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Abstract
Recent works have shown that neural networks are promising parameter-free limiters for 
a variety of numerical schemes (Morgan et al. in A machine learning approach for detect-
ing shocks with high-order hydrodynamic methods. https​://doi.org/10.2514/6.2020-2024; 
Ray et  al. in J Comput Phys 367: 166–191. https​://doi.org/10.1016/j.jcp.2018.04.029, 
2018; Veiga et al. in European Conference on Computational Mechanics and VII European 
Conference on Computational Fluid Dynamics, vol. 1, pp. 2525–2550. ECCM. https​://doi.
org/10.5167/uzh-16853​8, 2018). Following this trend, we train a neural network to serve as 
a shock-indicator function using simulation data from a Runge-Kutta discontinuous Galer-
kin (RKDG) method and a modal high-order limiter (Krivodonova in J Comput Phys 226: 
879–896. https​://doi.org/10.1016/j.jcp.2007.05.011, 2007). With this methodology, we 
obtain one- and two-dimensional black-box shock-indicators which are then coupled to a 
standard limiter. Furthermore, we describe a strategy to transfer the shock-indicator to a 
residual distribution (RD) scheme without the need for a full training cycle and large data-
set, by finding a mapping between the solution feature spaces from an RD scheme to an 
RKDG scheme, both in one- and two-dimensional problems, and on Cartesian and unstruc-
tured meshes. We report on the quality of the numerical solutions when using the neural 
network shock-indicator coupled to a limiter, comparing its performance to traditional lim-
iters, for both RKDG and RD schemes.
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1  Introduction

When dealing with nonlinear conservation laws, it is well known that discontinuous solu-
tions can emerge, even for smooth initial data [14]. The numerical approximation of the 
discontinuous solution will develop non-physical oscillations around the discontinuity, 
which in turn will negatively impact the accuracy of the numerical scheme. There exist 
many different stabilisation methods to control these oscillations, for example, through the 
addition of a viscous term (as denoted by the right-hand side of (1)) or use of limiters:

Neural networks regained popularity in the past decade due to the computational tracta-
bility of the back-propagation algorithm, used for the learning of weights and biases in a 
deep neural network. Deep neural networks have been shown to generate robust models for 
classification in many areas of applications [23, 39] and theoretically, to generate universal 
classifiers and function approximators [34, 35, 38]. In the context of computational fluid 
dynamics, the idea of using artificial neural networks as troubled-cell indicators has been 
explored first in [31], motivated by the objective to find a universal troubled-cell indicator 
that can be used for general conservation laws. The authors show that this type of approach 
is promising, performing better than traditional, parameter-dependent limiters. Further 
studies following a similar idea have been conducted for other numerical schemes [4, 28].

Using limiters is a common way to perform shock capturing in a numerical scheme. In 
the context of the discontinuous Galerkin (DG) method, we can point out, among many, 
the high-order (HIO) limiter [6, 22], which does the limiting in a hierarchical manner. In 
particular, [22] relies on the modal representation of the numerical solution and it is formu-
lated specifically for the modal DG method using Legendre polynomials as basis functions. 
For high-enough resolution, it does not clip the solution extrema.

Transfer learning is concerned with using a model built using a particular source data 
distribution on a different (but related) target data distribution [42]. One simple example is 
the task of spam filtering, where a model is used to discriminate between spam and non-
spam emails—a model can be trained on the data of a particular user and adapted to be 
used on the data of a new user, who might receive significantly different emails. Following 
the same reasoning, we are interested in training shock-indicators that work in different 
numerical schemes, while using only (or the majority of the) training data from a particular 
numerical scheme. This can be useful, for example, in the case where there is access to a 
solver for which labeled data are easy to obtain.

In this work, we are interested in studying two main questions.

(i)	� Is it possible to learn a data-driven shock-indicator function which requires minimal 
user input once trained?

(ii)	� Can this shock-indicator be used in different numerical schemes, leading to stabilisa-
tion methods which are agnostic to the underlying numerical scheme?

The paper is structured as follows: we start some preliminaries in Sect. 2, the methodol-
ogy of training a data-driven shock-indicator and its integration with existing computa-
tional fluid dynamics (CFD) codes are presented in Sect.  3; in Sect.  4, the construction 
of the dataset is described (as well as the extension to two-dimensional problems) and 
Sect.  5 describes the transfer learning strategy. In Sects.  6 and  7, numerical results for 

(1)
�

�t
u + ∇ ⋅ f (u) = ∇ ⋅ (�(u)∇u).
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one-dimensional and two-dimensional problems, respectively, are shown. We conclude the 
paper with a discussion and outlook in Sect. 8 and finally, our conclusions are drawn in 
Sect. 9.

In the spirit of open and reproducible science, all the datasets, trained models and some 
solvers1 are made available in a public repository [15].

2 � Preliminaries: the Runge‑Kutta Discontinuous Galerkin (RKDG) 
Scheme

Let us consider the classical modal RKDG method [10] using a simple scalar problem in 
one space dimension:

Let � ∈ ℝ be a regular domain which is discretised by N elements Kp = [xp−1∕2, xp+1∕2] for 
p = 1,⋯ ,N . Consider the local space V given by the set {�i}

n
i=0

 of one-dimensional Leg-
endre polynomials with degree of at most n in x. For any element K, the numerical solution 
is written as

where the modal coefficient ûK
i
(t) is obtained by the L2 projection of the solution u(x) in 

element K on the ith Legendre basis polynomial. The DG method is based on a weak form 
of (2), projecting it on the polynomial basis, followed by an integration by parts. We obtain 
the following semi-discrete formulation of the DG method as

where we exploited the fact that Legendre polynomials form an orthonormal basis. Note 
that the surface term in the previous equation needs a Riemann solver to compute a con-
tinuous numerical flux at element boundaries, noted here f̂  . Once the spatial component 
has been discretised, we are left with an ordinary differential equation of the form

where L denotes the DG discretisation operator. Integration in time is performed using 
a strong stability preserving (SSP) RK method [17]. The time step has to fulfill a Cou-
rant–Friedrich–Lewy (CFL) condition to achieve the numerical stability, which for the 
RKDG scheme reads [11]

(2)

⎧⎪⎨⎪⎩

�tu + �xf (u) = 0, (x, t) ∈ � × [0,∞],

u(t = 0) = u0,

u�� = g.

uK(x, t) =

n∑
i=0

ûK
i
(t)𝜙i(x),

dûK
i

dt
+
[
f̂ (uK(x, t))𝜙i(x)

]xp+1∕2
xp−1∕2

− ∫Kp

f (uK(x, t))𝜕x𝜙i(x)dx = 0, i = 0,⋯ , n,

d

dt
u = L(u),

1  Some of the solvers used are still under development and not publicly available.
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where n is the polynomial degree and C is a constant usually set to C = 0.8.
The method described above can compute solutions to (2) which are smooth (or con-

tain weak shocks or other discontinuities). However, if the discontinuities are strong, the 
numerical solution will become significantly oscillatory. To surpass these difficulties, a 
slope limiter is used after each RK inner stage.

Now we describe the limiting procedure for a modal RKDG scheme as in [36], consid-
ering the minmod (MIN) limiter [18].

The coefficient u1 for the linear term of the DG basis is modified as

here ũK
1

 is the new weight, Kl denotes the left neighbouring cell and Kr the right neighbour-
ing cell, and the MIN function is defined as

In a system, each component of the conserved variables is limited separately. The 
√
3- 

factors account for the scaling of the Legendre polynomial. If the limited weights are the 
same as the old weights (i.e., ũK

1
= ûK

1
 ), the solution uK is unlimited. Otherwise, the limited 

numerical solution becomes

discarding further HIO information. Although this limiter effectively reduces over-shoot-
ings and oscillations, it can also be triggered at smooth extrema and lead to an unnecessary 
loss of HIO information. To avoid clipping of the solution at smooth extrema, the limiter 
presented above can be improved by a bounded version [11],

Here M is a user-defined parameter that gives an estimate of the smoothness of the solution 
u(x). It is to note that M can take a value in a large range of positive numbers, and that it 
is usually a global quantity fixed in the beginning of the numerical experiment. Thus, this 
can be a drawback if the solution has different smoothness properties across the domain (in 
space and time).

Conceptually, a limiter can be thought of having two sub-steps: 

(i)	� a shock-indicator procedure C that identifies a “troubled cell” (a cell which needs 
limiting);

(ii)	� a reconstruction procedure � that modifies the solution polynomial in those troubled 
cells into a reconstructed polynomial which is less oscillatory.

Δt =
C

2n + 1

Δx
||vmax

||
,

ũK
1
=

1√
3
minmod

�√
3ûK

1
,
1

2

�
û0 − û

Kl

0

�
,
1

2

�
û
Kr

0
− ûK

0

��
,

minmod(a, b, c) =

{
smin(|a|, |b|, |c|), s = sign(a) = sign(b) = sign(c),

0, otherwise.

ũK = ûK
0
+ ũK

1
𝜙K
1
,

minmodB(a, b, c) =

{
a, if |a| ⩽ M(ΔxK)2,

minmodB(a, b, c), otherwise.



536	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Then we can write a limiter as a function s that takes some local properties of the solution 
(let us denote this with the map X(u(x))), and returns a modified solution ũ(x) , which has 
some desired properties (e.g., non-oscillatory, maximum principle preserving, etc.):

For example, as detailed above, the MIN-based limiting procedure can be understood 
in these two sub-steps: C(X(u)) checks if ũ1 = û1 , there is an equality, no troubled cell is 
detected, otherwise, the cell is troubled. Then if the cell is troubled, the reconstruction 
𝛱(X(u(x))) = ûK

0
+ ũK

1
𝜙K
1

 is used. The map X(u(x)) encodes local properties of the solution 
around the interval K. In this case,

In the following section, we describe how to construct a data-driven shock-indicator func-
tion C which is parameter-free once it has been trained.

3 � Data‑Driven Method

In the following section, we focus on the three main aspects of the proposed method.

–	 The setup of the learning algorithm to generate a shock-indicator function (Sect. 3.1).
–	 The integration of a neural network that serves as a shock-indicator with an existing 

CFD code (Sect. 3.2).
–	 A description of the performance measures used to validate the proposed data-driven 

method (Sect. 3.3).

3.1 � Setup of the Learning Algorithm

In this section, we describe the details of the learning algorithm to generate a data-driven 
shock-indicator.

We wish to learn a map C ∶ X → Y , where X  denotes an arbitrary set containing exam-
ples that we wish to label with possible outcomes Y . The task at hand is a binary classi-
fication (i.e., is there a troubled cell/is there a shock in this cell?), thus C will be a binary 
classifier and Y = {0, 1}.

We choose C to be defined by the composition of a sequence of functions g1, g2,⋯ , gn , 
yielding the function form

This is known as the multilayer perceptron (MLP) neural network (a type of deep neu-
ral network [16]). There are many different classifiers which can be used, but it has been 
shown that deep neural networks perform well on a variety of classification tasks, in par-
ticular when the classification plane is nonlinear.

Each function gi(wi, bi, hi(⋅)) is parameterised by a matrix wi , called the weights matrix, 
a vector bi called the bias vector and an activation function hi(⋅) which introduces the non-
linearity on the neural network.

s(u(x),X(u(x))) =

{
u(x), if C(X(u)) does not identify a troubled cell,

�(u(x)), if C(X(u)) identifies a troubled cell.

X(u(x)) =
�
ûK
1
,
1

2

√
3(û0 − û

Kl

0
),
1

2

√
3(û

Kr

0
− ûK

0
)
�
.

C(x) = gn(⋯ g2(g1(x))).
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These parameters are tuned through the minimisation of a loss function L(x) , which meas-
ures how well the mapping C performs on a given dataset D of inputs and outputs, using back-
propagation and gradient descent algorithms.

The gradient descent [37] is a first-order iterative optimization algorithm for finding a 
local minimum of a function (in this case, the loss function L(x) ), relying on the fact that 
for a small enough update �,

then

for a differentiable and convex loss function L . Because we cannot guarantee the convexity 
of our loss function, a stochastic gradient descent [7] like procedure is used. It is not the 
standard stochastic gradient descent because instead of using a global learning rate � , the 
Adam algorithm [21] is used, which chooses the learning rate adaptively for each param-
eter (in this case, for the weights and biases).

Furthermore, two different loss functions are considered:

–	 the standard cross-entropy 

–	 the weighted cross-entropy 

We consider the weighted cross-entropy loss function as we expect that there will be a 
class imbalance in the dataset (both during the training phase and prediction phase). In 
particular, it is more likely to find cells which are in no need for stabilisation than ones 
which are in need for stabilisation. Furthermore, it is more desirable to overlimit than to 
miss a cell that needs limiting, as it might lead to unphysical results and potentially crash 
the code. To account for this class imbalance, it is common practice to use a weighted cost 
function, which increases the penalty of mislabeling a positive label [20]. The asymmetry 
in the loss function is added through the coefficient �.

Finally, we specify the activation functions used, for the initial n − 1 hidden layers, rec-
tified linear units (ReLU) are used:

Although there exist more sophisticated activation functions, typically modifications to 
ReLU, e.g., leaky ReLU, parametric ReLU or randomised leaky ReLU, these require fur-
ther parameter estimation, adding at least one more dependence to the saved model, and 
the empirical improvement on the performance is not extremely significant [43].

For the last layer (output layer), a sigmoid function is used:

an+1 = an − �∇L(an),

L(an+1) ⩽ L(an)

(3)L(D) = −
1

N

N∑
i

yi log(p̂i) + (1 − yi) log(1 − p̂i);

(4)L(D) = −
1

N

N∑
i

yi log(p̂i)𝜔 + (1 − yi) log(1 − p̂i)(1 − 𝜔).

h(x) = max(0, x).

h(x) =
1

1 + e−x
,
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to attain a value that can be interpreted as a probability.
Lastly, the datasets (described in Sect. 4) are split into disjoint sets of training, valida-

tion and test sets.
The training phase is detailed in Algorithm 1. The hyper-parameters, such as batch-size 

(required the stochastic gradient descent type of minimization procedure), number of train-
ing epochs and general architecture of the neural network are fixed at run-time. We also 
add a early stopping criteria to minimize the risk of overfitting to the training data. This is 
triggered when the empirical generalisation error (measured through the loss on the valida-
tion set) increases for several training cycles [30].

3.1.1 � Architecture

The architecture of the neural network is a hyperparameter as well. There is the general 
empirical wisdom that deep networks (more hidden layers) generalise better than shallow 
networks, even with the same amount of degrees of freedom [26].

There are, in addition, works which aim to establish lower bounds for the shape and 
size of deep neural networks, for example, [29], which establish lower bounds for the num-
ber of required non-zero weights and layers necessary for an MLP (using ReLU activation 
functions).

However, to use those estimates, assumptions about the classification function’s regular-
ity and desired approximation accuracy (in the L2 norm) must be made, and those change 
the shape and size of the network dramatically, leading to very different lower bounds for 
the number of layers and number of neurons. In practice, we choose networks which are 
deeper and have small width, mainly with the intent to reduce the computational complex-
ity of the model evaluation in mind. In Appendix A, the explicit architectures are detailed.

3.1.2 � Directional Invariance

To introduce the feature invariance (see Fig. 1), the models tested use an aggregate way to 
estimate the label. For a given feature vector � , several copies of this vector are generated 
�1,⋯ , �n where permutations between the features are performed and their prediction is 
evaluated. The final label estimation is given by the majority label produced when evaluat-
ing the classifier on samples �, �1,⋯ , �n . This ensures the response of the model does not 
depend on the orientation of the stencil.
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3.2 � Integration of the Method on a CFD Code

Assuming that an MLP has been trained, then the model can be fully specified by the com-
position of the functions gi . Furthermore, each gi can be fully characterized by the follow-
ing information:

where wi denotes the weights matrix, bi the bias vector, and hi the activation function.
There are two necessary steps to integrate a trained neural network with an existing code. 

(i)	� Generation of features: given the local solution u, generate the feature quantities X(u).
(ii)	� Prediction routine: given the features X(u), the classifier C is evaluated on the given 

feature vector. Once the neural network has been trained offline, the weights and 
biases can be loaded onto a CFD code. What remains to be implemented are the 
activation functions for the hidden layers and the activation function for the output 
layer to evaluate C at some given input.

Now that the neural network-based shock-indicator has been described, the full limiting 
strategy is detailed in Algorithm 2. We will refer to this procedure as the neural network 
limiter. Furthermore, the limiter which we use in conjunction with the neural network 
shock-indicator is the HIO limiter.

For systems, each variable is limited independently as in Sect. 2.

wi, bi, hi(⋅),

Fig. 1   Example of desired invariance, with respect to a reflection through the y-axis
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3.3 � Measuring Performance of Model

We use two sets of performance measures, namely 

(i)	 label prediction measures;
(ii)	 the L1-norm of the numerical solution.

For the first set of measures, we can use typical metrics used in computational statistics 
and machine learning communities:

where tp is the number of correctly predicted positive labels, tn the number of correctly 
predicted negative labels, fp the number of incorrectly predicted positive labels, and fn the 
number of incorrectly predicted negative labels. We note that it is important to consider 
recall and precision because the distribution of labels is expected to be imbalanced. Judg-
ing the performance of a classifier only through the accuracy could be misleading, as a 
classifier can have a high accuracy by always predicting the majority label.

For the second performance measure, we consider the L1-norm because it is the rel-
evant measure for a CFD code and we can study the effect of this method on the error of 
the numerical solution.

4 � Dataset

The dataset is an integral part of data-driven studies. It contains the data for which we 
want to learn a mapping for. The task is to learn a function which indicates whether a 
discontinuity is present in the solution or not. The dataset is the set containing N sam-
ples {Xi, yi}

N
i=1

 , where Xi denotes some local properties of the solution u(x) (features) 
and yi (labels) indicates the existence (or not) of a discontinuity.

For the one-dimensional case, the dataset is generated by performing many runs on a 
one-dimensional DG code solving the advection equation for different initial conditions, 
orders and mesh sizes (see Table  1), and the labels are obtained by running the HIO 

tp + tn

tp + tn + fp + fn
(accuracy),

tp

tp + fn
(recall),

tp

tp + fp
(precision),

Table 1   Runs used to generate the one-dimensional dataset

Initial condition
� = sin(2�x),

{
8, 0.25 ⩽ x ⩽ 0.75,

2, otherwise,

{
1

2
sin(2�x), x ⩽ 0.3,

0, otherwise,
x ∈ [0, 1]

Advection speed −1, 1

Mesh size 8, 16, 32, 64, 128
Order 2, 3
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limiter [22]. Because the HIO limiter is sometimes triggered (and modifies the solu-
tion) even when the solution is smooth, we introduced a further threshold to generate a 
positive label: if the limited solution deviates from the unlimited solution by more than 
� = 1% , then we get a positive label.

A visual representation of an entry on the dataset can be seen in Fig. 2, where each 
discrete point in x, the associated solution u(x) and its local properties generate a data 
point in the feature space, and the corresponding label is denoted by the presence of 
a cross (if the cell is troubled) or its absence (if the cell is not troubled). Empirically, 
we noted that the cells which are flagged by the HIO limiter are similar to a well-tuned 
TVD limiter with the chosen threshold �.

4.1 � Features

The features X are the different quantities used to describe the local solution u. For the 
sake of generalisation, we choose features which are readily available in different numeri-
cal methods, such as the cell mean value, values at interface, divided differences between 
neighbours (see Table 2 for the complete description of features).

Furthermore, to introduce some magnitude invariance, we normalise physical values 
(such as averages or pointwise values):

where umax = max(ūi, ūi+1, ūi−1) and umin = min(ūi, ūi+1, ūi−1) (taken only over averages). 
This is a very important step, as a naive normalisation can lead to a non-informative repre-
sentation of the feature vector. The reason why this normalisation was chosen was because 
it made intuitive sense to measure the deviation of the degrees of freedom with respect to 
the maximum and minimum of the local patch.

(5)unormal(u∗) =
u∗ − umin

∣ umax ∣ + ∣ umin ∣
−

umax − u∗

∣ umax ∣ + ∣ umin ∣
,

Fig. 2   Example of a dataset 
entry. The dashed line denotes 
the limited solution, whereas the 
full line denotes the unlimited 
solution. Furthermore, the 
crosses “×” denote cells which 
are flagged as troubled cells



542	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

4.2 � Extension to Two‑Dimensional Problems

The extension to two-dimensional problems is done in a straightforward manner, using the 
initial conditions detailed in Table 3 to generate the dataset.

To obtain the labels, the HIO limiter is used again with a threshold � = 0.25% for maxi-
mal difference between the limited and unlimited solutions. This is necessary as although 
the HIO limiter might not degrade smooth solutions, it is still triggered (Fig. 3).

Furthermore, the features used are shown on Table 4 and the features are normalised in 
the same manner as in the one-dimensional case.

5 � Transfer Learning

With the objective to generate a shock-indicator function which does not depend on the 
underlying numerical scheme, we are interested in using a shock-indicator function trained 
with simulation data from a particular solver (numerical scheme and mesh type) and test-
ing its performance in a different solver (in particular, for a different numerical scheme 

Table 2   Features table for the one-dimensional problem

ID Feature name Description

1 h Cell width
2 ūi Average value of solution at cell i
3 ūi+1 Average value of solution at cell i + 1

4 ūi−1 Average value of solution at cell i − 1

5 u+
i−

1

2

Value of solution at interface i − 1

2
 reconstructed in cell i

6 u−
i+

1

2

Value of solution at interface i + 1

2
 reconstructed in cell i

7 u−
i−

1

2

Value of solution at interface i − 1

2
 reconstructed at cell i − 1

8 u+
i+

1

2

Value of solution at interface i + 1 reconstructed at cell i + 1

9 dui+1 Undivided difference between ūi and ūi+1
10 dui−1 Undivided difference between ūi and ūi−1
11 dui Undivided difference between ūi+1 and ūi−1 , divided by 2

Table 3   Runs used to generate the two-dimensional dataset

Initial condition
{

8, 0.25 ⩽ |�| ⩽ 0.75,

2, otherwise,  
exp(−10((x1 − 0.5)2 + (x2 − 0.5)2)2), � ∈ [0, 1]2

Advection speed (−1,−1) , (1, 1), (1, 0), (0, 1)
Mesh size 16, 32, 64, 128
Order 2, 3
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Fig. 3   The HIO limiter wrongly 
getting activated in a smooth 
solution

Table 4   Features table for the two-dimensional problem

ID Feature name Description

1 Δx Cell x-width
2 Δy Cell y-width
3 ūi,j Average value of solution at cell i
4 ūi+1,j Average value of solution at cell i + 1, j

5 ūi−1,j Average value of solution at cell i − 1, j

6 ūi,j+1 Average value of solution at cell i, j + 1

7 ūi,j−1 Average value of solution at cell i, j − 1

8 u+
i−

1

2
,j

Value of solution at interface i − 1

2
 reconstructed in cell i, j

9 u−
i+

1

2
,j

Value of solution at interface i + 1

2
 reconstructed in cell i, j

10 u+
i−

1

2
,j

Value of solution at interface i − 1

2
 reconstructed at cell i − 1, j

11 u−
i+

1

2
,j

Value of solution at interface i + 1

2
 reconstructed at cell i + 1, j

12 u+
i,j−

1

2

Value of solution at interface j − 1

2
 reconstructed in cell i, j

13 u−
i,j+

1

2

Value of solution at interface i + 1

2
 reconstructed in cell i, j

14 u+
i,j−

1

2

Value of solution at interface i − 1

2
 reconstructed at cell i, j − 1

15 u−
i,j+

1

2

Value of solution at interface i + 1

2
 reconstructed at cell i, j + 1

16 dui+1,j Divided difference between ūi,j and ūi+1,j
17 dui−1,j Divided difference between ūi,j and ūi−1,j
18 dui,jx Divided difference between ūi+1,j and ūi−1,j , divided by 2
19 dui,j+1 Divided difference between ūi,j and ūi,j+1
20 dui,j−1 Divided difference between ūi,j and ūi,j−1
21 dui,jy Divided difference between ūi,j+1 and ūi,j−1 , divided by 2
22 umax Maximum value between the averages in the considered patch
23 umin Minimum value between the averages in the considered patch
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and mesh type). Furthermore, we want to explore different strategies which can be used to 
perform the transfer learning.

We describe how to adapt a neural network shock-indicator that has been trained on data 
from a modal DG scheme on a Cartesian mesh to a neural network shock-indicator that 
works on a residual distribution (RD) scheme ([1, 2, 32, 33] for a brief introduction) on a 
Cartesian mesh and an unstructured triangular mesh.

The motivations to study this type of problem are, first, for some numerical schemes, 
there are limiters which are designed to be parameter free which rely on a particular feature 
of the underlying numerical scheme. It would be desirable if limiters designed for a par-
ticular numerical scheme could be generalised to be used for different numerical schemes. 
Second, there might be a particular numerical solver for which it is easier to generate 
labeled data.

Traditional supervised machine learning operates under the assumption that training and 
testing data are taken from the same input space and the same data distribution. However, 
this assumption does not always hold. Transfer learning aims to produce an effective model 
for a target task with limited or no labeled training data, using knowledge from a different, 
but related problem.

Formally, the problem of transfer learning can be written as let Xs be the source instance 
space. In this space, each instance xs ∈ Xs is represented by a feature vector �s ∈ Xs , where 
Xs denotes the source feature space. Let Xt be the target instance space and similarly, 
xt ∈ Xt is represented by a feature vector �t ∈ Xt , where Xt denotes the target feature space. 
In the case of heterogeneous transfer learning, we have that Xt ≠ Xs.

Most heterogeneous transfer learning solutions involve a transformation of the feature 
spaces: a symmetric transformation takes both feature spaces Xt,Xs and learns a feature 
transformation to project each vector onto a common space for adaptation purposes Xc 
[42], whereas an asymmetric transformation transforms the source feature space to align 
with the target feature space (or vice-versa). This approach is appropriate when the source 
and target have the same class label space and one can transform between Xt and Xs.

In this case, the source dataset is generated as detailed in Sect. 4 and the target datasets 
are described below (Sect. 5.2.1). The end goal is to understand to what extent a shock-
indicator designed for one specific class of numerical schemes (in this work, modal DG on 
Cartesian meshes), can be effective on a different numerical scheme (RD, both for struc-
tured and unstructured meshes).

5.1 � One‑Dimensional Case

We use a trained neural network shock-indicator and we integrate it with a one-dimensional 
RD code. Note, we must find a projection of the solution computed with the RD scheme 
to the feature space of the considered neural network. The one-dimensional case is not 
difficult, in particular, because when designing the feature space for the one-dimensional 
limiter, quantities which are readily available in most numerical schemes were chosen.

5.2 � Two‑Dimensional Case

The two-dimensional case is not as simple, as the shock-indicator is trained using simula-
tion data from Cartesian meshes, and the target problems are defined not only on Cartesian 
meshes but also on triangular, unstructured meshes.
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To this end, we must find a common feature space between these two methods. In par-
ticular, we test the two simple strategies:

–	 mapping to feature space of the Cartesian model,
–	 followed by a retraining phase.

Mapping to unstructured mesh While the mapping to structured square meshes is 
quite straightforward, for unstructured meshes, we project the numerical solution of 
the RD scheme, defined on triangular elements, to the feature space of the classifier 
(defined on a Cartesian mesh, as defined in Table 4). The feature transformation can be 
found in Table 5.

Table 5   Features transformation

ID Feature Remapped Description

1 Δx
√
a Square root of element area

2 Δy
√
a Square root of element area

3 ūi,j ūi Average value of solution at triangle i
4 ūi+1,j ūi,1 Average value of solution at neighbouring cell 1 of cell i
5 ūi−1,j ūi,2 Average value of solution at neighbouring cell 2 of cell i
6 ūi,j+1 ūi,3 Average value of solution at neighbouring cell 3 of cell i
7 ūi,j−1 1

4

�
ūi,j +

∑
k

ūk

�
Average value of solution at patch

8 u+
i−

1

2
,j

u(xe1 ) Value of solution at mid-point of edge shared between triangle i and 
neighbour 1

9 u−
i+

1

2
,j

u(xe2 ) Value of solution at mid-point of edge shared between triangle i and 
neighbour 2

10 u+
i−

1

2
,j

u(xe3 ) Value of solution at mid-point of edge shared between triangle i and 
neighbour 3

11 u−
i+

1

2
,j

ūi Average of solution at triangle i

12 u+
i,j−

1

2

u(xe1 ) Value of solution at mid-point of edge shared between triangle i and 
neighbour 1

13 u−
i,j+

1

2

u(xe2 ) Value of solution at mid-point of edge shared between triangle i and 
neighbour 2

14 u+
i,j−

1

2

u(xe3 ) Value of solution at mid-point of edge shared between triangle i and 
neighbour 3

15 u−
i,j+

1

2

ūi Average of solution in triangle i

16 dui+1,j ūi − ūi,1 Undivided difference between ūi and ūi,1
17 dui−1,j ūi − ūi,2 Undivided difference between ūi and ūi,1
18 dui

1

2
(ūi,1 − ūi,2) Undivided difference between ūi,1 and ūi,2 , divided by 2

19 dui,j+1 ūi − ūi,3 Undivided difference between ūi and ūi,3
20 dui,j−1 ūi − ūi Placeholder undivided difference
21 duj

1

2
(ūi,1 − ūi,3) Undivided difference between ūi,1 and ūi,3 , divided by 2

22 umax umax Maximum value between the averages in the considered patch
23 umin umin Minimum value between the averages in the considered patch



546	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Again, as mentioned in Sect.  3.1.2, to enforce directional invariance, we perform the 
aggregated prediction by permuting the stencil for the triangular meshes. This seems to 
help with the asymmetry introduced by replacing a side of the rectangle (in the feature 
space defined for the RKDG data) with the mean of the solution patch.

Retraining A model which was trained with the data generated by the DG scheme is 
loaded and retrained using the dataset as described in Sect. 5.2.1.

To avoid the phenomena of catastrophic forgetting of neural networks [16], which 
describes the lack of ability to learn different tasks in a sequence, in the retraining phase, 
a hybrid dataset containing elements from the target and source dataset is used, with a 
parameter � which determines the ratio to be taken from each dataset.

The retraining algorithm is detailed in Algorithm 3. 

5.2.1 � RD Dataset

To generate the dataset, small meshes are constructed (see Fig. 4). We represent the solu-
tion in each control volume as a linear combination of the polynomial basis. Because there 
is no straightforward way to generate a labeled dataset through simulations, we impose con-
tinuous and discontinuous functions, randomly varying the orientation of the discontinuity.

Fig. 4   Example meshes

(a) Triangular mesh (b) Cartesian mesh
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Using this method, we can generate a large dataset of examples which is close to the 
task at hand.

6 � One‑Dimensional Numerical Experiments

This section is split in three parts. First, we show the performance of several trained neural 
networks on an unseen validation set by measuring the accuracy, recall and precision. In 
the second part, we choose a model that performed well and we integrate it with a CFD 
code. The model runs as a black-box (denoted as NN) limiter and we compare its perfor-
mance to the MIN limiter and the hierarchical HIO limiter through the L1 error norm. We 
perform some tests for the linear advection equation and the Euler system of equations. 
The initial conditions are chosen as different from the ones used for the training. Finally, 
the transferred limiter is tested in the context of a one-dimensional RD scheme.

6.1 � Detection Rate

We measure the performance of several models (their architectures are given in Appendix 
A) on an unseen test set. Their performances are detailed in Table 6). Going forward, we 
select Model 4 as it performs well and the resulting size of the weights matrices per layer is 
significantly smaller than Model 3. It is debatable whether the differences between Models 
3, 4 and 5 are statistically significant. Furthermore, surprisingly, we note that the weighted 
loss function did not improve the chosen performance metrics.

6.2 � Numerical Validation

6.2.1 � Linear Advection

Consider a linear advection equation with a ∈ ℝ:

and periodic boundary conditions.
Case of a Gaussian pulse We consider the following initial condition:

(6)
�

�t
u + a

�

�x
u = 0

Table 6   Performances

� denotes the estimate of the ratio between positive and negative labels, which could be measured empiri-
cally through the training data. Empirically, we have 𝜃̂ = 0.1.

Model Description Accuracy/% Recall/% Precision/%

Random Randomly guessing 50.00 �2 50.00
Model 1 2 hidden layers (HL) 77.96 69.17 24.13
Model 2 3 HL 95.52 80.66 84.19
Model 3 4 HL 95.15 79.26 82.67
Model 4 5 HL 95.14 81.71 81.01
Model 5 5 HL + weighted loss ( � = 5) 95.67 79.05 86.39
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with the advection velocity a = 1.
The convergence is shown in Table 7 after one full crossing for orders 2 and 3. In 

Fig.  5, we show how the maxima is clipped using different limiters for grid sizes of 
N = 40 and N = 80 . We note that the MIN limiter clips the maximum value of the solu-
tion, as expected. The HIO limiter behaves as the MIN limiter for the second-order case, 
but for the third order, it does not limit the solution. The neural network-based (NN) 
limiter also limits the solution at the second order and N = 40 , but it improves as N 
increases. The NN limiter seems to be slightly less diffusive than the HIO limiter for the 
second-order case; furthermore, the performance does not depend (as much as the HIO 
limiter) on the order of the method.

Case of a smooth pulse and square hat The following initial conditions contain a 
smooth Gaussian pulse and a hat function:

again with the advection velocity a = 1.
The convergence is shown in Table  8 after one full crossing for orders 2 and 3. 

Furthermore, in Fig. 6, we show how the different limiters perform, for a grid size of 
N = 40 and N = 80 and at the second and the third order. Namely, we notice that at the 
second order and N = 40 , the solution given by the NN limiter is similar to the unlim-
ited one, with less undershoots, however, increasing the resolution to N = 80 seems to 
degrade the performance. Overall, in this case, the NN limiter seems able to get rid of 
most under and overshoots associated with discontinuities, while having a similar per-
formance to the HIO limiter.

(7)u0(x) = 1 + 3 exp(−100(x − 0.5)2), (x, t) ∈ [0, 1] ×ℝ
+

(8)u0(x) =

{
2, |x − 0.7| ⩽ 0.1,

1 + exp
(
−

(x−0.25)2

2×0.052

)
, otherwise,

(x, t) ∈ [0, 1] ×ℝ
+,

Table 7   L1 error for one crossing of the Gaussian pulse (7) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 6.74E−02  0 1.26E−01  0 1.23E−01  0 6.79E−02  0
322 2.00E−02  0.5 4.81E−02  0.4 4.14E−02  0.4 1.97E−02  0.5
642 3.45E−03  1.7 1.31E−02  1.4 9.11E−03  1.6 3.45E−03  1.8
1282 5.42E−04  2.1 2.75E−03  1.6 1.59E−03  1.9 5.41E−04  2.1
(b) Order 3
162 6.92E−03  0 1.26E−01  0 1.17E−01  0 1.88E−02  0
322 4.58E−04  0.9 4.80E−02  0.4 2.92E−02  0.4 7.91E−04  0.7
642 7.93E−05  3.9 1.31E−02  1.4 6.85E−03  2.0 1.08E−04  4.6
1282 4.36E−05  3.2 2.75E−03  1.6 1.20E−03  2.0 5.15E−05  3.7
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6.2.2 � One‑Dimensional Euler Equation

Now we consider the one-dimensional Euler equations, which describe the behavior of an 
inviscid flow. This system of equations describes the evolution of a density � , a velocity v, 
a pressure p and total energy E,

Un U

UU

N N

N N

x x

x x

Fig. 5   Maxima clipping of the Gaussian pulse (7) after one full crossing for approximation order of 2 (left) 
and 3 (right) for grid size N = 40 and N = 80

Table 8   L1 error for one crossing of the Gaussian pulse and hat function (8) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 3.04E−02  0 5.37E−02  0 4.94E−02  0 3.20E−02  0
322 2.13E−02  0.6 2.63E−02  0.5 2.63E−02  0.5 2.12E−02  0.6
642 1.12E−02  0.5 1.16E−02  1.0 1.01E−02  0.9 1.11E−03  0.6
1282 8.33E−03  0.7 7.74E−03  1.1 7.74E−03  1.1 8.24E−03  0.8
(b) Order 3
162 1.17E−02  0 5.37E−02  0 5.27E−02  0 2.09E−02  0
322 7.61E−03  0.8 2.63E−02  0.5 1.63E−02  0.5 1.05E−02  0.7
642 4.63E−03  0.6 1.16E−02  1.0 7.58E−03  1.7 5.73E−03  1.0
1282 2.91E−03  0.7 7.74E−03  1.1 4.21E−03  1.4 3.37E−03  0.9
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The system is closed with equation of state for an ideal gas

where e = E−1

2
�v2 is the internal energy.

The NN limiter is applied sequentially for each variable.
Case of Sod shock tube We consider the standard Sod shock tube test, given by the 

initial conditions:

and � = 1.4 and gradient-free boundary conditions.

(9)
�

�t
� +

�

�x
(�v) = 0,

(10)
�

�t
(�v) +

�

�x
(�v2 + p) = 0,

(11)
�

�t
E +

�

�x
((E + p)v) = 0.

�e =
p

� − 1
,

(12)(𝜌, v, p)(x, 0) =

{
(1.0, 0, 1.0), 0 < x ⩽ 0.5,

(0.125, 0, 0.1), 0.5 < x < 1.0,
(x, t) ∈ [0, 1] × [0, 0.24],

Un U

UU

N N

N N

x x

x x

Fig. 6   Maxima clipping of the Gaussian and hat pulses (8) after one full crossing for approximation order 
of 2 (left) and 3 (right) for grid size N = 40 and N = 80
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Fig. 7   Density, velocity, and pressure fields for the Sod shock tube (12) at T = 0.24 for grid size N = 100 
and approximation order 2
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Fig. 8   Density, velocity, and pressure fields for the Sod shock tube (12) at T = 0.24 for grid size N = 100 
and approximation order 3
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Fig. 9   Density, velocity, and pressure fields for the Sod shock tube (13) at T = 0.24 for grid size N = 100 
and approximation order 2
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Fig. 10   Density, velocity, and pressure fields for the Sod shock tube (13) at T = 0.24 for grid size N = 100 
and approximation order 3
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Fig. 11   Density, velocity, and 
pressure fields of the blast wave 
interaction (14) at T = 0.038 for 
grid size N = 100 and approxi-
mation order 2



556	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

For both the second- and third-order results and a fixed resolution N = 100 , the density, 
velocity and pressure fields at T = 0.24 are shown in Figs. 7 and 8. We note the solution 
produced by the NN limiter seems oscillation free and similar to the solution of the HIO 
limiter at both orders.

Case of Lax shock tube We consider the Lax shock tube test [25], given by the initial 
conditions:

and � = 1.4 and gradient-free boundary conditions.
In Figs.  9 and  10, we show the comparison between different limiters at T = 0.08 , 

for schemes of order 2 and 3, respectively. In Fig.  9, we show the density, velocity, 
and pressure fields for a second-order scheme and resolution N = 100 . We note the NN 
limiter seems less diffusive than the HIO limiter, but also not all overshoots are well 
controlled. This is more obvious in the velocity and pressure fields. In Fig. 10, the same 
quantities are shown, but for a third-order scheme. Again, we note both the HIO and NN 
limiters are less diffusive than the MIN limiter.

Case of blast wave Next we consider the interacting blast waves test, given by the 
initial conditions:

with � = 1.4 and reflexive boundary conditions.
In Figs. 11 and 12, we show the comparison between different limiters at T = 0.038 for 

different orders. The unlimited solution is not shown because the code crashes due to the 
pressure becoming negative shortly after the start of the simulation for orders higher than 
1. The dashed line denotes a high-resolution solution, run with N = 1 000 , the third order 
with the HIO limiter. We can note that the NN limiter is not as good at suppressing oscilla-
tions as the MIN limiter and the HIO limiter, but stabilises the solution enough to finish the 
run. Furthermore, we note that the peak is better preserved, which means that it looks like 
the limiting is less strong than the MIN limiter and the HIO limiter.

6.3 � Transfer to RD

In this section, we show the performance of the NN limiter applied to the RD scheme, and 
we compare with a state of the art limiting technique, MOOD [3]. Other stabilisation strat-
egies for the RD require parameter tuning which are problem dependent.

Case of Sod shock The initial conditions are given as in (12). A qualitative result is 
shown in Fig. 13. It can be noted that the NN limiter is slightly more diffusive than MOOD, 
but that it seems to control some of the undershoots better.

(13)

(𝜌, v, p)(x, 0) =

{
(0.445, 0.698, 3.528), 0 < x ⩽ 0.5,

(0.5, 0, 0.571), 0.5 < x < 1.0,
(x, t) ∈ [0, 1] × [0, 0.08],

(14)(𝜌, v, p)(x, 0) =

⎧⎪⎨⎪⎩

(1.0, 0, 1 000.0), 0 < x ⩽ 0.1,

(1.0, 0, 0.01), 0.1 < x ⩽ 0.9,

(1.0, 0, 100.0), 0.9 < x < 1.0,

(x, t) ∈ [0, 1] × [0, 0.038]
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Fig. 12   Density, velocity, and 
pressure fields of the blast wave 
interaction (14) at T = 0.038 for 
grid size N = 100 and approxi-
mation order 3
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Case of blast wave The initial conditions are given as in (14). A qualitative result is 
shown in Fig. 14. In this example, one can see that MOOD is significantly less diffusive 
than the NN limiter.

7 � Two‑Dimensional Numerical Experiments

Similar to Sect. 6, we first train a set of neural networks varying the number of neurons and 
layers, and select the one with best recall/precision score.

We then compare the performance of the NN limiter with the MIN limiter and the HIO 
limiter through the L1 error norm. We perform some tests for the linear advection equation 
and Euler system of equations. The initial conditions are chosen to be different from the 
ones used for the training. In Sect. 7.3, we show the results for the transfer to a RD scheme, 
for structured and unstructured meshes.

7.1 � Numerical Validation

7.1.1 � Linear Advection

Consider a linear advection equation with � ∈ ℝ2:

and periodic boundary conditions.
Smooth initial condition We consider the following initial conditions, which contain a 

smooth function:

with the advection velocity � = (1, 1) and periodic boundary conditions.
The errors and convergence rates are shown in Table 9 after one full crossing for orders 

2 and 3 and different methods. The key-point to note is that the error between the unlimited 
case and the NN case are very similar, meaning that the shock-detector was not triggered as 
much as in the cases of the MIN and the HIO.

Case of smooth pulse and square hat We consider the following initial conditions, which 
contain a smooth Gaussian pulse and a hat function, defined in (�, t) ∈ [0, 1]2×ℝ+:

again with the advection velocity � = (1, 1) , �1 = (0.75, 0.5).
The errors and convergence rates are shown in Table 10 after one full crossing for orders 2 

and 3 and different methods.

(15)
�

�t
u + � ⋅ ∇u = 0

(16)u0(x) = 1 + sin(2�r)10, (x, t) ∈ [0, 1] ×ℝ
+

(17)u0(x) =

⎧⎪⎨⎪⎩

2, (�� − 0.25�, �y − 0.5�) ⩽ (0.1, 0.1),

1 + exp
�
−100(��� − �1��2)

�
, x ⩾ 0.5,

1, otherwise,
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Fig. 13   Density, velocity, and 
pressure fields of the Sod shock
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E
E

E
E

E
E

Fig. 14   Density, velocity, and pressure fields of the blast wave test case (14)
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7.2 � Two‑Dimensional Euler Equation

Now we consider the two-dimensional Euler equations, which describe the behaviour of 
an inviscid flow. This system of equations describes the evolution of a density � , a velocity 
vector � = (v1, v2) , a pressure p and total energy E,

(18)�t� + ∇ ⋅ (��) = 0,

(19)𝜕t𝜌� + ∇ ⋅

(
𝜌�⊗ � + pI3

)
= 0,

Table 9   L1 error for one crossing of the smooth ring (16) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 6.74E−02  0 1.26E−01  0 1.23E−01  0 6.79E−02  0
322 2.00E−02  0.5 4.81E−02  0.4 4.14E−02  0.4 1.97E−02  0.5
642 3.45E−03  1.7 1.31E−02  1.4 9.11E−03  1.6 3.45E−03  1.8
1282 5.42E−04  2.1 2.75E−03  1.6 1.59E−03  1.9 5.41E−04  2.1
(b) Order 3
162 6.92E−03  0 1.26E−01  0 1.17E−01  0 1.88E−02  0
322 4.58E−04  0.9 4.80E−02  0.4 2.92E−02  0.4 7.91E−04  0.7
642 7.93E−05  3.9 1.31E−02  1.4 6.85E−03  2.0 1.08E−04  4.6
1282 4.36E−05  3.2 2.75E−03  1.6 1.20E−03  2.0 5.15E−05  3.7

Table 10   L1 error for one crossing of the Gaussian pulse and hat function (17) using different limiters

N No limiter MIN HIO NN

(a) Order 2
162 3.04E−02  0 5.37E−02  0 4.94E−02  0 3.20E−02  0
322 2.13E−02  0.6 2.63E−02  0.5 2.63E−02  0.5 2.12E−02  0.6
642 1.12E−02  0.5 1.16E−02  1.0 1.01E−02  0.9 1.11E−03  0.6
1282 8.33E−03  0.7 7.74E−03  1.1 7.74E−03  1.1 8.24E−03  0.8
(b) Order 3
162 1.17E−02  0 5.37E−02  0 5.27E−02  0 2.09E−02  0
322 7.61E−03  0.8 2.63E−02  0.5 1.63E−02  0.5 1.05E−02  0.7
642 4.63E−03  0.6 1.16E−02  1.0 7.58E−03  1.7 5.73E−03  1.0
1282 2.91E−03  0.7 7.74E−03  1.1 4.21E−03  1.4 3.37E−03  0.9
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Fig. 15   Detection comparison between HIO limiter (top row) and NN limiter (bottom row) at different 
times (t = 0.01, 0.1, 0.2 and 0.24)

Fig. 16   Scatter plot of density 
of the two-dimensional Sod 
shock problem at T = 0.24 for 
Nelem = 642 and Nelem = 1282 
and approximation order 2
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The system is closed equation of state for an ideal gas

where e = E −
1

2
�|�|2 is the internal energy.

Case of the two-dimensional Sod shock tube We consider the radial Sod shock tube 
test, given by the initial conditions:

where r =
√
x2 + y2 , (x, y) ∈ [0, 1]2 , � = 1.4 and gradient-free boundary conditions.

The solution maps at different increasing times t = 0.01, 0.1, 0.2 and 0.24 are shown in 
Fig. 15. In the top row, the solution maps using the HIO limiter are shown, as well as the 
cells in which the limiter was triggered (dark regions). We note that there are regions with-
out discontinuities which are still being limited. In the bottom row, we show the solution 
maps when using the NN shock detector and the areas where the shock-detector detects a 
shock (and which are subconsequently limited) are overlaid. We note that at the initial time 
the detection looks quite symmetric; however, over time, this is no longer the case. We also 
note that the shock fronts are being tracked, while the smooth regions are not being limited.

In Fig. 16, we show the projection of the solution along the radial axis, for N = 642 and 
N = 1282 . This allows us to see how the different limiters preserve the symmetry of the prob-
lem, as the perfect solution would have very little scatter. We see that both the NN shock detec-
tor and the HIO limiter appear to perform similarly, and the MIN limiter is more diffusive.

(20)�tE + ∇ ⋅ (E + p)� = 0.

�e =
p

� − 1
,

(21)(𝜌, vx, vy, p)(x, 0) =

{
(1.0, 0, 0, 1.0), 0 < r ⩽ 0.5,

(0.125, 0, 0, 0.1), 0.5 < r < 1.0,

Fig. 17   Detection comparison between HIO limiter (top row) and NN limiter (bottom row) at different 
times (t = 0.01, 0.1 and  0.2)
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Case of the Riemann problem 12 We consider a two-dimensional Riemann problem 
(configuration 12) [24]. The initial data are

for � = 1.4 and gradient-free boundary conditions.
The solution maps at different increasing times t = 0.01, 0.1 and 0.2 are shown in 

Fig. 17. As before, the top row shows the simulation using the HIO limiter is shown, as 
well as the cells in which the limiter was triggered. Similar to the previous case, there are 
regions where there is no discontinuity which are still being limited. In the bottom row, we 
show the solution map when using the NN shock detector and again, we denote the areas 
where the shock detector detects a shock (and which are sub-consequently limited). We 
note that the symmetry is quite well preserved across time.

(22)(𝜌, vx, vy, p)(x, 0) =

⎧
⎪⎨⎪⎩

(1, 0.727 6, 0, 1), x < 0, y > 0,

(0.8, 0, 0, 1), x < 0, y < 0,

(0.531 3, 0, 0, 0.4), x > 0, y > 0,

(1, 0, 0.727 6, 1), x > 0, y < 0,

Fig. 18   Detection comparison between the NN limiter without retraining (top row) and with retraining (bot-
tom row) on a structured mesh at different times (t = 0.01, 0.1, 0.2 and 0.24)

Fig. 19   Left: comparison 
between different limiters for the 
RD scheme on a structured mesh
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7.3 � Transfer to RD

In this section, we report the results of the NN limiter applied to an RD scheme. In par-
ticular, we report on the performance of the NN shock detector when no retraining phase is 
performed versus when it is retrained on a reduced dataset using data from numerical runs 
of an RD scheme.

7.3.1 � Two‑dimensional Sod Shock Tube

In Fig. 18, we show the performance of the two-dimensional shock-indicator function on a 
two-dimensional RD scheme on a Cartesian mesh which has been trained on RKDG data 
alone (top row) and retrained using the RD data (bottom row), at different time snapshots 
T = 0.01, 0.1, 0.2, and 0.24. We note that initially, the shock is well captured, but over time 

Fig. 20   Zoom on unstructured grid used in numerical experiments shown in Fig. 21

Fig. 21   Detection comparison between the NN limiter without retraining (top row) and with retraining (bot-
tom row) on an unstructured mesh at different times (t = 0.01, 0.1, 0.2 and 0.24)
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the shock front is no longer well captured. In particular, we can note that the symmetry 
of the solution with retraining (bottom row) seems to be broken. This is more evident in 
Fig. 19, where again, the radial projection of the solution is shown. The optimal solution 
would show a thin spread. The � parameter shown in the figure provides the ratio between 
the (re)training data coming from the RKDG scheme and RD scheme. We can see that the 
more samples are taken from the RD scheme, the less effective the shock-detector becomes. 
Comparing the performance of the NN limiter with other RD limiters, we can note that it 
is less diffusive than the RD Psi-Galerkin scheme with Burmann jump stabilisation [8], but 
significantly worse than the MOOD limiter [3].

Moving onto unstructured grids (see Fig. 20 for one of the grids used), we compare the 
performance of the transferred neural network shock-indicator without and with retraining 
on the RD data on an unstructured grid. In Fig. 21, we show again solution maps using 
the shock-indicator trained only on RKDG data (top row) and retrained using the RD data 
(bottom row), at different time snapshots T = 0.01, 0.1, 0.20, and 0.24. We can see that the 
adapted limiter detects troubled cells in the shock fronts. In the unstructured case, the rar-
efaction is no longer limited. In Fig. 22, we show again the radial projection of the two-
dimensional Sod shock. In this case, it seems like retraining the shock-indicator yields a 
solution which is more diffusive, but less oscillatory. Comparing with other limiters avail-
able for the RD, we can note that the performance seems similar to the MOOD limiter, and 
the NN-based limiter is less diffusive than the Psi-Galerkin scheme with jump stabilisation.

8 � Discussion

We showed that it is possible to learn a parameter-free shock-detector (after the training 
phase) from data. While the performance on the training set is relatively good (as observed 
in Sect. 6.1), the on-the-fly performance could be improved. One way would be to have 
a more representative training dataset in conjunction with the careful design of the loss 
function during the training phase (for example, to include information on the maximum 
preserving principle).

For the advection cases, we observed that this limiter was by far less diffusive than the 
MIN limiter. In the systems cases, some oscillations were corrected but there were other 
oscillations which were not stabilized enough, although none of the simulations crashed 

Fig. 22   Comparison between dif-
ferent limiters for the RD scheme 
on an unstructured mesh
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(whereas the unlimited solution was too unstable, namely for the blast wave case). Overall, 
the direct application of this model to unseen initial conditions for the advection equation 
and to the Euler system was somewhat successful.

We then explored strategies of transferring a trained shock-indicator function to a dif-
ferent numerical scheme, namely to a RD scheme. We tested two strategies: one of simply 
transforming the feature vector from a RD solution onto a feature vector from a RKDG 
solution, and another one of retraining a trained classifier on a reduced RD dataset. What 
we observed was that it was possible to use the shock-indicator function in a RD scheme, 
but that retraining on a reduced dataset did not make significant difference (perhaps it even 
deteriorated the performance of the shock-indicator). This is something to explore in future 
work.

The attractive property of this type of shock-indicator is that, once trained, it can oper-
ate as a black-box, parameter-free shock detector. We have verified that both in one- and 
two-dimensional problems we were able to attain better results when comparing to limiters 
which have not been properly hand-tuned. However, in the case of the RD, the transferred 
NN limiter did not perform as well as the MOOD limiter [3, 9, 41].

Some important difficulties we were faced with were as follows. 

(i)	 Lack of theoretical guarantees and quality of the numerical solution
		    Throughout the time we worked on this problem, it became apparent that certain 

properties of the shock capturing function do not arise without a certain amount 
of careful considerations. For example, it was particularly concerning the fact that 
the detection was not symmetric with respect to a defined stencil (see Fig. 23). To 
overcome this problem, the literature typically suggests either a feature transforma-
tion which renders a certain property invariant or data augmentation by generating 
training examples that cover such invariance [27]. We empirically observed that 
merely performing data augmentation did not perform very well and it led to longer 
training times (due to the enlargement of the dataset). We then used an ensemble 
classification where the stencil is permuted and the prediction is averaged (as detailed 

Fig. 23   No symmetry invariance considerations versus explicit symmetry invariance
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in Sect. 3.1.2), such that, for example, a prediction on a particular stencil and the 
same stencil mirrored along the x-axis yield the same response. This improved the 
detection a lot in problems that had an obvious symmetry (like the two-dimensional 
Sod shock).

	 (ii)	 Computational performance degradation
		    We verified that, when integrating the shock-indicator with existing codes, the 

classification step was expensive (it entails, at best, a series of matrix multiplications, 
and at worst, an additional feature vector computation). This meant that even if the 
limiter was not triggered as often due to the shock-indicator step, the overall cost 
of using this particular shock-indicator was higher than with a traditional limiter, 
causing a slow down in all codes we considered.

	 (iii)	 Lack of supporting theory on how to optimize, tune and generate deep neural net-
works

		    To this day, the optimization of hyperparameters (such as architecture, shape, size, 
learning rates related to the NN) is approached mostly through trial and error. While 
several works [29] estimate lower bounds and necessary complexity of the network to 
capture a given complexity of the function to be learned, these results remain rather 
far from concrete applications.

8.1 � Future Developments

Taking the previous list of main difficulties that we were faced with during this work, we 
can guide the discussion about our planned future developments and directions. 

	 (i)	 Lack of theoretical guarantees and quality of the numerical solution
		    What we proposed in this work was exact invariance of the network with respect 

to rotations of the stencil. This adds some cost to the method during the classification 
phase. Recent ideas to introduce not invariance of the NN, but equivariance, has been 
explored in [12, 13] in the context of computer vision, and could be an interesting 
direction going forward.

	 (ii)	 Computational performance degradation
		    We verified integrating the shock-indicator with existing codes lead always to a 

computational performance degradation. This is not to say it is always going to be too 
computationally expensive—there have been some successful examples of learning 
a reduced network from a larger NN, and with this, a large computational gain has 
been observed [19].

	 (iii)	 Lack of supporting theory on how to optimize, tune and generate deep NNs
		    Using the python package hyperopt [5], designed to optimize hyperparameters 

over awkward search spaces with real-valued, discrete, and conditional dimensions, 
which makes it ideal for iterating machine learning hyper-parameters, we have been 
able to obtain similar performing neural network-based shock-indicators without any 
hand-tuning and which surprisingly had much less degrees of freedom than the one 
used in this work.

		    In particular, defining the hyper-parameter space as

–	 number of hidden layers, n ∈ {1, 2, 3, 4};
–	 number of neurons per layers p ∈ {8,⋯ , 128} , allowed us to search for a good 

configuration of the deep NN.
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	 (iv)	 Better understanding of how to perform transfer learning
		    The transfer learning approach we took in this project was a very simple (and 

possibly naive one). We are interested in exploring symmetric feature space trans-
formations, which take both (or many) feature spaces X1,⋯ ,Xn (one can imagine 
coming from different numerical schemes) and finding a common feature space for 
adaptation purposes.

9 � Conclusion

The purpose of this work was primarily to demonstrate the potential of using learning algo-
rithms in CFD codes to automate away some parameter tuning, which is a common prac-
tice when using stabilisation methods, as well as to explore the idea of transferring knowl-
edge across numerical schemes. In particular, we detailed the different stages necessary 
to train a black-box shock-detector that can be integrated with a limiter in different codes. 
To this end, we described how to construct a dataset for the training phase, how to set up 
a deep NN (a multilayer perceptron) that detects shocks, and how to integrate the trained 
model with existing CFD codes. We performed numerical experiments to validate the per-
formance of the shock-detector (paired with a limiter) in the context of scalar and systems 
of equations. Furthermore, we use the model trained on the data generated with a DG code 
on an RD code, exploring different ways to perform the domain adaptation.

We then explored strategies of transferring a trained shock-indicator function to a differ-
ent numerical scheme, namely, to an RD scheme.

We also found that for the exact task of shock-detection, a neural network-based limiter 
has some notable drawbacks in comparison to some limiters which are both quite agnostic 
to the underlying numerical method and require minimal parameter tuning (e.g., MOOD 
[3]). In particular, due to the lack of a systematic way to introduce domain knowledge onto 
the data-driven model (e.g., positivity of some quantities or the notion of maximum prin-
ciple, rotation invariance, to name a few), we are of the opinion this neural network-based 
limiter is in the stage of being a prototype. However, it is our belief that these ideas can be 
applied to other problems which depend on certain local properties of the numerical solu-
tion, ultimately contributing towards CFD codes which are robust to different initial condi-
tions and that require less parameter tuning to produce readily usable results.

With this in mind, we covered a few of the future improvements planned for this NN-
based limiter.

Acknowledgements  We want to thank the referees for the insightful discussion, feedback and comments 
that hopefully lead to an improved manuscript. Majority of this work was done in University of Zurich, 
where MHV was funded by the UZH Candoc Forschungskredit grant.

Compliance with Ethical Standards 

 Conflict of interest  On behalf of all authors, the corresponding author states that there is no conflict of inter-
est.



570	 Communications on Applied Mathematics and Computation (2023) 5:532–572

1 3

Appendix A MLP Architectures

We detail the architectures tested in this work in Table A1. For this work, we found the 
lower bound ( 228 ) for the number of weights and fixed the activation functions to be ReLU 
(as detailed in Sect.  3.1.1). What we observed was that this quantity was not producing 
very good models. Thus, we used ( 232 ) non-zero weights, which presupposes a constant C 
of order 10. It is left to specify the distribution of the weights across the different layers. 
The number of weights and neurons is related by multiplying d through the number of neu-
rons per layers to get the total number of weights.
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