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Abstract
We introduce adaptive moving mesh central-upwind schemes for one- and two-dimensional 
hyperbolic systems of conservation and balance laws. The proposed methods consist of 
three steps. First, the solution is evolved by solving the studied system by the second-order 
semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the 
two-dimensional structured quadrilateral mesh. When the evolution step is complete, the 
grid points are redistributed according to the moving mesh differential equation. Finally, 
the evolved solution is projected onto the new mesh in a conservative manner. The result-
ing adaptive moving mesh methods are applied to the one- and two-dimensional Euler 
equations of gas dynamics and granular hydrodynamics systems. Our numerical results 
demonstrate that in both cases, the adaptive moving mesh central-upwind schemes outper-
form their uniform mesh counterparts.
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1 Introduction

We consider the hyperbolic system of conservation/balance laws:

where U is a vector of the conserved quantities, F(U) are the flux functions, and S(U) are 
the source terms.

The development of accurate, efficient and robust numerical methods for the system 
(1.1) is an important and challenging problem. A major difficulty is related to the fact that 
the system (1.1) admits nonsmooth solutions. Moreover, it is well-known that even smooth 
solutions may develop nonsmooth waves including shocks, rarefaction waves, and contact 
discontinuities.

There is a wide variety of shock capturing methods designed to accurately capture this 
type of solutions; see, e.g., the monographs [3, 7, 15, 25, 31, 43] and references therein.

Numerical methods for (1.1) are typically designed using fixed grids. This limits the 
efficiency of the methods since finer grids and special nonlinear techniques (such as non-
linear limiters) are required in “rough” parts of the computed solution (vicinities of non-
smooth waves), while the smooth parts can be captured using significantly smaller com-
putation effort. In order to achieve high resolution as well as to improve the efficiency of 
the numerical methods, various adaptive strategies can be applied. The simplest one is a 
scheme adaption technique, according to which different schemes are used in “rough” and 
smooth parts of the computed solution. For example, one can use nonlinear limiters near 
shocks and possibly contact waves, while using a higher-order “nonlimited” scheme in the 
rest of the computational domain; see, for example, [11, 12, 24, 33]. Alternatively, instead 
of manipulating numerical schemes on uniform Cartesian meshes, one can use more flex-
ible meshes. For instance, one can apply adaptive mesh refinement (AMR) or adaptive 
moving mesh (AMM) methods. In the AMR methods, the initial uniform Cartesian mesh 
is adaptively refined into layers of finer grids within the “rough” regions of the computed 
solution to increase the local resolution and then inter-grid projections are made to com-
bine different layers using the intricate data structure; see, e.g., [4–6, 32, 36, 37] and refer-
ences therein. In contrast, in the AMM methods, the mesh points are adaptively shifted 
towards the “rough” parts to capture the details in the regions where large variations in 
the computed solutions are found. A variety of AMM algorithms, including the variational 
approach [46], the moving mesh PDEs (MMPDE) approach [10], and moving mesh meth-
ods based on the harmonic mapping [13] have been developed. For AMM methods for 
compressible Euler and Navier–Stokes equations we refer the reader to, for example, [19, 
22, 23, 42, 47].

In this paper, we present new AMM central-upwind schemes for the system (1.1) on 
both adaptive one-dimensional (1-D) nonuniform grids and two-dimensional (2-D) struc-
tured quadrilateral meshes. Our AMM method consists of two steps: the PDE time evo-
lution and the mesh redistribution. The time evolution step is performed using the sec-
ond-order semi-discrete central-upwind schemes on irregular meshes. Such schemes were 
derived on Cartesian meshes in [26, 28–30], and later extended to triangular [9, 27], quad-
rilateral [40] and cell-vertex polygonal [2] grids. These schemes are attractive alternatives 
to upwind methods because they are simple (Riemann-problem-solver-free), efficient, and 
can be used as a “black-box” solver for general (multidimensional) hyperbolic systems of 
conservation/balance laws. After evolving the solutions to the new time level, the mesh 
points are redistributed accordingly to the MMPDE which takes into account the size of 

(1.1)Ut + ∇ ⋅ F(U) = S(U),
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the gradient of the computed solution or another smoothness indicator. However, when the 
computed solution contains very large gradients or discontinuities, the mesh movement has 
to be adjusted in order to avoid rapid changes in the local mesh size as such changes can 
affect the accuracy of the approximated solution. To this end, we develop a new simple and 
robust technique, which helps to guarantee that the mesh remains structured, no very small 
cells appear, and the ratio between the areas of nearby cells remains bounded. Additionally, 
in order to bridge the solutions and newly shifted mesh, a conservative solution projection 
is implemented to obtain the solution over the new mesh.

The paper is organized as follows. In Sect.  2, we present the second-order central-
upwind schemes on 1-D nonuniform grids as well as on 2-D irregular quadrilateral meshes. 
In Sect. 3, we briefly review the moving mesh equations in both 1-D and 2-D cases and 
propose the associated conservative solution projection strategy. In Sect. 4, we demonstrate 
the high resolution and robustness of the proposed AMM method on Euler equations of 
gas dynamics in both 1-D and 2-D cases, where the advantages of the AMM methods over 
the corresponding uniform mesh methods can be clearly observed. In Sect.  5, we apply 
the developed AMM central-upwind schemes to the 1-D and 2-D granular hydrodynamics 
systems, which admit spiky solutions, which are efficiently and accurately captured by the 
developed AMM central-upwind schemes.

2  Central‑Upwind Schemes on Structured Meshes

In this section, we present the central-upwind schemes on fixed 1-D nonuniform grids as 
well as on fixed 2-D structured quadrilateral meshes. The adaptive moving mesh tech-
niques will be discussed in Sect. 3.

2.1  1‑D Semi‑Discrete Scheme

Consider the 1-D hyperbolic system of conservation/balance laws:

Assume that the computational domain is covered with nonuniform cells Cj =
[
x
j−

1

2

, x
j+

1

2

]
 

of the size Δxj ∶= x
j+

1

2

− x
j−

1

2

 centered at xj ∶=
(
x
j−

1

2

+ x
j+

1

2

)
∕2 , and that at a certain time 

t, the cell averages of the computed solution

are available. Using these data, we first reconstruct a conservative non-oscillatory piece-
wise polynomial interpolant

where �j(x) is the characteristic function of the interval 
[
x
j−

1

2

, x
j+

1

2

]
 and Pj(x, ⋅) is the corre-

sponding polynomial piece. A (formal) order of accuracy of the reconstruction (2.1) is 
determined by the accuracy of the polynomial interpolants at each cell. In this paper, our 

Ut + Fx(U) = S(U).

Uj(t) ≈
1

Δxj ∫Cj

U(x, t) dx

(2.1)P̃(x, t) ∶=
∑
j

Pj(x, t)�j(x),
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goal is to design second-order central-upwind schemes, which require second-order piece-
wise linear reconstructions

whose slopes (Ux)j are (at least) first-order approximations of the derivatives at x = xj , 
which are to be computed using a nonlinear limiter to ensure a non-oscillatory nature of the 
reconstruction. In this paper, we carry out the following two-step strategy for each compo-
nent of the solution. We first use the generalized minmod limiter [35, 41, 45]

where U
(i)

j
 denotes the ith component of Uj and the minmod function is defined by

and � ∈ [1, 2] is the parameter, which controls the amount of numerical viscosity: larger 
values of � lead to sharper reconstructions, but (slightly) more oscillatory numerical solu-
tions. Next, we notice that some components of the solution may represent positive physi-
cal quantities such as the density and the energy. Therefore, to maintain their positivity, we 
follow the strategy in [48] and correct the slopes (U(i)

x
)
mm

j
 obtained in (2.3) by setting

where � (i)
j

 is a positivity enforcing parameter computed by

We then follow the derivation of the second-order semi-discrete central-upwind scheme in 
[26] and obtain the following system of time-dependent ODEs:

where the numerical fluxes are

(2.2)Pj(x, t) = Uj(t) + (Ux)j(x − xj),

(2.3)(U(i)
x
)
mm

j
= minmod

⎛⎜⎜⎝
�

U
(i)

j+1
(t) − U

(i)

j
(t)

xj+1 − xj
,
U

(i)

j+1
(t) − U

(i)

j−1
(t)

xj+1 − xj−1
, �

U
(i)

j
(t) − U

(i)

j−1
(t)

xj − xj−1

⎞⎟⎟⎠
,

minmod (z1, z2,⋯) ∶=

⎧⎪⎨⎪⎩

min(z1, z2,⋯), if zi > 0, ∀i,

max(z1, z2,⋯), if zi < 0, ∀i,

0, otherwise,

(U(i)
x
)
j
∶=

{
�
(i)

j
(U(i)

x
)
mm

j
, if U(i) is a positive physical quantity,

(U(i)
x
)
mm

j
, otherwise,

�
(i)

j
= min

⎧⎪⎨⎪⎩
1,

�������

U
(i)

j

min
�
P
(i)

j
(x

j+
1

2

),P
(i)

j
(x

j−
1

2

)
�
− U

(i)

j

�������

⎫
⎪⎬⎪⎭
.

(2.4)d

dt
Uj(t) = −

H
j+

1

2

(t) −H
j−

1

2

(t)

Δxj
+ Sj(t),

(2.5)H
j+

1

2

∶=

a+
j+

1

2

F

(
U

−

j+
1

2

)
− a−

j+
1

2

F

(
U

+

j+
1

2

)

a+
j+

1

2

− a−
j+

1

2

+

a+
j+

1

2

a−
j+

1

2

a+
j+

1

2

− a−
j+

1

2

(
U

+

j+
1

2

− U
−

j+
1

2

− d
j+

1

2

)
,
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where the built-in anti-diffusion term d
j+

1

2

 is

and the intermediate value Uint

j+
1

2

 is computed by

Sj(t) are appropriate discretizations of the cell averages of the source terms

In (2.5), U+

j+
1

2

 and U−

j+
1

2

 are the corresponding right- and left-sided values of the interpolant 

(2.2) at the cell interface x = x
j+

1

2

 , namely,

and a±
j+

1

2

 are the one-sided local speeds of propagation, which, in the case of the convex 

flux function, can be estimated by

with �1 ⩽ ⋯ ⩽ �N being N eigenvalues of the Jacobian �F
�U

 . We note that the estimate (2.7) 
may be inaccurate. In the case of the 1-D Euler equation of gas dynamics, a more accurate 
estimate has been derived in [18].

Remark 2.1 Note that in (2.5)–(2.7), all of the indexed quantities depend on t, but from 
now on, we will omit this dependence for the sake of brevity.

Remark 2.2 Notice that if both a±
j+

1

2

 are very close to zero, that is, if a+
j+

1

2

− a−
j+

1

2

< 𝜀 , where 

𝜀 > 0 is a prescribed small parameter, we replace the numerical flux (2.5) with

In all of our numerical examples, we have used � = 10−8.

d
j+

1

2

= minmod

(
U

+

j+
1

2

− U
int

j+
1

2

, Uint

j+
1

2

− U
−

j+
1

2

)
,

U
int

j+
1

2

=

a+
j+

1

2

U
+

j+
1

2

− a−
j+

1

2

U
−

j+
1

2

−

(
F

(
U

+

j+
1

2

)
− F

(
U

−

j+
1

2

))

a+
j+

1

2

− a−
j+

1

2

.

(2.6)Sj ≈
1

Δxj ∫Cj

S(U(x, t)) dx.

U
+

j+
1

2

∶= Pj+1

(
x
j+

1

2

)
and U

−

j+
1

2

∶= Pj

(
x
j+

1

2

)
,

(2.7)

⎧⎪⎪⎨⎪⎪⎩

a+
j+

1

2

= max

�
�N

�
�F

�U

�
U

−

j+
1

2

��
, �N

�
�F

�U

�
U

+

j+
1

2

��
, 0

�
,

a−
j+

1

2

= min

�
�1

�
�F

�U

�
U

−

j+
1

2

��
, �1

�
�F

�U

�
U

+

j+
1

2

��
, 0

�
,

H
j+

1

2

∶=
1

2

[
F

(
U

+

j+
1

2

)
+ F

(
U

−

j+
1

2

)]
.
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2.2  2‑D Semi‑Discrete Scheme

We now consider the 2-D hyperbolic system of conservation/balance laws:

Assume that the computational domain is covered with a structured irregular quadrilateral 
mesh consisting of cells Cj,k of size |Cj,k| , and use the following notations (see Fig. 1).

Assume that at a certain time t, we have computed an approximate solution, realized in 
terms of its cell averages:

Ut + Fx(U) + Gy(U) = S(U).

z
j+

1

2
,k+

1

2

∶= (x
j+

1

2
,k+

1

2

, y
j+

1

2
,k+

1

2

) ∶ cell vertices,

zj,k ∶= (xj,k, yj,k) ∶ center of mass of Cj,k,

�
j+

1

2
,k ∶= |z

j+
1

2
,k+

1

2

− z
j+

1

2
,k−

1

2

| ∶ length of the edge z
j+

1

2
,k−

1

2

z
j+

1

2
,k+

1

2

,

z
j+

1

2
,k ∶=

1

2
(z

j+
1

2
,k+

1

2

+ z
j+

1

2
,k−

1

2

) ∶ midpoint of the edge z
j+

1

2
,k−

1

2

z
j+

1

2
,k+

1

2

,

n
j+

1

2
,k ∶= (cos(�

j+
1

2
,k), sin(�j+ 1

2
,k)) ∶ the unit outer normal vector to the edge z

j+
1

2
,k−

1

2

z
j+

1

2
,k+

1

2

,

�
j,k+

1

2

∶= |z
j+

1

2
,k+

1

2

− z
j−

1

2
,k+

1

2

| ∶ length of the edge z
j−

1

2
,k+

1

2

z
j+

1

2
,k+

1

2

,

z
j,k+

1

2

∶=
1

2
(z

j+
1

2
,k+

1

2

+ z
j−

1

2
,k+

1

2

) ∶ midpoint of the edge z
j−

1

2
,k+

1

2

z
j+

1

2
,k+

1

2

,

n
j,k+

1

2

∶= (cos(�
j,k+

1

2

), sin(�
j,k+

1

2

)) ∶ the unit outer normal vector to the edge z
j−

1

2
,k+

1

2

z
j+

1

2
,k+

1

2

.

z

z

z
z

z

z

z
z

z
z

z

z

z

n

n

n

n

Fig. 1  A typical quadrilateral cell Cj,k with its four neighbors
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Using these data, we first construct a second-order conservative non-oscillatory piecewise 
polynomial interpolant

where �Cj,k
 is the characteristic function of the cell Cj,k and Pj,k(x, y) is the corresponding 

polynomial piece. To achieve the second-order accuracy, we employ the piecewise linear 
reconstruction

where the slopes (Ux)j,k and (Uy)j,k are (at least) first-order approximations of the x- and 
y-derivatives of U at zj,k.

In order to calculate the ith component of the numerical derivatives of U , (U(i)
x
)j,k 

and (U(i)
y
)j,k , we construct four linear interpolations: L+,+

j,k
(x, y) , L−,+

j,k
(x, y) , L+,−

j,k
(x, y) , and 

L
−,−

j,k
(x, y) outlined in Fig. 2. Each of these linear interpolations is obtained by passing 

a plane through the point (zj,k,U
(i)

j,k
) and the corresponding points in the two neighbor-

ing cells. For example, L+,+
j,k

(x, y) is obtained using the following three points: (zj,k,U
(i)

j,k
) , 

(zj+1,k,U
(i)

j+1,k
) , and (zj,k+1,U

(i)

j,k+1
) . Notice that since zj,k is the geometric center of Cj,k , the 

obtained linear interpolants are conservative in Cj,k , that is,

Uj,k ≈
1

|Cj,k| ∬Cj,k

U(x, y, t) dx dy.

P̃(x, y) =
∑
j,k

Pj,k(x, y)�Cj,k
,

(2.8)Pj,k(x, y) = Uj,k + (Ux)j,k(x − xj,k) + (Uy)j,k(y − yj,k),

1

|Cj,k| ∬Cj,k

L
±,±

j,k
(x, y) dx dy = U

(i)

j,k
.

Fig. 2  Four linear interpolants 
over the cell Cj,k

z

z

z

z

z
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In order to obtain a non-oscillatory reconstruction, we need to compute (Ux)j,k and 
(Uy)j,k using a nonlinear limiter. As in the 1-D case, we use a two-step strategy for each 
component of the solution. We first use the following generalization of the 1-D minmod 
limiter:

where, as in the 1-D case, � ∈ [1, 2] is the parameter that controls the amount of numerical 
dissipation. Next, in order to maintain the positivity of some components of the solution, 
we follow [48] and correct (U(i)

x
)
mm

j,k
 and (U(i)

y
)mm
j,k

 obtained in (2.9) by setting

where � (i)
j,k

 is a positivity enforcing parameter computed by

The cell averages Uj,k are then evolved in time according to the second-order semi-discrete 
central-upwind scheme on quadrilateral grids developed in [40], which we modify here by 
reducing the numerical dissipation using the approach presented in [26]:

where H
j±

1

2
,k and H

j,k±
1

2

 are the numerical fluxes along the cell interfaces between Cj,k and 
its four neighboring cells. For instance, the numerical flux between Cj,k and Cj+1,k is

where the x- and y-directional fluxes are

(2.9)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(U(i)
x
)
mm

j,k
= minmod

�
1

4

�
(L+,+

j,k
)x + (L−,+

j,k
)x + (L−,−

j,k
)x + (L+,−

j,k
)x

�
,

�(L+,+
j,k

)x,�(L−,+
j,k

)x,�(L−,−
j,k

)x,�(L+,−
j,k

)x

�
,

(U(i)
y
)mm
j,k

= minmod

�
1

4

�
(L+,+

j,k
)y + (L−,+

j,k
)y + (L−,−

j,k
)y + (L+,−

j,k
)y,

�
,

�(L+,+
j,k

)y,�(L−,+
j,k

)y,�(L−,−
j,k

)y,�(L+,−
j,k

)y

�
,

�
(U(i)

x
)
j,k
, (U(i)

y
)
j,k

�
∶=

⎧⎪⎨⎪⎩

�
(i)

j,k

�
(U(i)

x
)
mm

j,k
, (U(i)

y
)
mm

j,k

�
, if U(i) is a positive physical quantity,�

(U(i)
x
)
mm

j,k
, (U(i)

y
)
mm

j,k

�
, otherwise,

�
(i)

j,k
= min

⎧⎪⎨⎪⎩
1,

�������

U
(i)

j,k

min
�
P
(i)

j,k
(z

j+
1

2
,k+

1

2

),P
(i)

j,k
(z

j−
1

2
,k+

1

2

),P
(i)

j,k
(z

j+
1

2
,k−

1

2

),P
(i)

j,k
(z

j−
1

2
,k−

1

2

)
�
− U

(i)

j,k

�������

⎫⎪⎬⎪⎭
.

(2.10)
d

dt
Uj,k = −

1

|Cj,k|
(
H

j+
1

2
,k −H

j−
1

2
,k +H

j,k+
1

2

−H
j,k−

1

2

)
+ Sj,k,

(2.11)

H
j+

1

2
,k = �

j+
1

2
,k

[(
cos

(
�
j+

1

2
,k

)
H

x

j+
1

2
,k
+ sin

(
�
j+

1

2
,k

)
H

y

j+
1

2
,k

)

+

a+
j+

1

2
,k
a−
j+

1

2
,k

a+
j+

1

2
,k
− a−

j+
1

2
,k

(
U

+

j+
1

2
,k
− U

−

j+
1

2
,k
− d

j+
1

2
,k

)]
,
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the built-in anti-diffusion term is

and the intermediate value Uint

j+
1

2
,k
 is computed by

The numerical fluxes H
j,k+

1

2

 can be computed in a similar way. In (2.11), (2.12) and (2.13) 
and similar formulae for H

j,k+
1

2

 , U±

j+
1

2
,k
 and U±

j,k+
1

2

 are the point values of the corresponding 

linear pieces (2.8) at cell interfaces, namely,

and a±
j+

1

2
,k
 and a±

j,k+
1

2

 are the directional local speeds of propagation, which, in the case of 

convex flux function, can be estimated by

with �1(V) ⩽ �2(V) ⩽ ⋯ ⩽ �N(V) being the N eigenvalues of the matrix V and

(2.12)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

H
x

j+
1

2
,k
=

a+
j+

1

2
,k
F
�
U

−

j+
1

2
,k

�
− a−

j+
1

2
,k
F
�
U

+

j+
1

2
,k

�

a+
j+

1

2
,k
− a−

j+
1

2
,k

,

H
y

j+
1

2
,k
=

a+
j+

1

2
,k
G
�
U

−

j+
1

2
,k

�
− a−

j+
1

2
,k
G
�
U

+

j+
1

2
,k

�

a+
j+

1

2
,k
− a−

j+
1

2
,k

,

d
j+

1

2
,k = minmod

(
Pj+1,k

(
z
j+

1

2
,k+

1

2

)
− U

int

j+
1

2
,k
, Pj+1,k

(
z
j+

1

2
,k−

1

2

)
− U

int

j+
1

2
,k
,

U
int

j+
1

2
,k
−Pj,k

(
z
j+

1

2
,k+

1

2

)
, Uint

j+
1

2
,k
−Pj,k

(
z
j+

1

2
,k−

1

2

))
,

(2.13)

U
int

j+
1

2
,k
=

a+
j+

1

2
,k
U

+

j+
1

2
,k
− a−

j+
1

2
,k
U

−

j+
1

2
,k

a+
j+

1

2
,k
− a−

j+
1

2
,k

− cos
(
�
j+

1

2
,k

)F
(
U

+

j+
1

2
,k

)
− F

(
U

−

j+
1

2
,k

)

a+
j+

1

2
,k
− a−

j+
1

2
,k

− sin
(
�
j+

1

2
,k

)G
(
U

+

j+
1

2
,k

)
− G

(
U

−

j+
1

2
,k

)

a+
j+

1

2
,k
− a−

j+
1

2
,k

.

U
−

j+
1

2
,k
∶= Pj,k

(
z
j+

1

2
,k

)
, U

+

j+
1

2
,k
∶= Pj+1,k

(
z
j+

1

2
,k

)
,

U
−

j,k+
1

2

∶= Pj,k

(
z
j,k+

1

2

)
, U

+

j,k+
1

2

∶= Pj,k+1

(
z
j,k+

1

2

)
,

(2.14)

⎧⎪⎨⎪⎩

a+
j+

1

2
,k
= max

�
�N

�
V+

j+
1

2
,k

�
, �N

�
V−

j+
1

2
,k

�
, 0
�
, a−

j+
1

2
,k
= min

�
�1
�
V+

j+
1

2
,k

�
, �1

�
V−

j+
1

2
,k

�
, 0
�
,

a+
j,k+

1

2

= max
�
�N

�
V+

j,k+
1

2

�
, �N

�
V−

j,k+
1

2

�
, 0
�
, a−

j,k+
1

2

= min
�
�1
�
V+

j,k+
1

2

�
, �1

�
V−

j,k+
1

2

�
, 0
�
,

(2.15)

⎧⎪⎨⎪⎩

V±

j+
1

2
,k
∶= cos

�
�
j+

1

2
,k

� �F
�U

�
U

±

j+
1

2
,k

�
+ sin

�
�
j+

1

2
,k

��G
�U

�
U

±

j+
1

2
,k

�
,

V±

j,k+
1

2

∶= cos
�
�
j,k+

1

2

� �F
�U

�
U

±

j,k+
1

2

�
+ sin

�
�
j,k+

1

2

��G
�U

�
U

±

j,k+
1

2

�
.
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We note that as in the 1-D case, the estimate (2.14), (2.15) may be inaccurate; see [18].
Finally, the term Sj,k in (2.10) represents appropriate discretizations of the cell averages of 

the source terms:

Remark 2.3 Notice that if both a±
j+

1

2
,k
 are very close to zero, that is, if a+

j+
1

2
,k
− a−

j+
1

2
,k
< 𝜀 , 

where 𝜀 > 0 is a small parameter, we replace the numerical fluxes H
j+

1

2
,k in (2.11) with

Similarly, if both a±
j,k+

1

2

 are very close to zero, we replace the numerical fluxes H
j,k+

1

2

 in 

(2.11) with

In all of our numerical experiments, we have used � = 10−8.

Remark 2.4 The ODE systems (2.4)–(2.6) and (2.10)–(2.16) should be numerically solved 
by a stable ODE solver of a proper order. In all of the numerical examples in this paper, 
we have used the three-stage third-order strong stability-preserving (SSP) Runge–Kutta 
method; see, e.g., [16, 17]. The time step is restricted by the CFL condition, which, in the 
1-D case, is

and in the 2-D case, is

(2.16)Sj,k ≈
1

|Cj,k| ∬Cj,k

S(U(x, y, t)) dx dy.

H
j+

1

2
,k =

�
j+

1

2
,k

2

(
cos

(
�
j+

1

2
,k

)(
F
(
U

−

j+
1

2
,k

)
+ F

(
U

+

j+
F1

2
,k

))

+ sin
(
�
j+

1

2
,k

)(
G
(
U

−

j+
1

2
,k

)
+ G

(
U

+

j+
1

2
,k

)))
.

H
j,k+

1

2

=
�
j,k+

1

2

2

(
cos

(
�
j,k+

1

2

)(
F
(
U

−

j,k+
1

2

)
+ F

(
U

+

j,k+
1

2

))

+ sin
(
�
j,k+

1

2

)(
G
(
U

−

j,k+
1

2

)
+ G

(
U

+

j,k+
1

2

)))
.

(2.17)Δt max
j

⎧
⎪⎪⎨⎪⎪⎩

max

�����a
+

j−
1

2

����,
����a

−

j+
1

2

����
�

Δxj

⎫
⎪⎪⎬⎪⎪⎭

⩽
1

2
,

(2.18)Δt max
j,k

⎧
⎪⎪⎨⎪⎪⎩

max

�����a
−

j+
1

2
,k

����,
����a

+

j−
1

2
,k

����,
����a

−

j,k+
1

2

����,
����a

+

j,k−
1

2

����
�

dist(zj,k, �Cj,k)

⎫
⎪⎪⎬⎪⎪⎭

⩽ 1.
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3  AMM Methods

The main idea of AMM methods is to have more grid points in the “rough” parts of the 
solution to increase the resolution there. Assuming the mesh was adapted to the solution 
structure at a certain time level t, we evolve the solution to the new time level t + Δt on 
this mesh. Upon completion of the evolution step, the mesh should be adapted to the struc-
ture of the evolved solution. In this section, we overview the moving mesh techniques that 
allow one to obtain a new mesh in both the 1-D and 2-D cases. After this, the solution 
should be projected to the new mesh in a conservative way as described below.

3.1  1‑D Algorithm

We first describe the AMM method for 1-D nonuniform grids. In addition to the computa-
tional domain [a, b] covered by the nonuniform mesh {x

j+
1

2

} , we introduce the uniform 
logical mesh �

j+
1

2

= jΔ�, j = 0,⋯ ,N with Δ� = 1∕N . Let us denote the one-to-one coordi-
nate transformation from the logical domain to the computational one by

so that x
j+

1

2

= x
(
�
j+

1

2

)
.

3.1.1  Mesh Redistribution

Following a variational approach (see, e.g., [20] for a detailed derivation), one can obtain 
the following moving mesh equation:

where �(U) is a monitor function, which is designed to detect regions of large variations in 
the solution. A typical choice of the monitor function (see, e.g., [1, 20, 44]) is

where D is a differential operator (for example, one may use DU = U
(i)

�
 or DU = U

(i)

��
 for 

some component of U ). In this paper, we compute the required numerical derivatives using 
the second-order centered differences applied to the ith component if U satisfies

The function � in (3.2) is a smoothing filter needed since rapid changes in the solution may 
lead to the appearance of sharp gradients in the function � = �(x) . We design this filter by 
averaging over the neighboring cells for each j for a prescribed number of iterations, that is, 
we introduce

where �0
j
∶= |DU| , and then set

x = x(�), � ∈ [0, 1], x(0) = a, x(1) = b,

(3.1)(�x�)� = 0,

(3.2)�(U) = 1 + ��(|DU|),

DUj =
(
U

(i)

��

)
j
=

U
(i)

j+1
− 2U

(i)

j
+ U

(i)

j−1

(Δ�)2
.

�𝓁+1
j

∶=
1

4

(
�𝓁

j+1
+ 2�𝓁

j
+ �𝓁

j−1

)
, 𝓁 = 0, 1,⋯ ,m − 1,
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which is used in (3.2). In our numerical experiments, we have taken m = 4.
Finally, � in (3.2) is the intensity parameter employed to control the mesh concentration: 

the use of larger values of � leads to the higher concentration of grid points in the “rough” 
areas. In our computations, we follow [21] and choose � to be

where � ∈ (0, 1) is a prescribed fraction of mesh points to be concentrated in the “rough” 
areas of the computed solution.

Equipped with the monitor function � , we move the mesh according to the following 
iterative algorithm, in which we denote by x�

j+
1

2

 the grid nodes in the beginning of the 

(� + 1) th iteration step (with the initial guess x0
j+

1

2

 being the grid nodes from the previous 

evolution step) and x�
j
∶=

(
x�
j−

1

2

+ x�
j+

1

2

)/
2.

We discretize the moving mesh equation (3.1) using the centered difference approxima-
tion, which results in the following linear algebraic system for the mesh points locations:

The obtained system is numerically solved using the Jacobi iterations combined with an 
adjusted mesh movement designed to avoid rapid changes of the mesh. We start the itera-

tion process with the grid nodes from the previous evolution step, denoted by 
{
x0
j+

1

2

}
 , and 

move the mesh from 
{
x�
j+

1

2

}
 to 

{
x�+1
j+

1

2

}
 according to the following iterative algorithm.

Algorithm 3.1 (Adjusted 1-D Mesh Movement)

Step 1 Take one Jacobi iteration sweep for (3.4): 

 which results in 
{
x∗
j+

1

2

}
.

Step 2 Ensure that the mesh remains logically structured by setting 

 where x�
j
∶=

(
x�
j−

1

2

+ x�
j+

1

2

)
∕2 and denote by Δx∗∗

j
∶= x∗∗

j+
1

2

− x∗∗
j−

1

2

.

Step 3 Set � = 0 . Prevent rapid change in the mesh size as well as the appearance of 
very small cells as follows. For each j = 1,⋯ ,N − 1 , if either 

(3.3)(�(|DU|))j ∶= �m
j
,

� =

(
1 − �

�(b − a) ∫
b

a

�(|DU|) dx
)−1

,

(3.4)

⎧⎪⎪⎨⎪⎪⎩

x 1

2

= a,

�j+1(xj+ 3

2

− x
j+

1

2

) − �j(xj+ 1

2

− x
j−

1

2

) = 0, j = 1,⋯ ,N − 1,

x
N+

1

2

= b.

(3.5)�j+1

(
x�
j+

3

2

− x∗
j+

1

2

)
− �j

(
x∗
j+

1

2

− x�
j−

1

2

)
= 0, j = 1,⋯ ,N − 1,

(3.6)x∗∗
j+

1

2

= min

{
max

(
x∗
j+

1

2

, x�
j

)
, x�

j+1

}
, j = 1,⋯ ,N − 1,
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 where Δxmin is a prescribed minimal allowed cell size, set 

Step 4 If � = 1 , then set 

 and go to Step 3; otherwise set 

Remark 3.1 We note that according to Algorithm  3.1 the mesh does not evolve purely 
according to the moving mesh equation (3.1) as its movement is adjusted in order to ensure 
better properties of the resulting mesh.

Remark 3.2 It immediately follows from (3.6) and (3.7) that

which, in turn, implies that

so that the logical structure of the mesh indeed does not change.

3.1.2  Conservative Solution Projection

After obtaining the new mesh, we need to project the solution from the cells 

C�
j
∶=

[
x�
j−

1

2

, x�
j+

1

2

]
 to the new cells C�+1

j
∶=

[
x�+1
j−

1

2

, x�+1
j+

1

2

]
.

Let U
�

j
 and U

�+1

j
 be the cell averages over the cells C�

j
 and C�+1

j
 , respectively, and denote 

the mesh shift by �
�+ 1

2

j+
1

2

∶= x�+1
j+

1

2

− x�
j+

1

2

 . We use the conservative solution projection step 

from [42] given by

where

Δx∗∗
j+1

Δx∗∗
j

> 3 or
Δx∗∗

j+1

Δx∗∗
j

<
1

3
or min

(
Δx∗∗

j
,Δx∗∗

j+1

)
< Δxmin,

(3.7)x∗∗∗
j+

1

2

= min

{
max

(x∗∗
j−

1

2

+ x∗∗
j+

3

2

2
, x�

j

)
, x�

j+1

}
and � = 1.

x∗∗
j+

1

2

= x∗∗∗
j+

1

2

, j = 1,⋯ ,N − 1,

x�+1
j+

1

2

= x∗∗
j+

1

2

, j = 1,⋯ ,N − 1.

x�
j
⩽ x�+1

j+
1

2

⩽ x�
j+1

,

x�+1
j+

1

2

∈

(
x�+1
j−

1

2

, x�+1
j+

3

2

)
,

Δx�+1
j

U
�+1

j
= Δx�

j
U

�

j
+ �

�+ 1

2

j+
1

2

U
�

j+
1

2

− �
�+ 1

2

j−
1

2

U
�

j−
1

2

,
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and U±

j+
1

2

 are the point values reconstructed over the grid C�
j
 as described in Sect. 2.1.

3.2  2‑D Algorithm

In this section, we present the AMM method for structured 2-D quadrilateral meshes. 
Assume that the computational domain Ω = [a, b] × [c, d] is covered by the nonuniform 
mesh 

{
x
j+

1

2
,k+

1

2

, y
j+

1

2
,k+

1

2

}
 . We introduce the uniform rectangular logical mesh

where Δ� = 1∕N and Δ� = 1∕M are the spatial scales in the � - and �-directions, respec-
tively. Let us denote the one-to-one coordinate transformation from the logical domain to 
the computational one by

so that x
j+

1

2
,k+

1

2

= x
(
�
j+

1

2

, �
k+

1

2

)
 and y

j+
1

2
,k+

1

2

= y
(
�
j+

1

2

, �
k+

1

2

)
 . We assume that x(0, �) = a 

and x(1, �) = b for all � as well as y(�, 0) = c and y(�, 1) = d for all �.

3.2.1  Mesh Redistribution

As in the 1-D case, one can use a variational approach (see, e.g., [20]) to obtain the follow-
ing system of MMPDEs:

where z ∶= (x, y). Similarly to the 1-D case, the monitor function is chosen to be

where D is a differential operator 
(
for example, one may use  DU = ∇U(i) or DU = ΔU(i) 

for some component of U , where ∇ ∶=
(

�

��
,

�

��

)
 and Δ ∶=

�2

��2
+

�2

��2

)
 . In this paper, we 

compute the required numerical derivatives at (�j, �k) by using the second-order centered 
differences:

The smoothing filter � in (3.9) is employed to prevent the appearance of 
sharp gradient in the function � = �(x, y) . Similarly to the 1-D case, after 
�0
j,k

= |DUj,k|, j = 0,⋯ ,N, k = 0,⋯ ,M are obtained, they are smoothed out by averaging 
the values over the neighboring cells for each j, k for a prescribed number of iterations, that 
is, we introduce

U
𝜈

j+
1

2

∶=

⎧
⎪⎨⎪⎩

U
+

j+
1

2

, if 𝜇
𝜈+ 1

2

j+
1

2

> 0,

U
−

j+
1

2

, if 𝜇
𝜈+ 1

2

j+
1

2

< 0,

{(
�
j+

1

2

, �
k+

1

2

) ||| �j+ 1

2

= jΔ�, �
k+

1

2

= kΔ�
}
, j = 0,⋯ ,N, k = 0,⋯ ,M,

(x, y) = (x(�, �), y(�, �)), (�, �) ∈ [0, 1] × [0, 1],

(3.8)(�z�)� + (�z�)� = 0,

(3.9)�(U) = 1 + ��(‖DU‖),

DUj,k = ΔU
(i)

j,k
=

U
(i)

j+1,k
− 2U

(i)

j,k
+ U

(i)

j−1,k

(Δ�)2
+

U
(i)

j,k+1
− 2U

(i)

j,k
+ U

(i)

j,k−1

(Δ�)2
.
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and then set

which is used in (3.9). In our numerical experiments, we have taken m = 4.
Finally, � in (3.9) is an intensity parameter needed to control the mesh concentration. In 

our computation, we choose � to be

where � ∈ (0, 1) is the prescribed fraction of mesh points to be concentrated at the “rough” 
areas of the solution and |Ω| is the total area of the computational domain.

Equipped with the monitor function � , we discretize the moving mesh equation (3.8) 
using the centered difference approximation, which results in the following linear algebraic 
system for the mesh points locations:

where �
j,k+

1

2

∶= (�j,k + �j,k+1)∕2 and �
j+

1

2
,k ∶= (�j,k + �j+1,k)∕2 , and then proceed simi-

larly to the 1-D case and evolve the mesh according to the following iterative algorithm.

Algorithm 3.2 (Adjusted 2-D Mesh Movement)

Step 1 Take one Jacobi iteration sweep: 

�𝓁+1
j,k

=
1

4
�𝓁

j,k
+

1

8

(
�𝓁

j,k−1
+ �𝓁

j,k+1
+ �𝓁

j−1,k
+ �𝓁

j+1,k

)

+
1

16

(
�𝓁

j−1,k−1
+ �𝓁

j+1,k−1
+ �𝓁

j−1,k+1
+ �𝓁

j+1,k+1

)
, 𝓁 = 0,⋯ ,m − 1,

(3.10)(�(‖DU‖))j,k ∶= �m
j,k
,

� =

�
1 − �

��Ω� ∬Ω

�(‖DU‖) dx dy
�−1

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x 1

2
,k+

1

2

= a, x
N+

1

2
,k+

1

2

= b, k = 0,⋯ ,M

�
j+1,k+

1

2

(x
j+

3

2
,k+

1

2

− x
j+

1

2
,k+

1

2

) − �
j,k+

1

2

(x
j+

1

2
,k+

1

2

− x
j−

1

2
,k+

1

2

)

(Δ�)2
j = 1,⋯ ,N − 1,

+
�
j+

1

2
,k+1(xj+ 1

2
,k+

3

2

− x
j+

1

2
,k+

1

2

) − �
j+

1

2
,k(xj+ 1

2
,k+

1

2

− x
j+

1

2
,k−

1

2

)

(Δ�)2
= 0, k = 0,⋯ ,M,

x
j+

1

2
,−

1

2

= x
j+

1

2
,
3

2

, x
j+

1

2
,M+

3

2

= x
j+

1

2
,M−

1

2

, j = 0,⋯ ,N,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y
j+

1

2
,
1

2

= c, y
j+

1

2
,M+

1

2

= d, j = 0,⋯ ,N

�
j+1,k+

1

2

(y
j+

3

2
,k+

1

2

− y
j+

1

2
,k+

1

2

) − �
j,k+

1

2

(y
j+

1

2
,k+

1

2

− y
j−

1

2
,k+

1
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 which results in 
{
z∗
j+

1

2
,k+

1

2

}
=

{(
x∗
j+

1

2
,k+

1

2

, y∗
j+

1

2
,k+

1

2

)}
.

Step 2 Ensure that the mesh remains logically structured by replacing z∗
j+

1

2
,k+

1

2

 with 

which will be inside the convex hull C
j+

1

2
,k+

1

2

∶= Conv
(
z�
j+1,k+

1

2

, z�
j,k+

1

2

, z�
j+

1

2
,k+1

, z�
j+

1

2
,k

)
 

provided 

and denote the new cells based on the grid 
{
z∗∗
j+

1

2
,k+

1

2

}
 by C∗∗

j,k
 ; see Fig. 3.

Step 3 Set � = 0 . Prevent rapid change in the cell size as well as the appearance of very 
small cells as follows. For each (j + 1

2
, k +

1

2
) , if either 

(3.11)
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⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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Fig. 3  Modifying the grid z∗
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 where |C|min is a prescribed minimal allowed cell size, set 

 Here, ẑ ∗∗
j+

1

2
,k+

1

2

∶=
(
z∗∗
j,k+

1

2

+ z∗∗
j+1,k+

1

2

+ z∗∗
j+

1

2
,k
+ z∗∗

j+
1

2
,k+1

)
∕4 and �

j+
1

2
,k+

1

2

 is computed sim-

ilarly to (3.13): 

Step 4 If � = 1 , then set 

 and go to Step 3; otherwise, set 

Remark 3.3 We note that according to Algorithm  3.2 the mesh does not evolve purely 
according to the MMPDE (3.8) as its movement is adjusted in order to ensure better prop-
erties of the resulting mesh.

3.2.2  Conservative Solution Projection

After obtaining the new mesh, we need to project the solution from the cells C�
j,k

 , whose 
vertices are z�

j±
1

2
,k±

1

2

 , to the new cells C�+1
j,k

 with the vertices z�+1
j±

1

2
,k±

1

2

.

Let U
�

j,k
 and U

�+1

j,k
 be the cell averages over the cells C�

j,k
 and C�+1

j,k
 , respectively, see 

Fig. 4, and denote the signed areas of the quadrilaterals z�
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We use the conservative solution projection step from [42] given by

where

and U±

j+
1

2
,k
 and U±

j,k+
1

2

 are the point values reconstructed over the grid C�
j,k

 as described in 

Sect. 2.2.

3.3  Solution Algorithm

In this section, we summarize the 1-D and 2-D AMM central-upwind solution algorithm.

Algorithm 3.3 (AMM Central-Upwind Scheme)

Step 1 Set t ∶= 0.
Step 2 Given the initial condition, we adapt the computational mesh using the iterative 
method described in Sects. 3.1 and 3.2. These iterations require a starting mesh (for 
� = 0 at the initial time moment when the mesh from previous time step is unavailable). 
We take the starting mesh to be uniform in both 1-D and 2-D cases.
Step 3 Based on the solution at a given time level, compute Δt according to the CFL 
condition (2.17) or (2.18).
Step 4 Use the central-upwind scheme presented in Sect. 2 to evolve the solution U(t) 
represented in terms of its cell averages over a current mesh to the new time level t + Δt . 
We denote the obtained solution by V(t + Δt).
Step 5 Based on V(t + Δt) , implement the AMM procedure described in Sects. 3.1 
and 3.2 to generate a new finite-volume mesh and the corresponding cell averages. The 
resulting solution is denoted by U(t + Δt).
Step 6 Set t ∶= t + Δt.
Step 7 If the final computational time is not reached yet, go to Step 3.
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Remark 3.4 We set up the stopping criteria for the AMM iterations in Sects. 3.1 and 3.2 to 

be max
j

{||||x
�+1

j+
1

2

− x�
j+

1

2

||||
}
tol and max

j,k

{‖‖‖‖z
𝜈+1

j+
1

2
,k+

1

2

− z𝜈
j+

1

2
,k+

1

2

‖‖‖‖
}

< tol , respectively. How-

ever, in practice, since the mesh does not typically change much in one evolution time step 
(Step 4 of Algorithm  3.3), we improve the efficiency of the resulting AMM method by 
stopping the iteration process after several iterations even if the required tolerance has not 
been reached. In our numerical experiments, the upper bound on the number of iterations 
has been set to 4.

4  Euler Equation of Gas Dynamics—Numerical Examples

In this section, we apply the developed AMM central-upwind schemes to the 1-D and 2-D 
Euler equations of gas dynamics. We compare the obtained results with the ones computed 
by the central-upwind scheme from [29] implemented on uniform meshes. These examples 
clearly demonstrate the ability of the proposed schemes to capture the “rough” parts of the 
computed solutions with high resolution.

In all of the examples in this section, we use the minmod parameter � = 1.3 and apply 
the positivity-preserving correction to the reconstructions of the density and total energy.

4.1  Example 1—1‑D Riemann Problem

We numerically solve the 1-D Euler Equations of gas dynamics:

where �(x, t) is the density, u(x, t) is the velocity, M(x, t) = �(x, t)u(x, t) is the momentum, 
E(x, t) is the total energy, p(x, t) is the pressure satisfying the equation of state

and � is a specific heat ratio taken to be 1.4.
We consider the Riemann problem studied in [26] with the initial conditions

and compute the solution until the final time T = 0.012.
We use the computational domain [−0.5, 0.5] , which is initially split into NAMM = 100 

uniform finite-volume cells, and compute the solution by the proposed AMM central-
upwind scheme using two different values of the mesh concentration parameter ( � = 0.3 
and 0.6) and minimal allowed cell size ( Δxmin = 1∕(10NAMM) and 1∕(100NAMM)).

We first use DU = ��� to compute the monitor function in (3.2) (except for the mesh 
initialization Step 2 in Algorithm  3.3, in which we have used DU = E�� since � is ini-
tially constant). The obtained densities together with the time-space distributions of 
mesh cells are plotted in Figs.  5 and 6. As one can see, when Δxmin = 1∕(10NAMM) is 

(4.1)
�

�t

⎛⎜⎜⎝

�
M

E

⎞⎟⎟⎠
+

�

�x

⎛⎜⎜⎝

M

�u2 + p

u(E + p)

⎞⎟⎟⎠
= 0,

(4.2)p = p(�,M,E) = (� − 1)

(
E −

M
2

2�

)
,

(𝜌(x, 0), u(x, 0), p(x, 0)) =

{
(1,−19.597 45, 1 000), if x < 0.3,

(1,−19.597 45, 0.01), if x > 0.3,
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00

Fig. 5  Example 1: density profiles (top row) computed using the uniform and adaptive meshes using the 
same CPU times. The AMM central-upwind scheme was used with Δxmin = 1∕(10NAMM) , the monitor 
function � = 1 + ��(|��� |) and different values of � = 0.3 (left) and 0.6 (right). The corresponding time-
space distributions of mesh cells are shown in the bottom row

0 0

Fig. 6  Example 1: same as Fig. 5, but with Δxmin = 1∕(100NAMM)
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relatively large (Fig. 5) increasing � from 0.3 to 0.6 does not lead to a significant improve-
ment in the resolution of either contact or shock waves. However, when a much smaller 
Δxmin = 1∕(100NAMM) is used, one may observe (Fig. 6) that as � increases, more mesh 
points are concentrated near the shock and contact waves. Also notice that the rarefaction 
“corners” are slightly better captured as � increases. At the same time, the use of larger 
� leads to the appearance of smaller cells, which cause the time steps to become smaller 
and thus the CPU time increases from 0.85  s to 0.92  s when Δxmin = 1∕(10NAMM) and 
from 1.12  s to 1.82  s when Δxmin = 1∕(100NAMM) . We then compare the AMM results 
with the solution computed using uniform meshes of the sizes that require about the same 
CPU times, namely, with Nunif = r280 , 320, 550 and 900, respectively. The uniform results 
(densities) are shown in the same Figs. 5 and 6, where they are compared with the cor-
responding AMM solutions. As one can see, the AMM central-upwind scheme achieves 
much higher resolution of both the contact and shock waves.

Remark 4.1 We note that the physical quantities � , E and p should be positive at all times. 
In particular, the reconstructed point values of � , E and p at the cell interfaces should 
remain positive. The positivity of � and E is guaranteed by the use of the positivity-pre-
serving correction, while the positivity of p is achieved by employing the positivity-pre-
serving limiter proposed in [49].

This limiter is applied as follows. After the reconstruction step described in Sect. 2.1, 
we obtain the point values �±

j+
1

2

 , M±

j+
1

2

 and E±

j+
1

2

 for all j and then use the equation of state 

(4.2) to compute the corresponding point values of the pressure, p±
j+

1

2

 . If in a certain cell Cj , 

either p−
j+

1

2

< p𝜀 or p+
j−

1

2

< p𝜀 , where p� is a small positive number (taken to be 10−12 in all 

of our numerical experiments), we replace the linear piece (2.2) in this cell with a less 
oscillatory one:

Here, �j = min

{
�−
j+

1

2

, �+
j−

1

2

}
 , in which

where 𝜏−
j+

1

2

∈ (0, 1) and 𝜏+
j−

1

2

∈ (0, 1) are the roots of the quadratic equations

and

(4.3)�j(Pj(x, t) − Uj) + Uj.
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2
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⎧⎪⎨⎪⎩
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respectively. We then recompute �±
j+

1

2

 , M±

j+
1

2

 and E±

j+
1

2

 in the cell Cj using the modified 

reconstruction (4.3).
We note that in the 2-D case, the positivity of the reconstructed values of p can be 

enforced in a similar manner.

4.2  Example 2—2‑D Riemann Problem

In this example, we numerically solve the 2-D Euler equations of gas dynamics:

where �(x, y, t) is the density, u(x,  y,  t) and v(x,  y,  t) are the x- and y-velocities, 
M(x, y, t) ∶= �(x, y, t)u(x, y, t) and N(x, y, t) ∶= �(x, y, t)v(x, y, t) are the x- and y-momenta, 
E(x, y, t) is the total energy, p(x, y, t) is the pressure satisfying the equation of state

(4.4)
�

�t

⎛⎜⎜⎜⎝

�
M
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E

⎞⎟⎟⎟⎠
+

�
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⎛⎜⎜⎜⎝

M

�u2 + p

�uv
u(E + p)

⎞⎟⎟⎟⎠
+

�

�y

⎛⎜⎜⎜⎝

N

�uv
�v2 + p

v(E + p)

⎞⎟⎟⎟⎠
= 0,

Fig. 7  Example 2: density profiles computed using the adaptive mesh with � = 0.6 (left) and 210 × 210 uni-
form mesh (right), and the final time mesh distribution (middle)

Fig. 8  Example 2: density profiles computed using the adaptive mesh with � = 0.9 (left) and 260 × 260 uni-
form mesh (right), and the final time mesh distribution (middle)
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and � is a specific heat ratio taken to be 1.4.
We consider the 2-D Riemann problem with the initial condition corresponding to Con-

figuration 7 from [29]:

and run our simulations until the final time T = 0.25 . We take the computational domain 
[0, 1] × [0, 1] , which is initially split into 100 × 100 uniform finite-volume cells for the 
AMM calculations.

We first compute the solution by the proposed AMM central-upwind scheme 
using DU = Δ� in the monitor function (3.9) and the minimal allowed cell size 
|C|min = 1∕(1 000 × 1 000) . The densities computed using the concentration parameters 
� = 0.6 and � = 0.9 and the corresponding final time mesh distributions are presented in 
Figs. 7 (left and middle) and 8 (left and middle), respectively. As one can see, the mesh 
is concentrated in the contact and shock wave areas with a substantially larger number 
of mesh cells being moved there in the case of the larger � = 0.9 . We then compare 
the AMM results with the ones computed by the central-upwind scheme using uniform 
meshes of the sizes that require about the same CPU times, namely, with 210 × 210 
(Fig. 7, right) and 260 × 260 (Fig.  8, right) uniform cells. It can be observed that both 
the contact and shock waves are more sharply resolved using the AMM approach.

5  Granular Hydrodynamics—Numerical Examples

In this section, we apply the AMM central-upwind schemes for the 1-D and 2-D gran-
ular hydrodynamics equations, which are used to model granular gases; see, e.g., [8, 
14, 34, 38, 39] and references therein. Though this model has recently attracted a great 
attention from physicists, no rigorous mathematical analysis of the granular hydrody-
namics equations is available, especially in the multidimensional case. In contrast to 
ordinary molecular gases, granular gases cool spontaneously because of the inelastic 
collisions between the particles. The inelasticity of the collisions generally causes the 
granular gas to form dense clusters.

The 1-D granular hydrodynamics equations are the 1-D Euler equations of gas 
dynamics (4.1), (4.2) with an additional inelastic energy loss term:

where Λ is a positive constant. Similarly, the 2-D granular hydrodynamics equations are 
the 2-D Euler equations of gas dynamics (4.4), (4.5) with the same inelastic energy loss 
term:

(4.5)p = p(�,M,N,E) = (� − 1)

(
E −

M
2 +N

2

2�

)
,

(𝜌, p, u, v) =

⎧
⎪⎨⎪⎩

(1, 1, 0.1, 0.1), if x > 0.5, y > 0.5,

(0.519 7, 0.4,−0.625 9, 0.1), if x < 0.5, y > 0.5,

(0.8, 0.4, 0.1, 0.1), if x < 0.5, y < 0.5,

(0.519 7, 0.4, 0.1,−0.625 9), if x > 0.5, y < 0.5,

(5.1)
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A characteristic feature of the solutions of (5.1), (4.2) and (5.2), (4.5) is a formation of 
finite-time singularities, which are different from the shock discontinuities arising in the 
Euler equations of gas dynamics (4.1), (4.2) and (4.4), (4.5) based on the assumption of 
elastic interaction between the particles. In particular, the granular gas singularities con-
tain the density blowup, which signals the formation of close-packed clusters. These singu-
larities can be accumulated in points or distributed along a curve (see [38] for the simplest 
analytical ansatz demonstrating finite-time singularities formation). Moreover, the struc-
ture of granular hydrodynamics equations supports the existence of �-type singularities in 
the density component. Capturing such solutions numerically is a challenging task and the 
AMM approach may become a key factor in achieving high resolution of spiky solutions in 
an efficient and computationally affordable manner.

We apply the developed AMM central-upwind schemes to the systems (5.1), (4.2) 
and (5.2), (4.5) in a straightforward manner. Namely, we approximate the cell averages 
of the source terms using the midpoint rule, which results in the following approxima-
tions of (2.6) and (2.16):

respectively.
In all of our numerical experiments reported below, we take Λ = 10 . In Examples 3 

and 4, we use the minmod parameter � = 1.3 , while in Example 5, we use both � = 1.3 
and a more dissipative minmod reconstruction with � = 1 . As in Sect. 4, we apply the 
positivity-preserving correction to the reconstructions of the density and total energy.

5.1  Example 3—1‑D Case

In this example, we numerically solve the 1-D granular hydrodynamics system (5.1), (4.2) 
on the interval [−5, 5] subject to the following initial data:

(5.2)
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(5.3)�(x, 0) ≡ 1, u(x, 0) ≡ 0, p(x, 0) = 2 −
1

1 + 16x2
,

N
N
N

Fig. 9  Example 3: densities computed on the uniform meshes (left) and using the AMM approach (middle) 
and the corresponding time-space distributions of mesh cells (right)
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and the homogeneous Neumann boundary conditions.
Analyzing the initial value problem (5.1), (4.2), (5.3), one can see that the initial mini-

mum of pressure at x = 0 triggers the development of negative velocity derivative there, 
which, in turn, causes the increase of the density at the origin. Then, unlike the case of the 
Euler equations of gas dynamics (4.1), (4.2), the entropy ln(p∕�� ) is not conserved along a 
sound characteristics u = 0 , but decreases to zero within finite or infinite time. This suggests 
a formation of spiky structure in the density component along the sound characteristics, 
that is, at the point x = 0 . To verify this and to study the type of a possible singularity, we 
first compute the solution at time t = 5 using the central-upwind scheme on three uniform 
meshes with N = 201 , 401 and 801 cells. The obtained densities, shown in Fig. 9 (left), indi-
cate that by this time the singularity could have already formed since the maximum of the 
density increases as the mesh is refined. We then apply the AMM central-upwind scheme 
with � = 0.3 , and minimal allowed cell size Δxmin = 1∕(1 000NAMM) , where NAMM = 201 
and the monitor function (3.2) with DU = ��� (except for the mesh initialization Step 2 in 
Algorithm 3.3, in which we have used DU = E�� since � is initially constant) to the stud-
ied IBVP. As one can see in Fig. 9 (middle), the obtained density has a much larger maxi-
mum value than its uniform grid counterparts. The time-space distribution of the mesh cells, 
shown in Fig. 9 (right), suggests that using the AMM approach is crucial in achieving a high 
resolution of the developed singularity. The velocity and pressure computed by the AMM 
central-upwind scheme are shown in Fig. 10. We note that the velocity has a sharp gradi-
ent at x = 0 and the pressure values are much smaller than the initial ones due to the energy 
decay caused by the source term in the third equation in (5.1).

Next, we further study the behavior of both the uniform mesh and AMM solutions by 
comparing the time evolution of max

x
�N+1(x, t) (the upper index indicates the number of 

finite-volume cells used), computed using different values of N. The obtained results are 

Fig. 10  Example 3: velocity (left) and pressure (right) computed using the AMM central-upwind scheme

N
N
N

N

N
N
N

Fig. 11  Example 3: max
x

�(x, t) as a function of time for the uniform (with 10 001, 20 001 and 40 001 cells) 
and AMM (with 201 initially uniform cells) computations (left) and max

x
�2N+1(x, t)∕max

x
�N+1(x, t) as a 

function of time for the sequence of uniform grids with N = 5 000 , 10 000 and 20 000 (right)



470 Communications on Applied Mathematics and Computation (2021) 3:445–479

1 3

shown in Fig. 11 (left). As one can clearly see, the central-upwind AMM scheme clearly 
outperforms its uniform counterpart. It is also instructive to compare the ratios 
max

x
�2N+1(x, t)∕max

x
�N+1(x, t) for the uniform grid solutions with different values of N. The 

obtained results, shown in Fig. 11 (right), can be used as an indicator of the nature of the 
developed singularity. Indeed, after the time t ≈ 3 , the computed ratios are getting close to 
2, which indicates that at large times the solution may have a �-type singularity at x = 0 
since the maximum of such solutions captured by finite-volume methods on uniform grids 
is typically proportional to 1∕Δx.

5.2  Example 4—Radially Symmetric Data

Next, we consider the 2-D granular hydrodynamics system (5.2), (4.5) on the square 
domain [−5, 5] × [−5, 5] subject to the radially symmetric initial data, which are a modified 
version of the 1-D initial data (5.3),

and the homogeneous Neumann boundary conditions.

�(x, y, 0) ≡ 1, u(x, y, 0) ≡ v(x, y, 0) ≡ 0, p(x, y, 0) = 2 −
1

1 + 16(x2 + y2)
,

Fig. 12  Example 4: density 
computed using the AMM 
central-upwind scheme (left) and 
the final time mesh distribution 
(right)

N
N
N

N

N
N
N

Fig. 13  Example 4: max
x,y

�(x, y, t) as a function of time for the uniform (with 201 × 201 , 401 × 401 and 
801 × 801 cells) and AMM (with 101 × 101 initially uniform cells) computations (left) and 
max
x,y

�2N+1(x, y, t)∕max
x,y

�N+1(x, y, t) as a function of time for the sequence of uniform grids with N = 100 , 
200 and 400 (right)
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In Fig. 12 (left), we plot the density at time t = 5 computed by the AMM central-upwind 
scheme with � = 0.3 and the minimal allowed cell size |C|min = 1∕(201 × 201) . Initially 
start with uniform mesh with 201 × 201 finite-volume cells and the monitor function (3.9) 
with DU = Δ� . As one can see, the solution contains a spike at the origin, where the mesh 
is concentrated; see Fig. 12 (right).

At larger times, max
x,y

�(x, y, t) keeps increasing (see Fig. 13 (left)) and the mesh is further 
concentrated at the origin. This may lead to the appearance of very small cells, which may 
trigger (small) oscillations in the computed energy, which, in turn, may lead to the appearance 
of negative pressure values near the origin. To prevent this, we use relatively small � = 0.3 
both in this example and the next one. As in the 1-D case, we study the singularity formation 
by computing the ratios max

x,y
�2N+1(x, y, t)∕max

x,y
�N+1(x, y, t) . Here, �N+1(x, y, t) stands for the 

density computed using (N + 1) × (N + 1) uniform cells. As one can see, the obtained results 
are quite similar to the ones reported in Example 3. However, there are two quite important 
differences: first, the ratios are getting larger than 1 earlier, and second, at large times the ratios 
approach 4 (and even become a little larger than 4), which clearly indicates that by time t ≈ 5 
the density develops a �-function at the origin. We note that in the 2-D case, the maximum 
values of the computed �-functions are proportional to 1∕(ΔxΔy) , so that we conclude that 
apparently a �-function appears in the density component if the aforementioned ratio is 4. We 
note that the obtained blowup result is in good compliance with the theoretical finite-time 
blowup results in [38].

5.3  Example 5—Vortex‑Like Data

In the final example, we consider the 2-D granular hydrodynamics system (5.2), (4.5) on the 
square domain [−10, 10] × [−10, 10] subject to the following vortex-like initial data:

with E ∶= e−
1

2
(x2+y2) , and the homogeneous Neumann boundary conditions. We note that 

if one replaces �(x, y, 0) in (5.4) with �(x, y, 0) = R0 − E
2∕2 , then the initial data will cor-

respond to the steady vortex for the Euler equations of gas dynamics (4.4), (4.5). Here, R0 
is a constant, which determines the size of the vortex: the larger R0 the larger the radius of 
the vortex. Moreover, as one can easily see, the solution of the initial value problem (5.2), 
(4.5), (5.4) is expected to preserve its initial radial symmetry. We first take a small R0 = 5 
and compute the solution until the final time T = 10 . The densities, computed by the AMM 
central-upwind scheme with � = 0.3 , � = 1.3 , initially uniform mesh with 200 × 200 
finite-volume cells (the minimal allowed cell size |C|min = 1∕(100 × 100) ) and the moni-
tor function (3.9) with DU = Δ(log(1 + �)) , are shown in the left and middle columns in 
Fig. 14 at times t = 1 , 5, 10 and 25. As one can see, the solution develops a singularity 
along the circle-shaped curve, where the mesh is concentrated; see Fig. 14 (right column). 
The AMM solution at time t = 10 is similar to the one obtained using the uniform mesh 
with 800 × 800 uniform cells, which are plotted in Fig. 15 (top row).

We then numerically study the process of singularity formation by measuring max
x,y

�(x, y, t) 
and max

x,y
�2N(x, y, t)∕max

x,y
�N(x, y, t) as functions of time, presented in Fig. 16. As one can see, 

the maximum ratios become larger than one at t ≈ 2 , but they do not approach 2 (the maxi-
mum of the finite-volume representation of �-functions spread along curves is expected to be 

(5.4)

�(x, y, 0) ≡ 1, u(x, y, 0) = −yE, v(x, y, 0) = xE, p(x, y, 0) =
� − 1

�

(
R0 −

E
2

2
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proportional to 1∕
√
ΔxΔy rather than to 1∕(ΔxΔy) as in the case of �-functions focused at 

isolated points), which suggests that the observed singular structure along the circle may or 
may not be the �-function. Computing the solution at larger times, we observe that the circular 
singularity structure is unstable. This can be seen in the bottom rows in Figs. 14 and 15, in 

Fig. 14  Example 5, R0 = 5 , densities computed using the AMM central-upwind scheme: three-dimensional 
(3-D) plot (left column), top view (middle column) and the mesh distribution (right column) at times t = 1 , 
5, 10 and 25 (from top to bottom rows)
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which the densities, computed at the final time T = 25 using the AMM and uniform central-
upwind schemes, respectively, are plotted.

Finally, we take a large R0 = 100 and compute the solution until the same final time 
T = 25 . The densities and corresponding meshes at times t = 1 , 5, 10 and 25, computed by 
the AMM central-upwind scheme with the same parameters as before, but with � = 0.2 and 
� = 1 (the latter corresponds to a more dissipative minmod reconstruction) are shown in 

Fig. 15  Example 5, R0 = 5 , densities computed using the central-upwind scheme on the uniform 800 × 800 
grid: 3-D plot (left column), top view (right column) at times t = 10 (top row) and 25 (bottom row)

N
N
N

N

N
N

N

Fig. 16  Example 5, R0 = 5 : max
x,y

�(x, y, t) as a function of time for the uniform (with 200 × 200 , 400 × 400 
and 800 × 800 cells) and AMM (with 200 × 200 initially uniform cells) computations (left) and 
max
x,y

�2N (x, y, t)∕max
x,y

�N (x, y, t) as a function of time for the sequence of uniform grids with N = 100 , 200 
and 400 (right)
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Fig. 17. As in the case of a smaller R0 = 5 , the solution develops a singularity along the curve, 
but a breakdown of its circular shape, which signals on the instability development, occurs 
much earlier now. As one can see, the shape deformation, is much more pronounced than 

Fig. 17  Example 5, R0 = 100 , densities computed using the AMM central-upwind scheme with � = 1 : 3-D 
plot (left column), top view (middle column) and the mesh distribution (right column) at times t = 1 , 5, 10 
and 25 (from top to bottom rows)
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Fig. 18  Example 5, R0 = 100 , densities computed using the central-upwind scheme on the uniform 800 × 800 
grid: 3-D plot (left column) and top view (right column) at times t = 1 , 5, 10 and 25 (from top to bottom rows)
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in the case of a smaller R0 = 5 . We also notice that the solutions computed using the AMM 
and uniform mesh with 800 × 800 cells (presented in Fig. 18) are not very closed. To further 
numerically study the developed singular structures, we compute the AMM solution using a 
sharper minmod reconstruction with � = 1.3 . The obtained densities are plotted in Fig. 19. 

Fig. 19  Example 5, R0 = 100 : same as Fig. 17 but with � = 1.3
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As one can clearly see, the change in � leads to a substantial change in the singularity curve, 
which supports the conclusion that after the singularity is developed the solution becomes 
unstable. In fact, the numerical study of the solution maximum (see Fig. 20) suggests that the 
solution develops �-type singularity along the circle by time t ≈ 1 , that is, long before the final 
computational time.
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