.31600​70112​

	26.	 Mhaskar, H., Liao, Q., Poggio, T.A.: When and why are deep networks better than shallow ones? In:
AAAI, pp. 2343–2349 (2017)

	27.	 Mikolajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classifica-
tion problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW), pp. 117–122 (2018)

	28.	 Morgan, N.R., Tokareva, S., Liu, X., Morgan, A.: A machine learning approach for detecting shocks
with high-order hydrodynamic methods. https​://doi.org/10.2514/6.2020-2024

	29.	 Petersen, P., Voigtlaender, F.: Optimal approximation of piecewise smooth functions using deep ReLU
neural networks. arxiv​:1709.05289​ (2017)

	30.	 Prechelt, L.: Early Stopping—But When? In: Montavon G., Orr G.B., Müller K.R. (eds.) Neural Net-
works: Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700, pp. 53–67, Springer, Berlin,
Heidelberg (2012)

	31.	 Ray, D., Hesthaven, J.S.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys.
367, 166–191 (2018). https​://doi.org/10.1016/j.jcp.2018.04.029

	32.	 Ricchiuto, M., Abgrall, R.: Explicit Runge-Kutta residual distribution schemes for time dependent
problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010). https​://doi.org/10.1016/j.
jcp.2010.04.002

	33.	 Ricchiuto, M., Abgrall, R., Deconinck, H.: Application of conservative residual distribution schemes
to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222(1), 287–
331 (2007). https​://doi.org/10.1016/j.jcp.2006.06.024

	34.	 Rojas, R.: Networks of width one are universal classifiers. In: Proceedings of the International Joint
Conference on Neural Networks, vol. 4, pp. 3124–3127 (2003). https​://doi.org/10.1109/IJCNN​
.2003.12240​71

	35.	 Rojas, R.: Deepest Neural Networks. arxiv​:1707.02617​ (2017)

http://www.jstor.org/stable/2008474
http://www.jstor.org/stable/2008474
https://doi.org/10.1006/jcph.1998.5892
http://papers.nips.cc/paper/9114-a-general-theory-of-equivariant-cnns-on-homogeneous-spaces.pdf
http://papers.nips.cc/paper/9114-a-general-theory-of-equivariant-cnns-on-homogeneous-spaces.pdf
http://arxiv.org/abs/1902.04615
https://books.google.com/books?id=49bXK26O_b4C
https://github.com/hanveiga/1d-dg-nn
http://www.deeplearningbook.org
https://doi.org/10.1007/BF02728985
http://www.jstor.org/stable/2157043
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1002/9781118646106.ch3
http://arxiv.org/abs/abs/1412.6980
https://doi.org/10.1016/j.jcp.2007.05.011
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1002/num.10025
https://doi.org/10.1002/cpa.3160070112
https://doi.org/10.2514/6.2020-2024
https://arxiv.org/abs/1709.05289
https://doi.org/10.1016/j.jcp.2018.04.029
https://doi.org/10.1016/j.jcp.2010.04.002
https://doi.org/10.1016/j.jcp.2010.04.002
https://doi.org/10.1016/j.jcp.2006.06.024
https://doi.org/10.1109/IJCNN.2003.1224071
https://doi.org/10.1109/IJCNN.2003.1224071
https://arxiv.org/abs/1707.02617

572	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

	36.	 Schaal, K. et al: Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme
and adaptive mesh refinement. Mon. Not. R. Astron. Soc. 453(4), 4278–4300 (2015). https​://doi.
org/10.1093/mnras​/stv18​59

	37.	 Snyman, J.: Practical Mathematical Optimization: an Introduction to Basic Optimization Theory and
Classical and New Gradient-Based Algorithms. Applied Optimization. Springer, New York (2005).
https​://books​.googl​e.ch/books​?id=0tFmf​_UKl7o​C

	38.	 Sutskever, I., Hinton, G.E.: Deep, narrow sigmoid belief networks are universal approximators. Neural
Comput. 20(11), 2629–2636 (2008). https​://doi.org/10.1162/neco.2008.12-07-661

	39.	 Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceed-
ings of the 27th International Conference on Neural Information Processing Systems—Volume 2, pp.
3104–3112. MIT Press, Cambridge (2014). http://dl.acm.org/citat​ion.cfm?id=29690​33.29691​73

	40.	 Veiga, M.H., Abgrall, R.: Towards a general stabilisation method for conservation laws using a multi-
layer perceptron neural network: 1d scalar and system of equations. In: European Conference on Com-
putational Mechanics and VII European Conference on Computational Fluid Dynamics, vol. 1, pp.
2525–2550 (2018). https​://doi.org/10.5167/uzh-16853​8

	41.	 Vilar, F.: A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite
volume formulation and flux reconstruction. J. Comput. Phys. 387, 245–279 (2019). https​://doi.
org/10.1016/j.jcp.2018.10.050

	42.	 Weiss, K.R., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3, 1–40 (2016)
	43.	 Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional net-

work. CoRR (2015). arXiv​:abs/1505.00853​

https://doi.org/10.1093/mnras/stv1859
https://doi.org/10.1093/mnras/stv1859
https://books.google.ch/books?id=0tFmf_UKl7oC
https://doi.org/10.1162/neco.2008.12-07-661
http://dl.acm.org/citation.cfm?id=2969033.2969173
https://doi.org/10.5167/uzh-168538
https://doi.org/10.1016/j.jcp.2018.10.050
https://doi.org/10.1016/j.jcp.2018.10.050
http://arxiv.org/abs/abs/1505.00853

	Neural Network-Based Limiter with Transfer Learning
	Abstract
	1 Introduction
	2 Preliminaries: the Runge-Kutta Discontinuous Galerkin (RKDG) Scheme
	3 Data-Driven Method
	3.1 Setup of the Learning Algorithm
	3.1.1 Architecture
	3.1.2 Directional Invariance

	3.2 Integration of the Method on a CFD Code
	3.3 Measuring Performance of Model

	4 Dataset
	4.1 Features
	4.2 Extension to Two-Dimensional Problems

	5 Transfer Learning
	5.1 One-Dimensional Case
	5.2 Two-Dimensional Case
	5.2.1 RD Dataset

	6 One-Dimensional Numerical Experiments
	6.1 Detection Rate
	6.2 Numerical Validation
	6.2.1 Linear Advection
	6.2.2 One-Dimensional Euler Equation

	6.3 Transfer to RD

	7 Two-Dimensional Numerical Experiments
	7.1 Numerical Validation
	7.1.1 Linear Advection

	7.2 Two-Dimensional Euler Equation
	7.3 Transfer to RD
	7.3.1 Two-dimensional Sod Shock Tube

	8 Discussion
	8.1 Future Developments

	9 Conclusion
	Acknowledgements
	Appendix A MLP Architectures
	References

