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Abstract
High-order discretizations of partial differential equations (PDEs) necessitate high-order 
time integration schemes capable of handling both stiff and nonstiff operators in an efficient 
manner. Implicit-explicit (IMEX) integration based on general linear methods (GLMs) 
offers an attractive solution due to their high stage and method order, as well as excel-
lent stability properties. The IMEX characteristic allows stiff terms to be treated implicitly 
and nonstiff terms to be efficiently integrated explicitly. This work develops two systematic 
approaches for the development of IMEX GLMs of arbitrary order with stages that can be 
solved in parallel. The first approach is based on diagonally implicit multi-stage integration 
methods (DIMSIMs) of types 3 and 4. The second is a parallel generalization of IMEX 
Euler and has the interesting feature that the linear stability is independent of the order of 
accuracy. Numerical experiments confirm the theoretical rates of convergence and reveal 
that the new schemes are more efficient than serial IMEX GLMs and IMEX Runge–Kutta 
methods.
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1  Introduction

In this work, we consider the autonomous, additively partitioned system of ordinary dif-
ferential equations (ODEs)
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where f is nonstiff, g is stiff, and y ∈ ℝd . Such systems frequently arise from applying the 
methods of lines to semidiscretize a partial differential equation (PDE). For example, pro-
cesses such as diffusion, advection, and reaction all have different stiffnesses, CFL condi-
tions, and optimal integration schemes. Implicit-explicit (IMEX) methods offer a special-
ized approach for solving Eq. (1.1) by treating f with an inexpensive explicit method and 
limiting the application of an implicit method, which is generally more expensive, to g.

The IMEX strategy has a relatively long history in the context of Runge–Kutta methods 
[2, 4, 17, 25, 28] and linear multistep methods [3, 19, 21]. Zhang et al. proposed IMEX 
schemes based on two-step Runge–Kutta (TSRK) and general linear methods (GLM) [33, 
34, 36] with further developments reported in [5, 6, 12–14, 22, 24, 35]. Similarly, peer 
methods, a subclass of GLMs, have been utilized for IMEX integration in the literature 
such as [18, 27, 31, 32].

High-order IMEX GLMs do not face the stability barriers that constrain multistep coun-
terparts and have much simpler order conditions than IMEX Runge–Kutta methods. More-
over, they can attain high stage order making them resilient to the order reduction phenom-
ena seen in very stiff problems and PDEs with time-dependent boundary conditions.

A major challenge when deriving high-order IMEX GLMs is ensuring the stabil-
ity region is large enough to be competitive with IMEX Runge–Kutta schemes. One can 
directly optimize for the area of the stability region under the constraints of the order con-
ditions, but this is quite challenging as the objective and constraint functions are highly 
nonlinear and expensive to evaluate. In addition, this optimization is not scalable, with 
sixth order appearing to be the highest order achieved with this strategy [24].

Parallelism for IMEX schemes is scarcely explored [16, 18], but it is well studied for 
traditional, unpartitioned GLMs [8–10, 23]. One step of a GLM is

Methods are frequently categorized into one of four types to characterize the suitability for 
stiff problems and parallelism [7]. Types 1 and 2 are serial and have the structure

When � = 0 , the method is of type 1, and of type 2 for 𝜆 > 0 . Of interest to this paper are 
methods of types 3 and 4, which have A = � �s×s , so that all internal stages are independ-
ent and can be computed in parallel. Type 3 methods are explicit with � = 0 , while type 4 
methods are implicit with 𝜆 > 0.

This work extends traditional, parallel GLMs into the IMEX setting and proposes two 
systematic approaches for designing stable methods of arbitrary order. The first uses the 
popular DIMSIM framework for the base methods. In particular, we use a family of type 
4 methods proposed by Butcher [9] for the implicit base and show an explicit counterpart 
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is uniquely determined. This eliminates the need to perform a sophisticated optimization 
procedure to determine coefficients. The second approach can be interpreted as a generali-
zation of the simplest IMEX scheme: IMEX Euler. It starts with an ensemble of states each 
approximating the ODE solution at different points in time. In parallel, they are propagated 
one timestep forward using IMEX Euler, which is only first-order accurate. A new, highly 
accurate ensemble of states is computed by taking linear combinations of the IMEX Euler 
solutions. This scheme, which we call parallel ensemble IMEX Euler, can be described in 
the framework of IMEX GLMs. Notably, it maintains the exact same stability region and 
roughly the same runtime in a parallel setting as IMEX Euler while achieving arbitrarily 
high orders of consistency. Again, coefficients are determined uniquely, and we show that 
they are very simple to compute using basic matrix operations.

To assess the quality of the two new families of parallel IMEX GLMs, we apply them 
to a PDE with time-dependent forcing and boundary conditions, as well as to a singularly 
perturbed PDE. Convergence is verified as high as eighth order for these challenging prob-
lems which can cause order reduction for methods of low stage order. For the performance 
tests, the parallel methods were run on several nodes in a cluster using MPI and compared 
to existing, high-quality, serial IMEX Runge–Kutta and IMEX GLMs run on a single node. 
The best parallel methods could reach a desired solution accuracy approximately two to 
four times faster.

The structure of this paper is as follows. Section 2 reviews the formulation, order condi-
tions, and stability analysis of IMEX GLMs. This is then specialized in Sect. 3 for parallel 
IMEX GLMs. Sections 4 and 5 present and analyze two new families of parallel IMEX 
GLMs. The convergence and performance of these new schemes are compared to other 
IMEX GLMs and IMEX Runge–Kutta methods in Sect. 6. We summarize our findings and 
provide final remarks in Sect. 7.

2 � Background on IMEX GLMs

An IMEX GLM [34] computes s internal and r external stages using timestep h according 
to: 

 Using the matrix notation for the coefficients

the IMEX GLM can be represented in the Butcher tableau

Assuming the incoming external stages to a step satisfy
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an IMEX GLM is said to have stage order q if

and order p if

The Taylor series weights for the external stages are also described in the matrix form

with wi,0 = ŵi,0 for i = 1,⋯ , r.
The order conditions for IMEX GLMs are discussed in detail in [34]. Notably, a pre-

consistent IMEX GLM has order p and stage order q ∈ {p, p − 1} if and only if the base 
methods have order p and stage order q ∈ {p, p − 1} . Here, we present the order conditions 
in a compact matrix form. First, we define the Toeplitz matrices

and the scaled Vandermonde matrix

Powers of a vector are understood to be component-wise, and �s represents the vector of 
ones of dimension s.

Theorem  2.1  (Compact IMEX GLM order conditions [34]) Assume y[n−1] satisfies Eq. 
(2.3). The IMEX GLM Eq. (2.1) has order p and stage order q ∈ {p, p − 1} if and only if 
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where �∶,0∶q is the first q + 1 columns of  � , and  �̂∶,0∶q is defined analogously.

Remark 2.1  The first column in each of the matrix conditions in Eq. (2.6) corresponds to a 
preconsistency condition.

2.1 � Linear Stability of IMEX GLMs

The standard test problem used to analyze the linear stability of an IMEX method is the parti-
tioned problem

where � y is considered nonstiff and �̂ y is considered stiff. Applying the IMEX GLM Eq. 
(2.1) to Eq. (2.7) yields the stability matrix

where w = h � and ŵ = h �̂  . The set of (w, ŵ) ∈ ℂ × ℂ for which �(w, ŵ) is power 
bounded, and thus, the IMEX GLM is stable, is a four-dimensional region that can be diffi-
cult to analyze and visualize. Following [34], we also consider the simpler stability regions 

where S and Ŝ are the stability regions of the explicit and implicit base methods, respec-
tively. Equation (2.8a) is referred to as the desired stiff stability region and Eq. (2.8b) as the 
constrained nonstiff stability region.

3 � Parallel IMEX GLMs

An IMEX GLM formed by pairing a type 3 GLM with a type 4 GLM has stages of the 
form 

(2.6c)��p+1 − ��p+1 �p+1 − �� = �r×(p+1),

(2.6d)�̂�p+1 − �̂ �p+1 �p+1 − ��̂ = �r×(p+1),
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The only shared dependencies among the internal stages are the previously computed 
external stages y[n−1]

j
 . This allows the IMEX method to inherit the parallelism of the base 

methods.
The tableau for a parallel IMEX GLM is of the form

We note that one could more generally define �̂ = diag (�1,⋯ , �s) ; however, this intro-
duces additional complexity and degrees of freedom that are not needed for the purposes of 
this paper.

3.1 � Simplified Order Conditions

In this paper, we will consider methods with p = q = r = s , distinct � values (nonconfluent 
method), and an invertible � . By transforming the base methods into an equivalent formu-
lation, we can then assume without loss of generality that � = �s×s . With these assump-
tions, we start by determining the structure of the external stage weights � and �̂.

Lemma 3.1  For a parallel IMEX GLM with � = �s×s and p = q , the internal stage order 
conditions (2.6a) and (2.6b) are equivalent to

respectively.

Proof  This follows directly from substituting � = �s×s , �̂ = � �s×s , and � = �s×s into Eqs. 
(2.6a) and (2.6b).

Our main theoretical result on parallel IMEX GLMs is presented in Theorem 3.1 and 
provides a practical strategy for method derivation.

Theorem  3.1  (Parallel IMEX GLM order conditions) Consider a nonconfluent parallel 
IMEX GLM with � = �s×s . All of the following are equivalent:

i)	 the method satisfies p = q = r = s;
ii)	 the explicit base method satisfies p = q = r = s and 

iii)	 the implicit base method satisfies p = q = r = s and 

(3.2)

(3.3)� = �p+1 and �̂ = �p+1 − ��p+1 �p+1,

(3.4a)�̂ = �s+1 − ��s+1 �s+1,

(3.4b)�̂ = � − ��s �s �
−1
s

+ ��;

(3.5a)� = �s+1,
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Remark 3.1  With Theorem 3.1, once the implicit base method has been chosen, all coef-
ficients for the explicit counterpart are uniquely determined by the order conditions. Con-
versely, if the explicit base is fixed, then all implicit method coefficients are uniquely deter-
mined, but parameterized by �.

Proof  To start, we will show the first statement of Theorem 3.1 is equivalent to the sec-
ond. Assume that a nonconfluent parallel IMEX GLM with � = �s×s has p = q = r = s . By 
Theorem 2.1, the explicit (and implicit) base method also has p = q = r = s and satisfies 
the order conditions in Eq. (2.6). Furthermore, by Lemma 3.1, Eq. (3.4a) holds. Subtract-
ing Eq. (2.6d) from Eq. (2.6c) gives

The three terms summed on the left-hand side of Eq. (3.6) have zeros in the leftmost col-
umn. Removing this yields the following equivalent statement:

A bit of algebraic manipulation recovers the desired result of Eq. (3.4b).
Now, assume that a nonconfluent parallel IMEX GLM with � = �s×s satisfies the prop-

erties of the second statement of Theorem 3.1. Condition (3.4a) ensures that the implicit 
method has stage order q, and Eq. (3.4b) ensures that it has order p,

Now, both base methods have p = q = r = s , so by Theorem  2.1, the combined IMEX 
scheme also has p = q = r = s.

The process to show statement one is equivalent to statement three, thus completing the 
proof, follows nearly identical steps, and is therefore omitted.

3.2 � Stability

Applying parallel IMEX GLMs to linear stability test Eq. (2.7) gives 

(3.5b)� = �̂ + ��s �s �
−1
s

− ��.

(3.6)��s+1 �s+1 �s+1 +
(
�̂ − �

)
�s+1 �s+1 − ���s+1 �s+1 = �s×(s+1).

��s �s +
(
�̂ − �

)
�s − ���s = �s×s.

�̂�s+1 − �̂ �s+1 �s+1 − ��̂

= �̂�s+1 −
(
� − ��s �s �

−1
s

+ ��
)
�s+1 �s+1 − ��̂

=
(
�̂ − ��s+1 �s+1

)
�s+1 − ��s+1 �s+1 − �

(
�̂ − ��s+1 �s+1

)

= ��s+1 − ��s+1 �s+1 − ��

= �s×(s+1).

(3.7a)�(w, ŵ) = � +
w

1 − � ŵ
�� +

ŵ

1 − � ŵ
�̂ �
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where �(w) and �̂(ŵ) are the stability matrices of the explicit and implicit base methods, 
respectively. When the implicit partition becomes infinitely stiff,

Stability matrices evaluated at ∞ are understood to be the value in the limit.

3.3 � Starting Procedure

The starting procedure for nontrivial IMEX GLMs is more complex than traditional GLMs 
because the external stages for IMEX GLMs weight time derivatives of f and g differently. 
When computing y[0] , the high-order time derivatives are usually not readily available, 
but can be approximated by finite differences [11, 34]. A one-step method can be used to 
get very accurate approximations to y, and, consequently, f and g, at a grid of time points 
around t0 to construct these finite-difference approximations. While this generic approach 
is applicable to parallel IMEX GLMs, we also describe a specialized strategy that is sim-
pler and more accurate.

Based on the � and �̂ weights derived in Eq. (3.3),

Now, a one-step method can be used to get approximations to y and g at times t0 + h ci to 
compute y[0] . This eliminates the need to use finite differences and eliminates the error 
associated with them. Note that negative abscissae would require integrating backwards 
in time. Although the interval of integration may be quite short, this could still lead to 
stability issues, and is easily remedied. If cmin is the smallest abscissa, then the one-step 
method can produce an approximation to y[�] , where � = ⌈−cmin⌉ , instead of y[0] . Note, 
t� + ci h ⩾ t0 , and the IMEX GLM will start with y[�] to compute y[�+1] and so on.

3.4 � Ending Procedure

We will consider the ending procedure for an IMEX GLM to be of the form

Frequently, IMEX GLMs have the last abscissa set to 1, which allows for a particularly 
simple ending procedure for high stage order methods. The final internal stage Ys can be 
used as an O

(
hmin(p,q+1)

)
 accurate approximation to y(tn) . One can easily verify that the 

coefficients for such an ending procedure are

(3.7b)= �

(
w

1 − � ŵ

)
+ �̂(ŵ) − �,

�(w,∞) = �̂(∞) = � −
1

�
�̂ �.

(3.8)

y
[0]

i
= y(t0) +

p∑
k=1

ck
i

k!
hk

dk−1f (y(t))

dtk−1
(t0)

+

p∑
k=1

(
ck
i

k!
−

� ck−1
i

(k − 1)!

)
hk

dk−1g(y(t))

dtk−1
(t0) +O

(
hp+1

)

= y(t0 + h ci) − h � g(y(t0 + h ci)) +O
(
hp+1

)
.

(3.9)y(tn) ≈ h

s∑
j=1

(
�j f (Yj) + �̂j g(Yj)

)
+

r∑
j=1

�j y
[n−1]

j
.
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where ei is the ith column of �s×s . Indeed, all parallel IMEX GLMs tested in this paper have 
cs = 1 ; however, we present an alternative strategy to approximate y(tn) . Suppose a parallel 
IMEX GLM has ci = 0 for some i ∈ {1,⋯ , s − 1} and cs = 1 . Then, based on the relation 
in Eq. (3.8), we have that

This ending procedure has the coefficients

For the parallel ensemble IMEX Euler methods of Sect. 5, numerical tests revealed that this 
new ending procedure is substantially more accurate. For the parallel IMEX DIMSIMs, the 
coefficients in Eqs. (3.10) and (3.11) gave similar results in tests as the accumulated global 
error dominated the local truncation error of the ending procedure.

4 � Parallel IMEX DIMSIMs

Diagonally implicit multi-stage integration methods (DIMSIMs) have become a popular 
choice of the base method to build high-order IMEX GLMs. IMEX DIMSIMs are charac-
terized by the following structural assumptions: 

i)	 � is strictly lower triangular, and �̂ is lower triangular with the same element � on the 
diagonal as in Eq. (1.2);

ii)	 � is rank one with the single nonzero eigenvalue equal to one to ensure preconsistency;
iii)	 q ∈ {p, p − 1} and r ∈ {s, s + 1}.

Based on Theorem 2.1, to build a parallel IMEX DIMSIM with p = q = r = s , we only 
need to choose one of the base methods and the rest of the coefficients will follow. If we 
start by picking an explicit base, it may be difficult to ensure that the resulting implicit 
method has acceptable stability properties, ideally L-stability. Instead, we start by picking a 
stable, type 4 DIMSIM for the implicit base method.

In [8, 9], Butcher developed a systematic approach to construct DIMSIMs of type 4 
with “perfect damping at infinity”. One of his primary results is presented in Theorem 4.1.

Theorem 4.1  (Type 4 DIMSIM coefficients [9, Theorem 4.1]) For the type 4 DIMSIM,

with p = q = r = s and � �s = �s , the transformed coefficients

(3.10)�T = eT
s
�, �̂ T = eT

s
�̂, �T = eT

s
�,

h

s∑
j=1

(
bi,j f (Yj) + b̂i,j g(Yj)

)
+ h � g(Ys) +

r∑
j=1

vi,j y
[n−1]

j

= y
[n]

i
+ h � g(Ys)

= y(tn) +O
(
hmin(p,q+1)

)
.

(3.11)�T = eT
i
�, �̂ T = eT

i
�̂ + � eT

s
, �T = eT

i
�.
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satisfy 

where

and

Theorem 4.1 fully determines the �̂ coefficient for a type 4 DIMSIM, but � , � , and 
most of � remain undetermined. Fortunately, this offers sufficient degrees of freedom to 
ensure that �̂(∞) is nilpotent. In [9, Theorem 5.1], Butcher proved � must be a solution 
to. 

and

Here, Ln(x) =
n∑
i=0

�
n

i

�
(−x)i∕i! is the Laguerre polynomial and L(m)

n
(x) is its mth 

derivative.
With the implicit base method determined, we now turn to the explicit method. 

Indeed, Theorem 2.1 could be applied to recover � , but Theorem 4.1 provides a more 
direct approach. Equation  (4.1b), which is normally used for type 4 methods, remains 
valid when � = 0 , and Eq. (4.1a) is fulfilled, because the implicit and explicit base 
methods share �.

In summary, the coefficients for a parallel IMEX DIMSIM with p = q = r = s are 
given by
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with � remaining as free parameters. The two most “natural” and frequently used choices 
are � = [0, 1∕(s − 1), 2∕(s − 2),⋯ , 1]T and � = [2 − s, 1 − s,⋯ , 1]T . This presents a trade-
off where the first option has smaller local truncation errors, but the second option results 
in coefficients that grow slower with order, thus reducing the accumulation of finite preci-
sion cancellation errors. Table  1 presents the magnitude of these largest coefficients for 
both strategies.

Before proceeding to the stability analysis, we present two examples of parallel IMEX 
DIMSIMs. A second-order method has the tableau

where � = (3 −
√
3)∕2 . In a more compact form, a third-order method has the coefficients:

4.1 � Stability

While Eq. (4.2) ensures �(�̂(∞)) = 0 , it is not a sufficient condition for L-stability of a 
type 4 DIMSIM. In [9], appropriate values of � for L-stability are provided for orders 2~10, 
excluding nine. If the weaker condition of L (�)-stability is acceptable, smaller values of � 
may be used, as well.

� = �s×s, � = �

(
�̂s − ��s + �

(
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T
s

))
�
−1,
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With � available as the free parameters, it is natural to see if they can be used to opti-
mize the stability of parallel IMEX DIMSIMs. It is easy to verify that the stability is, in 
fact, independent of �,

The stability matrix is similar to a matrix completely independent of � , and thus, � has no 
effect on the power boundedness of �.

Plots of the constrained nonstiff stability region for several methods appear in Fig. 1. 
Roughly speaking, the area of the stability region shrinks as the order increases. Further-
more, the smaller values of � satisfying Eq. (4.2a) tend to provide larger stability regions 
for a fixed order.

5 � Parallel Ensemble IMEX Euler Methods

If one seeks to minimize communication costs for parallel IMEX GLMs, the choice 
� = � = �s×s is attractive, as it eliminates the need to share external stages among parallel 
processes. As we will show in this section, this choice of coefficients also leads to particu-
larly favorable structures for the order conditions and stability matrix.

Theorem  5.1  (Parallel ensemble IMEX Euler order conditions) A nonconfluent parallel 
ensemble IMEX Euler method, which starts with the structural assumptions

has p = q = r = s if and only if the remaining method coefficients are 

where

�
−1

�(w, ŵ)� = � +
w

1 − � ŵ

(
�̂s − ��

T
s

)

+
ŵ

1 − � ŵ

(
�̂s − ��s + �

(
� �s×s −�

T
s

))
.

� = �s×s, �̂ = � �s×s, � = � = �s×s

(5.1a)� = �s+1, �̂ = �s+1 − ��s+1 �s+1,

(5.1b)� = �s �s �
−1
s
, �̂ = �s �s

(
�s×s − ��s

)
�

−1
s
,

Table 1   Approximate values 
for the largest coefficient in 
absolute value from � , �̂ , and � 
for parallel IMEX DIMSIMs of 
orders 2~10

Method order � c
i
=

i−1

s−1
c
i
= 1 − s + i

2 0.633 975 1.38 1.38
3 1.210 140 20.38 7.31
4 0.872 421 90.86 7.07
5 1.301 280 5 885.22 29.74
6 1.805 690 933 038.32 368.93
7 1.352 200 10 318 974.86 303.07
8 1.736 800 2 557 191 349.96 3 534.00
9 1.384 700 41 543 982 719.05 2 907.22
10 1.695 610 14 146 161 438 042.40 41 813.39



661Communications on Applied Mathematics and Computation (2021) 3:649–669	

1 3

Remark 5.1  An alternative representation for Eq. (5.2) is �n = �1(�n) , where �1 is the 
entire function

(5.2)�n =

⎡⎢⎢⎢⎢⎢⎣

1
1

2

1

6
…

1

n!

1
1

2
…

1

(n−1)!

⋱ ⋱ ⋮

1
1

2

1

⎤⎥⎥⎥⎥⎥⎦

∈ ℝn×n.

(a) (b)

(c) (d)

Fig. 1   Stability regions S� with � = 0
◦
, 75

◦
, 90

◦ for parallel IMEX DIMSIMs. Note the scale for (a) is dif-
ferent than for the other plots
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Proof  With Theorem 3.1, we only need to show that the explicit base method for parallel 
ensemble IMEX Euler satisfies p = q = r = s and � and �̂ are related by Eq. (3.4b). By 
Lemma 3.1, the internal stage order condition for the explicit method, given in Eq. (2.6a), 
holds. For the external stage order conditions,

Therefore, the explicit method satisfies all order conditions and has p = q = r = s . Finally,

which completes the proof.

While the parallel IMEX DIMSIMs of Sect. 4 require symbolic tools to derive and 
have coefficients that can be expressed as roots of polynomials, ensemble methods have 
simple, rational coefficients that can be derived with basic matrix multiplication. The 
following parallel ensemble IMEX Euler method, for example, is second order,

A third-order method is given by

and a fourth-order method is given by

�1(z) =

∞∑
k=0

zk

(k + 1)!
=

ez − 1

z
.

��s+1 − ��s+1 �s+1 − �� = �s+1 �s+1 − �s �s �
−1
s

�s+1 �s+1 − �s+1

= �s+1 �s+1 − �s+1 �s+1 �s+1 − �s+1

= �s+1

(
�s+1 − �s+1 �s+1 − �(s+1)×(s+1)

)

= �s×(s+1).
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(
�s×s − ��s
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When the order of the method increases, so does the magnitude of the method coeffi-
cients: a phenomenon previously described for parallel IMEX DIMSIMs. Similarly, the 
distribution of abscissae can limit the growth of coefficients, and thus, the floating-point 
errors associated with them. Table 2 lists these maximum coefficients for � ’s evenly spaced 
between [0, 1], as well as [2 − s, 1].

5.1 � Stability

An interesting property of parallel ensemble IMEX Euler methods is that � , �̂ , � , and �̂ 
all simultaneously triangularize. The stability matrix Eq. (3.7) can, therefore, be put into an 
upper triangular form with a simple similarity transformation,

The diagonal entries of Eq. (5.3) are all 1 + (w + ŵ)∕(1 − � ŵ) and identically are the 
eigenvalues of the stability matrix. Note that the geometric multiplicity of this repeated 
eigenvalue is r when w = ŵ = 0 and 1 otherwise. To ensure the L-stability of the implicit 
base method as well as �(�(w,∞)) = 0 , we set � = 1 . In this case, the eigenvalues simplify 
to (1 + w)∕(1 − ŵ) matching the stability of the IMEX Euler scheme

(5.3)�
−1
s

�(w, ŵ)�s = �r×r +
w

1 − � ŵ
�s +

ŵ

1 − � ŵ
�s

(
�s×s − ��s

)
.

yn = yn−1 + h f (tn−1, yn−1) + h g(tn, yn).

Table 2   Approximate values for 
the largest coefficient in absolute 
value from � and �̂ for parallel 
ensemble IMEX Euler methods 
of orders 2~10 with � = 1

Method order c
i
=

i−1

s−1
c
i
= 1 − s + i

2 1.50 1.50
3 4.67 1.92
4 29.62 3.54
5 203.87 6.37
6 1 380.73 13.07
7 9 868.32 23.62
8 69 256.88 47.97
9 506 662.23 87.98
10 3 639 853.98 177.82
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There are several other interesting stability features for parallel ensemble IMEX Euler 
methods. First, stability is independent of the order and the choice of abscissae, allowing a 
systematic approach to develop stable methods of arbitrary order. The constrained nonstiff 
stability region has the simple form

when s > 1 . Except for the origin, the boundary of this circular stability region is care-
fully excluded, because the 1 eigenvalue of � is defective at those points. This family of 
methods is stability decoupled in the sense that linear stability of the base methods for their 
respective partitions implies linear stability of the IMEX scheme.

We note that aside from the origin, S� does not contain any of the imaginary axis, indi-
cating potential stability issues when f is oscillatory. This analysis is a bit pessimistic, how-
ever, as S� represents the explicit stability when ŵ is chosen in a worst-case scenario. Only 
when ŵ = 0 is there instability for all purely imaginary w. As the modulus of ŵ grows, the 
range of imaginary w for which the IMEX method is stable also grows.

6 � Numerical Experiments

We provide numerical experiments to confirm the order of convergence and to study the 
performance of our methods compared to other IMEX methods. We use the CUSP and 
Allen–Cahn problems in our experiments.

6.1 � CUSP Problem

The CUSP problem [20, Chapter IV.10] is associated with the equations

where v = u

u+0.1
 and u = (y − 0.7) (y − 1.3) . The timespan is t ∈ [0, 1.1] , the spatial domain 

is x ∈ [0, 1] , and the parameters are chosen as � =
1

144
 and � = 10−4 . Spatial derivatives are 

discretized using second-order central finite differences on a uniform mesh with N = 32 
points and periodic boundary conditions. The initial conditions are

for i = 1,⋯ ,N . Note that the problem is singularly perturbed in the y component and the 
stiffness of the system can be controlled using � . Following the splitting used in [24], the 
diffusion terms and the term scaled by �−1 form g, while the remaining terms form f. The 
MATLAB implementation of the CUSP problem is available in [15, 29].

We performed a fixed time-stepping convergence study of the new methods. Figure  2 
shows the error of the final solution versus number of timesteps. Error is computed in the �2 

S𝛼 = S = {w ∈ ℂ ∶ |1 + w| < 1 ∨ w = 0}

(6.1)

⎧⎪⎨⎪⎩

�y

�t
= −

1

�

�
y3 + a y + b

�
+ �

�2y

�x2
,

�a

�t
= b + 0.07 v + � �2a

�x2
,

�b

�t
= b (1 − a2) − a − 0.4 y + 0.035 v + � �2b

�x2
,

yi(0) = 0, ai(0) = −2 cos
(
2�i

N

)
, bi(0) = 2 sin

(
2�i

N

)



665Communications on Applied Mathematics and Computation (2021) 3:649–669	

1 3

sense using a high-accuracy reference solution. In all cases, the parallel IMEX GLMs con-
verge at least at the same rate as theoretical order of accuracy.

6.2 � Allen–Cahn Problem

We also consider the two-dimensional Allen–Cahn problem described in [35]. It is a reaction-
diffusion system governed by the equation

where � = 0.1 and � = 3 . The time-dependent Dirichlet boundary conditions and source 
term s(t, x, y) are derived using the method of manufactured solutions, such that the exact 
solution is

We discretize the PDE on a unit square domain using degree two Lagrange finite elements 
and a uniform triangular mesh with N = 32 points in each direction. The diffusion term 
and forcing associated with the boundary conditions are treated implicitly, while the reac-
tion and source term are treated explicitly.

The problem is implemented using the FEniCS package [1] leveraging OpenMP par-
allelism to speed up f and g evaluations, as well as MPI parallelism of stage computa-
tions made possible by the structure of the parallel IMEX GLMs. All tests were run on 
the Cascades cluster maintained by Virginia Tech’s Advance Research Computing center 
(ARC). Parallel experiments were performed on p = q = r = s nodes, each using 12 cores. 
Serial experiments were done on a single node with the same number of cores. The error 
was computed using the �2 norm by comparing the nodal values of the numerical solution 
against a high-accuracy reference solution.

(6.2)
�u

�t
= �∇2u + � (u − u3) + s,

u(t, x, y) = 2 + sin(2�(x − t)) cos(3�(y − t)).
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Fig. 2   Convergence of parallel IMEX DIMSIM and parallel ensemble IMEX Euler methods for the CUSP 
problem Eq. (6.1)
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Figure  3 summarizes the results of this experiment by comparing several additive 
Runge–Kutta (ARK) methods and IMEX DIMSIMs with parallel IMEX GLMs derived 
in this paper. At order 3, serial methods are ARK3(2)4L[2]SA from [25] and IMEX-DIM-
SIM3 from [14]. At order 4, comparisons are done against ARK4(3)7L[2]SA1 from [26] 
and IMEX-DIMSIM4 from [35]. Order 5 serial methods are ARK5(4)8L[2]SA2 from [26] 
and IMEX-DIMSIM5 from [35]. Finally, the order 6 baseline is IMEX-DIMSIM6(S�∕2 ) 
from [24]. The results show that parallel ensemble IMEX Euler methods are the most effi-
cient in all cases. Parallel IMEX DIMSIMs are competitive at orders 3 and 6 and surpass 
the efficiency of serial schemes at orders 4 and 5.
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Fig. 3   Work-precision diagrams for the Allen–Cahn problem Eq. (6.2)
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Figure 4 plots convergence of the methods used in the experiment. We can see that the 
ARK methods exhibit order reduction for this problem, which explains their poor effi-
ciency results. All other methods achieve the expected order of accuracy. For a fixed num-
ber of steps, the parallel IMEX GLMs are less accurate than the serial IMEX GLMs, which 
indicates that parallel methods have larger error constants and are not the most efficient 
when limited to serial execution. This is to be expected given parallel methods have a more 
restrictive structure and fewer coefficients available for optimizing the principal error and 
stability.
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Fig. 4   Convergence diagrams for the Allen–Cahn problem Eq. (6.2)
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7 � Conclusion

This paper studies parallel IMEX GLMs and provides a methodology to derive and solve 
simple order conditions for methods of arbitrary order. Using this framework, we construct 
two families of methods, based on existing DIMSIMs and on IMEX Euler, and provide 
linear stability analyses for them.

Our numerical experiments show that parallel IMEX GLMs can outperform existing 
serial IMEX schemes. Between parallel IMEX DIMSIMs and parallel ensemble IMEX 
Euler methods, the latter proved to be the most competitive. The error for the ensemble 
methods is generally smaller than that of the DIMSIMs, due in part to the improved end-
ing procedure. Moreover, the magnitude of method coefficients grows slower for ensemble 
methods as documented in Tables 1 and 2, reducing the impact of accumulated floating-
point errors. For orders 5 and higher, we have to carefully select the method and distribu-
tion of the abscissae to control these errors. In addition, one notes that parallel ensemble 
IMEX Euler methods tend to have smaller values of � , which improves convergence of 
iterative linear solvers used in the Newton iterations.

Owing to their excellent stability properties, the ensemble family shows great poten-
tial for constructing other types of partitioned GLMs. Of particular interest are alternat-
ing directions implicit (ADI) GLMs [30], as well as multirate GLMs. The authors hope to 
study these in future works.
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