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Abstract
The lowest degree of polynomial for a finite element to solve a 2kth-order elliptic equation 
is k. The Morley element is such a finite element, of polynomial degree 2, for solving a 
fourth-order biharmonic equation. We design a cubic H3-nonconforming macro-element 
on two-dimensional triangular grids, solving a sixth-order tri-harmonic equation. We also 
write down explicitly the 12 basis functions on each macro-element. A convergence theory 
is established and verified by numerical tests.

Keywords Nonconforming macro-element · Minimum element · Tri-harmonic equation

Mathematics Subject Classification 65N30 · 73C02

1 Introduction

The Courant triangle is an H1-conforming finite element, of polynomial degree one, solving 
second-order elliptic equations. The Crouzeix–Raviart triangle is a linear H1-nonconforming 
finite element on triangles. The Morley element is a quadratic but H2-nonconforming finite 
element for solving the biharmonic equation. On a macro-triangle grid, the Powell–Sabin ele-
ment [11] is a quadratic H2-conforming finite element. For solving a 2kth-order partial differ-
ential equation, the minimum polynomial degree is k, as the above four elements show. This is 
because a kth-order derivative of polynomial degree k − 1 or less would be zero. Wang and Xu 
successfully extended the Morley element to a family of Pk nonconforming finite elements for 
2kth-order elliptic partial differential equations in ℝn for any n ≥ k , on simplicial grids [14]. 
Such minimum finite elements are very simple comparing to the conforming finite elements. 
For example, for k = 2, 3, 4 and n = 3 , the polynomial degrees of the three-dimensional C1 , C2 
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and C3 spaces are 9, 17 and 25, respectively, cf. [1, 2, 16], while those of Wang–Xu’s elements 
are 2, 3 and 4 only, respectively. However, there is a limit, n ≥ k , that is, Wang and Xu con-
structed a cubic H3-nonconforming element in three dimensions, but not in two dimensions.

On rectangular grids, the above problem is relatively simple. Hu, Huang and Zhang con-
structed an n-dimension C1-Q2 element on rectangular grids [7]. Here Qk means the space of 
polynomials of separated degree k or less. Then the element is extended to a whole family of 
Ck−1-Qk elements, in any space dimension, in [8], that is, the minimum polynomial degree k 
is achieved in constructing Hk-conforming finite elements, on rectangular grids, in any space 
dimension. There is no limit of n ≥ k.

In this paper, we would take the challenge of removing the limit of n ≥ k in 
Wang–Xu’s work [14], nevertheless only for the lowest order in two dimensions. That is, 
we construct a cubic ( P3 ) H3-nonconforming finite element in two dimensions, on trian-
gular grids. Such an element may not be constructed on a single triangle, but on a macro-
triangle, as Hu–Huang–Zhang did on macro-rectangular grids in [7, 8]. Here we use the 
Hsieh–Clough–Tocher macro-triangle, shown in Fig. 1.

The new element is a piecewise cubic polynomial on three triangles, �0�1�2 , �0�2�3 and 
�0�3�1 , shown in Fig. 1. The 12 degrees of freedom are the function value, the first derivatives 
at three vertexes �1 , �2 and �3 , and the second normal derivative at the outer mid-edge points �1 , 
�2 and �3 . These produce 3 ⋅ 3 ⋅ 2 + 3 = 21 equations for the 3 ⋅ 10 coefficients of a piecewise 
cubic polynomial. In addition, we require the continuity of function and first derivatives of the 
finite element function at the barycentric center �0 , resulting in 2 × 3 = 6 equations. All three 
second derivatives are continuous at the three mid-points of the three internal edges, �1 , �2 and 
�3 . These generate 3 × 3 = 9 equations, in theory. Finally, we limit the sum of three jumps of a 
third-order scaled directional derivative at the mid-points of the three internal edges to zero,

where the vector �i,j = �i+j − �i , and triangles Ki = �0�i+1�i+2 . Here and in the rest of the 
paper, we use a periodic index, i.e., �i = �i+3 and Ki = Ki+3 . In (1.1), the scaled directional 
derivative is, for �i+1,1 = ⟨l1, l2⟩,

(1.1)
3∑
i=1
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Fig. 1  A Hsieh–Clough–Tocher 
macro-triangle, and the finite ele-
ment degrees of freedom on it
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Equation (1.1) is a weird constraint, never seen in any similar construction of finite ele-
ment. Any way, we will show that, together, the above 37 linear equations uniquely deter-
mine the 30 coefficients of a P3 (cubic polynomial) finite element function. Using the Her-
mite type basis functions, we show the finite element space is well defined on a general 
triangular (base) grid. The standard error analysis is provided and confirmed by a numeri-
cal test. We refer interested readers to [9, 15] for H3-nonconforming elements which use 
essentially P4 polynomials.

We end this section by introducing some short-hand notations used in the paper. Given a 
vector � = ⟨l1, l2⟩ , define

and

We shall also use the following notation:

2  The Finite Element

We solve a model tri-harmonic equation:

where Ω is a bounded two-dimensional polygonal domain, and � is the unit outer nor-
mal to �Ω . Doing integration by parts three times, the weak formulation of (2.1) is: find 
u ∈ H3

0
(Ω) such that

where H3
0
(Ω) = {v ∈ H3(Ω) ∣ v = �

�
v = �

�2
v on �Ω} and H3(Ω) is the standard Sobolev 

space [3]. The bilinear forms are

where
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Let h = {M} be a quasi-uniform triangulation on Ω , cf. [3]. Let 0
h
= {�i} be the set of 

all internal vertexes of triangles in h . Let b
h
= {�i} be the set of all boundary vertexes of 

triangles in h , �i ∈ �Ω . Let 0
h
= {�j} be the set of all internal mid-edge points of triangles 

in h . Let b
h
= {�j} be the set of all boundary mid-edge points of triangles in h , �j ∈ �Ω . 

Each triangle M in h is further subdivided into three sub-triangles, by connecting its bar-
ycentric center with three vertexes, shown in Fig. 1. The refined triangulation is denoted by h . 
Such a macro-grid h and a grid h are plotted in Fig. 2.

On a macro-triangle M = �0�1�2 ∪ �0�2�3 ∪ �0�3�1 , cf. Fig. 1 and (1.1), we require the 
continuity of a finite element function vh at the vertexes of all three Ki of M:

and

Further, the second derivatives are continuous across the three internal edges, at the middle 
point, for all |�| = 2,

On a single macro-element, the finite element space is defined by

Abstractly we define the global space of the cubic ( P3 ) H3 nonconforming finite element
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Fig. 2  A macro-grid 
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 and its HCT subgrid 
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where � is a unit outer normal vector to M at a mid-point �j , and M′ is a macro-triangle 
sharing an edge with M at point �j.

The finite element discretization problem for (2.3) reads: find uh ∈ Vh such that

where

3  Basis of the Finite Element Space

We find first the Hermit type basis functions for the finite element space VM̂ on the reference 
triangle M̂ = �̂1�̂2�̂3 , cf. Fig. 3, where

We define an interpolation vh , for a C3(M̂) function u, to be a solution of the following lin-
ear system of equations:

(The 12 dofs:) 

(2.8)ah(uh, vh) = (f , vh), ∀vh ∈ Vh,
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Fig. 3  A reference triangle M̂ and a general triangle M, where the affine mapping F preserves vectors �̂
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(and the continuity constraints)

 Here

For basis functions, we solve the 12 dof equations (3.2a)–(3.2d) plus 25 constraint equa-
tions ((2.4), (2.5) and (1.1)), to obtain each of the 12 basis functions on the reference element 
M̂ . For example, the basis function �̂�1,0 is the solution of the system of 37 equations, where 
u(�̂1) = 1 and rest data are zero. These 37 equations have a unique solution, to be shown in 
Lemmas 3.1 and 3.2,

Before we consider the solution of the 37 equations in (3.2), we show the uniqueness of the 
solution to an equivalent, square, linear system of 30 equations, in Lemma 3.1. We drop 7 
equations from (3.2i), equivalently three equations for the continuity of second-order tan-
gential derivatives, three equations for the continuity of second-order mixed derivative, and 
one equation for the continuity of second-order normal derivative at �̂3 , to get, i.e., the 
nine equations in (3.2i) replaced by two equations,

(3.2e)vh|K̂i+1
(�̂i) = vh|K̂i+2

(�̂i), i = 1, 2, 3,

(3.2f)𝜕
�̂i,j
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�̂i,j
vh|K̂i+2

(�̂i), i = 1, 2, 3, j = 1, 2,

(3.2g)vh|K̂i
(�̂0) = vh|K̂i+1

(�̂0), i = 1, 2,

(3.2h)𝜕x̂j vh|K̂i
(�̂0) = 𝜕x̂j vh|K̂i+1
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1
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2
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2
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3
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𝜕
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3
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(�̂i).

�̂i,j = �̂i+j − �̂i, j = 1, 2,

�̂i =
�̂i+1 + �̂i+2

2
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√
3x̂2 + 1

�

×
�
−2x̂1 −
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√
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√
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√
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Here and below, �K̂i
 denotes the outer normal vector on 𝜕K̂i , and �K̂i

 is the 90◦ rotation of 
�K̂i

.

Lemma 3.1 On the reference element M̂, defined in (3.1), there is a unique solution to the 
linear system of 30 equations (3.2) with (3.2i) replaced by (3.2i’), with general data for 12 
degrees of freedom, in (3.2a)–(3.2d).

Proof We will show the uniqueness of solution, which implies the existence of solution. 
As a piecewise cubic polynomial ( P3 ) function has 30 degrees of freedom on M̂ , we have 
a square system of linear equations. Let v1 and v2 be two solutions for the thirty equations. 
Let v = v1 − v2 . By equations in (3.2), v and its tangential derivatives are zero at two ver-
texes of edge �̂1�̂2 . Then, v is identically zero on the edge. We can factor out the linear 
function �̂�3 from v:

where the linear function is uniquely defined by

By the zero first normal derivative at �̂1 and �̂2 , and the zero second normal derivative at 
�̂3 , of v|K̂3

 , cf. Fig. 1, the six degrees of freedom of p2 in v = �̂�3p2 are restricted to three 
degrees of freedom.

We will select three basis functions, {b3,1, b3,2, b3,3} ⊂ P3 , for expanding this quadratic 
function p2 in v|K̂3

 . One obvious candidate is �̂�3
3
 , which has all first and second normal 

derivatives equal to zero, on the whole edge �̂�3 = 0 . But we will combine it with other 
basis functions as the first basis function. A second basis function could be b3,2 = �̂�2

3
�̂�⟂
3
 

which has the first normal derivative zero on the edge, and the second normal derivative 
at the mid-point. Here �̂�⟂

3
 is the linear function for the line orthogonal to edge �̂1�̂2 at the 

mid-point �̂3 , i.e.,

A third basis function b3,3 is constructed using a circle function

that 𝜏2 = 0 is the circle passing through three vertexes of M̂ . �̂�3𝜏2 has its first normal deriv-
ative zero at the two end points, but not zero second normal derivative at the mid-point �̂3 . 
So we correct the second normal derivative by �̂�2

3
 (which has the normal derivative zero at 

the two end points) as follows:

Let us check the second normal derivative condition (note that �̂�3 = 4
√
3x̂2 + 1 and 

�̂3 = ⟨0,−√3∕4⟩):

v|K̂3
= �̂�3 p2, p2 ∈ P2 (x̂1, x̂2),

�̂�3(�̂1) = 0, �̂�3(�̂2) = 0, �̂�3(�̂0) = 1.

�̂�⟂
3
(�̂3) = 0, 𝜕

�̂3
�̂�⟂
3
(�̂3) = 0, �̂�⟂

3
(�̂1) = 1.

𝜏2 ∶= x̂2
1
+ x̂2

2
−

1

12

b3,3 = 24�̂�3𝜏
2 + �̂�2

3
= �̂�3

(
24𝜏2 + �̂�3

)
.
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We expand v under three basis functions,

where we combine the first candidate �̂�3
3
 , the second and third basis functions as b3,1.

Similar to (3.4), we find three basis functions on edge �̂2�̂3 and let

Here �̂�⟂
1
(�̂2) = 1 . By the continuity of v at �̂0 , and by a geometric argument or by the values 

of basis functions:

we conclude that

By the continuity of the first derivatives at �̂0,

where �̂2 is the outer unit normal vector of K̂2 on edge �̂3�̂1 , and �̂2 is the 90◦ counter-clock-
wise rotation of �̂2 , we have, by (3.6),

Finally, by the continuity of the second normal derivatives at �̂2 , (3.2i’),

we have, by (3.6)–(3.8),

𝜕
�̂
2
3
b3,3(�̂3) = (108

√
3x̂2 + 27)(�̂3) = 0.

(3.4)
v|K̂3

= a3,1b3,1 + a3,2b3,2 + a3,3b3,3

∶= a3,1
(
�̂�3
3
+ 24�̂�3𝜏

2 + �̂�2
3
+ 9�̂�2

3
�̂�⟂
3

)
+ a3,2�̂�

2
3
�̂�⟂
3
+ a3,3

(
24�̂�3𝜏

2 + �̂�2
3

)
,

(3.5)
v|K̂1

= a1,1b1,1 + a1,2b1,2 + a1,3b1,3

∶= a1,1
(
�̂�3
1
+ 24�̂�1𝜏

2 + �̂�2
1
− 9�̂�2

1
�̂�⟂
1

)
+ a1,2�̂�

2
1
�̂�⟂
1
+ a1,3

(
24�̂�1𝜏

2 + �̂�2
1

)
.

(
b3,1 b3,2 b3,3
b1,1 b1,2 b1,3

)
(�̂0) =

(
0 0 − 1

0 0 − 1

)
,

(3.6)a3,3 = a1,3.

𝜕
�̂2

�
b3,1 b3,2 b3,3
b1,1 b1,2 b1,3

�
(�̂0) =

�
0 2 0

0 2 0

�
,

𝜕
�̂2

�
b3,1 b3,2 b3,3
b1,1 b1,2 b1,3

�
(�̂0) =

�
24

√
3 2

√
3 0

24
√
3 − 2

√
3 0

�
,

(3.7)a3,2 = a1,2,

(3.8)a3,1 = a1,1.

𝜕
�
2

K̂3

(
b3,1 b3,2 b3,3
b1,1 b1,2 b1,3

)
(�̂2) =

(
−336 − 60 96

−336 60 96

)
,
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In addition, we check the jump of the third scaled directional derivative of v:

On the third triangle K̂2 , similar to (3.4) and (3.5),

Here �̂�⟂
2
(�̂3) = 1 , and it is not symmetric to the �̂�⟂

1
 in (3.5), where �̂�⟂

1
(�̂2) = 1 . By the conti-

nuity of v at �̂0,

we conclude that

By the continuity of the first derivatives at �̂0,

where �̂1 is the outer unit normal vector of K̂1 on edge �̂1�̂3 , and �̂1 is the 90◦ counter-clock-
wise rotation of �̂1 , we get, by (3.9),

Finally, by the continuity of the second normal derivatives at �̂1 , (3.2i’),

we get, by (3.12),

(3.9)a3,2 = 0.

(3.10)𝜕
�̂
3
3,1

(
b3,1 b3,2 b3,3
b1,1 b1,2 b1,3

)
(�̂2) =

(
216 54 − 108

−216 54 108

)
.

(3.11)
v|K̂2

= a2,1b2,1 + a2,2b2,2 + a2,3b2,3

∶= a2,1(�̂�
3
2
+ 24�̂�2𝜏

2 + �̂�2
2
− 9�̂�2

2
�̂�⟂
2
) + a2,2�̂�

2
2
�̂�⟂
2
+ a2,3(24�̂�2𝜏

2 + �̂�2
2
).

(
b3,1 b3,2 b3,3
b2,1 b2,2 b2,3

)
(�̂0) =

(
0 0 − 1

0 0 − 1

)
,

(3.12)a3,3 = a2,3.

𝜕
�̂1

�
b3,1 b3,2 b3,3
b2,1 b2,2 b2,3

�
(�̂0) =

�
36 2 0

−36 2 0

�
,

𝜕
�̂1

�
b3,1 b3,2 b3,3
b2,1 b2,2 b2,3

�
(�̂0) =

�
12

√
3 2

√
3 0

12
√
3 − 2

√
3 0

�
,

(3.13)a3,1 = −a2,1 +
1

18
a2,2,

(3.14)a3,1 = a2,1 −
1

6
a2,2.

𝜕
�
2

K̂3

(
b3,1 b3,2 b3,3
b2,1 b2,2 b2,3

)
(�̂2) =

(
744 60 96

744 − 60 96

)
,
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Later we check the jump of the third scaled directional derivative of v:

By (3.13)–(3.15), we obtain

By (3.6)–(3.9), (3.12) and (3.17),

Thus,

We note that, if we apply the continuity of the second normal derivatives at �̂3 , we would 
get again

That is why we have an additional constraint on the third derivatives. Applying the zero-
sum of jumps of the third scaled directional derivatives (1.1), by (3.10) and (3.16), we get

Lemma 3.2 On the reference element M̂, defined in (3.1), there is a unique solution to 
the linear system of 37 equations (3.2) with general data for 12 degrees of freedom, in 
(3.2a)–(3.2d).

Proof We showed in the previous lemma the unique solution vh of the system of 30 equa-
tions, replacing 9 equations in (3.2i) by the two equations in (3.2i’). If this solution satisfies 
the 9 equations in (3.2i), then the system of 37 equations (3.2) has a unique solution too. 
We first check the continuity of the last second normal derivative, missing in (3.2i’),

(3.15)a3,1 = a2,1 −
5

62
a2,2.

(3.16)𝜕
�̂
3
2,1

(
b3,1 b3,2 b3,3
b2,1 b2,2 b2,3

)
(�̂1) =

(
756 54 108

−756 54 − 108

)
.

(3.17)a3,1 = a2,1 = a2,2 = 0.

a1,3 = a2,3 = a3,3,

a1,1 = a1,2 = a2,1 = a2,2 = a3,1 = a3,2 = 0.

v =

⎧⎪⎨⎪⎩

a3,3(24�̂�1𝜏
2 + �̂�2

1
) on K̂1,

a3,3(24�̂�2𝜏
2 + �̂�2

2
) on K̂2,

a3,3(24�̂�3𝜏
2 + �̂�2

3
) on K̂3.

a1,3 = a2,3.

3∑
i=1

a3,3(−108 − 108) = 0, a3,3 = 0, v ≡ 0.

(3.2i’’)𝜕
�
2

K̂1

v|K̂1
(�̂3) = −𝜕

�
2

K̂2

v|K̂2
(�̂3).
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We only need to prove that the solutions (of 30 equations) for the 12 basis functions 
satisfy (3.2i”). We start with the basis function �̂�3,0 having nodal value 1 at �̂3 . If it fails 
(3.2i”), WLOG,

Subtracting the reflection, we let v0(x̂1, x̂2) = �̂�3,0(x̂1, x̂2) − �̂�3,0(−x̂1, x̂2) . Then, v0 has all 
vanishing 12 dof values but, by (3.18),

As v0 satisfies 30 homogeneous equations (3.2) with (3.2i) replaced by (3.2i’), by the above 
expansion of v0 , we have shown that v0 ≡ 0 , contradicting to (3.19). Thus, (3.2i”) holds for 
�̂�3,0 . Noting the special symmetry of �̂�3,0 , if we start with �̂�1,0 or �̂�2,0 , no conclusion can be 
drawn from this argument. By rotating �̂�3,0 120◦ or 240◦ , we found the rotated function sat-
isfies the same 30 equations for �̂�2,0 or for �̂�1,0 , respectively. As we have shown the unique-
ness of �̂�1,0 and �̂�2,0 , we conclude that (3.2i”) holds for �̂�1,0 and �̂�2,0 , as both are rotations 
of �̂�3,0 . Repeating the above argument on �̂�3,0 for �̂�3,m (the basis function having 
𝜕
�̂
2
3
�̂�3,�(�̂3) = 1 ), we conclude that (3.2i”) holds for �̂�3,� , �̂�2,� and �̂�1,�.
But such a symmetry does not exist for �̂�3,1 or �̂�3,2 . We do a decomposition by letting 

v1 = 2(�̂�3,2 − �̂�3,2) and v2 = −(3∕
√
2)(�̂�3,1 + �̂�3,2) , that is, 𝜕x̂1v1(�̂3) = 1 and 𝜕x̂2v2(�̂3) = 1 . 

By the argument like (3.18)–(3.19), (3.2i”) holds for v2 , as it is symmetric. Now we let

Then, 𝜕x̂1v(�̂3) = 0 , and in fact, all values of 12 degrees of freedom of v(x̂1, x̂2) van-
ish. Thus, by Lemma 3.1, as v(�̂) satisfying the 30 equations there, v(�̂) ≡ 0 and 
v1(x̂1, x̂2) = −v1(−x̂1, x̂2) . Therefore,

So the second normal derivative vanishes at �̂3 on both sides of �̂0�̂3 , and (3.2i”) holds for 
v1 . Because (3.2i”) holds for v1 and v2 , it holds for �̂�3,1 and �̂�3,2 . Finally, by rotations, (3.2i”) 
holds for all �̂�1,2 , �̂�1,3 , �̂�2,1 and �̂�2,3.

Next, we check the continuity of second tangential derivatives

Because v(�̂i) , v(�̂0) , 𝜕�K̂i+1 v(�̂i) , and 𝜕
�K̂i+1

v(�̂0) are same on the two sides of edge �̂i�̂0 , the 
piecewise cubic polynomial v is continuous on �̂i�̂0 , so is its second tangential derivative (a 
linear function) at the mid-point.

Lastly, we check the continuity of mixed second derivatives

(3.18)𝜕
�
2

K̂1

�̂�3,0|K̂1
(�̂3) − 𝜕

�
2

K̂2

�̂�3,0|K̂2
(�̂3) = m0 > 0.

(3.19)𝜕
�
2

K̂1

v0|K̂1
(�̂3) − 𝜕

�
2

K̂2

v0|K̂2
(�̂3) = 2m0 > 0.

v(x̂1, x̂2) = v1(x̂1, x̂2) + v1(−x̂1, x̂2).

𝜕
�
2

K̂1

v1|K̂1
(�̂3) = 𝜕x̂2

1
v1|K̂1

(�̂3) = −𝜕x̂2
1
v1|K̂1

(�̂3) = 0.

(3.20)𝜕
�
2

K̂i+1

v|K̂i+1
(�̂i) = 𝜕

�
2

K̂i+2

v|K̂i+2
(�̂i), i = 1, 2, 3.

(3.21)
𝜕2v|K̂i+1

𝜕�K̂i+1
𝜕�K̂i+1

(�̂i) = −
𝜕2v|K̂i+2

𝜕�K̂i+2
𝜕�K̂i+2

(�̂i), i = 1, 2, 3.
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Because 𝜕�K̂i+1
v(�̂i) and 𝜕�K̂i+1

v(�̂0) are same at the two sides of edge �̂0�̂i , we have

For computation, in addition to �̂�1,0 , we need only two more precomputed basis func-
tions. The rest basis functions, and the basis function on other triangles, can be computed 
by these three basis functions, as shown in the next lemma. One basis function is �̂�1,2 , sat-
isfying 𝜕

�̂1,1
�̂�1,2(�̂1) = 1,

And the last basis function needed is 𝜕
�̂
2
1
�̂�1,�(�̂1) = 1 , and

For example, for the basis function �̂�1,3 , satisfying 𝜕
�̂1,2
�̂�1,3(�̂1) = 1 , we use the affine trans-

formation (linear in this case) which maps M̂ to itself with �̂2 and �̂3 swapped:

|�̂0�̂i|
𝜕2v|K̂i+1

𝜕�K̂i+1
𝜕�K̂i+1

(�̂i) = ∫
�̂0�̂i

𝜕2v|K̂i+1

𝜕�K̂i+1
𝜕�K̂i+1

ds

= 𝜕�K̂i+1
v|K̂i+1

(�̂i) − 𝜕�K̂i+1
v|K̂i+1

(�̂0)

= |�̂0�̂i|
𝜕2v|K̂i+2

𝜕�K̂i+1
𝜕�K̂i+1

(�̂i).

(3.22)�̂�1,2 =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
−

1

2
x̂2
1
+

7√
3
x̂1x̂2 +

1

6
x̂2
2
−

1

6
x̂1 −

11

12
√
3
x̂2 +

5

36

�

×
�
−2x̂1 −

2√
3
x̂2 +

1

3

�
on K̂1,�

1

2
x̂2
1
−

17√
3
x̂1x̂2 +

11

6
x̂1 −

1

6
x̂2
2
+

11

12
√
3
x̂2 −

5

36

�

×
�
−2x̂1 +

2√
3
x̂2 −

1

3

�
on K̂2,

5

108
−

1

3
x̂1 −

7

12
√
3
x̂2 −

11

6
x̂2
1
+

13

6
x̂2
2

+ 8x̂3
1
+

2√
3
x̂2
1
x̂2 − 8x̂1x̂

2
2
+

26

3
√
3
x̂3
2

on K̂3.

(3.23)�̂�1,� =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
−

7

3
x̂2
1
−

26

3
√
3
x̂1x̂2 −

1

18
x̂1 +

5

9
x̂2
2
−

1

18
√
3
x̂2 −

1

27

�

×
�
−2x̂1 −

2√
3
x̂2 +

1

3

�
on K̂1,�

−
5

3
x̂2
1
−

2

3
√
3
x̂1x̂2 −

5

9
x̂2
2
−

7

18
x̂1 +

1

18
√
3
x̂2 +

1

27

�

×
�
−2x̂1 +

2√
3
x̂2 −

1

3

�
on K̂2,�

44

9
√
3
x̂2
2
+

22

27
x̂2 −

4

27
√
3
+

8

3
x̂1x̂2 +

2

3
√
3
x̂1 +

4√
3
x̂2
1

�

×
�
x̂2 +

1

4
√
3

�
on K̂3.
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Then,

This way, we obtain

Lemma 3.3 On a general triangle M, the dimension of VM (defined in (2.6)) is 12 and the 
function can be expanded uniquely by the 12 nodal values:

 where the scaled directional derivatives are defined in (3.2), and the basis functions are 
affine-transformed from those reference basis functions �̂�i,j, defined in (3.3), (3.22), (3.23), 
(3.24) and (3.2),

Proof Let v ∈ VM be mapped by v = v̂(�̂1 + B(� − �1)) . For an affine mapping, the func-
tion values are preserved (by the continuously change of variables), i.e., for v ∈ VM,

For the scaled directional derivatives, we have

(
x1
x2

)
=

(
cos

𝜋

3
sin

𝜋

3

sin
𝜋

3
− cos

𝜋

3

)(
x̂1
x̂2

)
.

�̂�1,3(x1, x2) = �̂�1,2

(
x1 cos

𝜋

3
+ x2 sin

𝜋

3
, x1 sin

𝜋

3
− x2 cos

𝜋

3

)
.

(3.24)�̂�1,3 =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
−

7

4
x̂2
1
−

5

2
√
3
x̂1x̂2 +

13

24
x̂1 +

25

12
x̂2
2
−

5

24
√
3
x̂2 −

5

36

�

×
�
2x̂1 +

2√
3
x̂2 −

1

3

�
on K̂1,

5

108
−

11

24
x̂1 −

5

24
√
3
+

7

6
x̂2
1
− 2

√
3x̂1x̂2 −

5

6
x̂2
2
+

3

2
x̂3
1

−
5

2
√
3
x̂2
1
x̂2 +

35

2
x̂1x̂

2
2
+

25

6
√
3
x̂3
2

on K̂2,�
−

55

3
√
3
x̂2
2
−

55

18
x̂2 +

5

9
√
3
+ 10x̂1x̂2 −

11

2
√
3
x̂1 +

17√
3
x̂2
1

�

×
�
x̂2 +

1

4
√
3

�
on K̂3.

(3.25)vh =

3∑
i=1

vh(�i)�i,0 +

3∑
i=1

2∑
j=1

�
�i,j
vh(�i)�i,j +

3∑
i=1

�
�
2
i
vh(�i)�i,�,

(3.26)𝜙i,j(�) = �̂�i,j(�̂1 + B(� − �1)), B =

(
�2 − �1

�3 − �1

)−T (
�̂2 − �̂1

�̂3 − �̂1

)T

.

v(�) = v̂(�̂), where �̂ = �̂1 + B(� − �1).

𝜕
�1,2
v(�1) = |�1�2|𝜕 �1,2

|�1,2 |
v(�1) = |�1�2|𝜕 �̂1,2

|�̂1,2 |
v̂(�̂1)

|�̂1�̂2|
|�1�2|

= 𝜕
�̂1,2
v̂(�̂1).
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For the scaled second directional derivatives at mid-points, we have

There, as function values and two scaled tangential directional derivatives are preserved at 
the center point �0 , v satisfies (3.2g) and (3.2h). By Lemma 3.1 and (3.2i), v̂ has all its sec-
ond-order scaled directional derivatives continuous at all three internal mid-edge points �̂i . 
By (3.27), v satisfies (3.2i) as well as its three second-order scaled directional derivatives 
are continuous there. Finally, for the third-order scaled directional derivative, we have also

So (3.2j) holds for v. Therefore, v is the unique solution for (3.2) on a general triangle M.

4  Error Analysis

We will show the finite element equations have a unique solution. We then bound the 
consistent error and derive the optimal order convergence for the finite element solution.

Theorem 4.1 The system of finite element equations  (2.8) has a unique solution.

Proof We are going to prove the bilinear form ah(⋅, ⋅) is coercive on space Vh . Let 
ah(uh, uh) = 0 for some uh ∈ Vh . On each (sub)triangle K ∈ h,

Let M ∈ h be formed by three (sub)triangles K1,K2,K3 , cf. Fig. 1. The P2 polynomials 
u2 = uh|K2

 and u3 = uh|K3
 have the same value and first derivatives at the two end points 

�0 and �1 of the common edge �0�1 . Thus, u2 and u3 are C1 across edge �0�1 . As they are 
quadratic polynomials, u2 − u3 = c�2

0,1
 , where �0,1 = 0 is an equation for the line �0�1 . u2 

and u3 have the second normal derivative continuous at the middle point �1 of edge �0�1 . 
This concludes c = 0 in u2 − u3 = c�2

0,1
 . Hence, uh is a global P2 polynomial on three trian-

gles ∪Ki = M . Next, repeating the above argument, by the given continuity conditions on 
the edge �1�2 , cf. Fig. 1, uh is a common quadratic polynomial on M and the next neighbor 
macro-triangle M′ , sharing a common edge �1�2 with M. This way, uh is a global quadratic 
polynomial on the whole domain Ω . By the boundary conditions (2.2), uh = 0.

Lemma 4.1 Let u ∈ H4(Ω) ∩ H3
0
(Ω). For any wh ∈ Vh,

(3.27)
𝜕
�
2
1
v(�1) = |�1�1|2𝜕( �1

|�1 |
)2v(�1) = |�1�1|2𝜕( �̂1

|�̂1 |
)2 v̂(�̂1)

|�̂1�̂1|2
|�1�1|2

= 𝜕
�̂
2
1
v̂(�̂1).

𝜕
�
3
2,3
v(�1) = 𝜕

�̂
3
2,3
v̂(�̂1).

D3uh ≡ 0 ⇒ uh ∈ P2(K).

(4.1)
�ah(u,wh) − (f ,wh)�

�wh�H3
h
(Ω)

≤ C(h�u�H4(Ω) + h3‖f‖L2(Ω)),
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 where | ⋅ |H3
h
(Ω) is the piecewise H3-semi norm on triangulation h.

Proof A direct proof would be very difficult and tedious. We introduce a C2-P9 interpola-
tion and use approximation argument to give a simple proof.

By Zhang [16], the following nodal values define a unique C2-P9 interpolation ũh = Ĩhu 
of u (assumed to be C4 , for instance, on K3 of macro-element M):

Here �K3
 is the barycentric point of K3 . The function, 1st, 2nd, 3rd and 4th partial deriv-

atives at three vertices provide 3(1 + 2 + 3 + 4 + 5) = 45 equations. The first normal 
derivative and two second normal derivatives on each edge provide 3(1 + 2) = 9 equa-
tions. The barycentric nodal value gives one equation. Together, we have 55 equations and 
dimP9 = (9 + 1)(9 + 2)∕2 = 55.

We extend this operator Ĩh to Vh functions, i.e., define w̃h = Ĩhwh by the true values or 
average values of wh . This stability can be proved relatively easily, though not standard. We 
bound interpolated coefficients in nodal expansion of Ĩhwh by those of wh to get

But the approximation would be proved relatively long, involving bounding local differ-
ences by the H3-norm on triangles around a node. Anyway, similar to the proof in [6, 13], 
we do have

It is interesting, such an interpolant is orthogonal to Vh functions, because we use (3.2d’) 
instead of (3.2d), for vh ∈ Vh,

where D4vh = 0 . Hence,

𝜕x𝛼1
1
x
𝛼2
2
ũh(�i) = 𝜕x𝛼1

1
x
𝛼2
2
u(�i), i = 0, 1, 2, |𝛼| = 0, 1, 2, 3, 4,

𝜕
�K3

ũh(�i) = 𝜕
�K3

u(�i), i = 1, 2,

𝜕
�K3

ũh(�3) = 𝜕
�K3

u(�3),

𝜕
�
2
K3

ũh(�i,j) = 𝜕
�
2
K3

u(�i,j), i = 0, 1, 2, �i,j =
j�i + (3 − j)�i+1

3
, j = 1, 2,

ũh(�K3
) = u(�K3

).

(4.2)|Ĩhwh|H3(Ω) ≤ C|wh|H3
h
(Ω), ∀wh ∈ Vh.

(4.3)‖wh − Ĩhwh‖L2(Ω) ≤ Ch3�wh�H3
h
(Ω), ∀wh ∈ Vh.

ah(wh − w̃h, vh) = −
∑
K∈h �K

D2(wh − w̃h) ∶ D4vhd�

+
∑
K∈h �𝜕K

D2(wh − w̃h) ∶ (D3vh ⋅ �)ds,
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where h is the set of edges of h , [⋅] and {⋅} denote the jump and average of a piecewise 
smooth function across edge F, respectively, which become traces on boundary edges. 
Since (D3vh ⋅ �) is a constant on each side of edge F, ∫

F
[D2(wh − w̃h)] ∶ {(D3vh ⋅ �)}ds = 0 . 

In addition, the interpolation w̃h can be taken such that ∫
F
{D2(wh − w̃h)}ds = 0 , which 

leads to

For the nonconforming finite element interpolation Ihu , defined by (3.2), by the standard 
proof of, e.g., [12], the operator is stable in H3-semi norm. Consequently, because the 
interpolation is stable in H3 and preserves P3 polynomials locally, Ihu approximates u at the 
optimal order O(h) in H3 norm:

By (4.5), (4.3), (4.4) and (4.2),

This completes the proof.

Theorem 4.2 Let u ∈ H4(Ω) ∩ H3
0
(Ω) be the solution of (2.1). Let uh ∈ Vh be the solution 

of (2.8). Then, 

Proof By the second Strang lemma, cf. [3], we get, applying (4.1) and (4.5),

This completes the proof.

ah(wh − w̃h, vh) =
∑
F∈h

�F

{D2(wh − w̃h)} ∶ [(D3vh ⋅ �)]ds

+
∑
F∈h

�F

[D2(wh − w̃h)] ∶ {(D3vh ⋅ �)}ds,

(4.4)ah(wh − w̃h, vh) = 0.

(4.5)|u − Ihu|H3
h
(Ω) ≤ Ch|u|H4(Ω).

ah(u,wh) − (f ,wh) = ah(u,wh − w̃h) − (f ,wh − w̃h)

= ah(u − Ihu,wh − w̃h) − (f ,wh − w̃h)

+ ah(Ihu,wh − w̃h)

≤ �u − Ihu�H3
h
(Ω)�wh − w̃h�H3

h
(Ω) + ‖f‖L2(Ω)‖wh − w̃h‖L2(Ω) + 0

≤ Ch�u − Ihu�H3
h
(Ω)�wh�H3

h
(Ω) + Ch3‖f‖L2(Ω)�wh�H3

h
(Ω).

(4.6)�u − uh�H3
h
(Ω) ≤ C

�
h�u�H4(Ω) + h3‖f‖L2(Ω)

�
.

�u − uh�H3
h
(Ω) ≤ inf

wh∈Vh

�u − wh�H3
h
(Ω) + C sup

wh∈Vh

�ah(u,wh) − (f ,wh)�
�wh�H3

h
(Ω)

≤ �u − Ihu�H3
h
(Ω) + Ch�u�H4(Ω) + Ch3‖f‖L2(Ω)

≤ C
�
h�u�H4(Ω) + h3‖f‖L2(Ω)

�
.
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5  Numerical Tests

We compute three examples in 2D, on the unit square domain. We cut the domain by a north-
east line to get the level one triangular base-grid 1 , in the computation. Then, each triangle 
is refined into four congruent triangles, to define the next level triangular base-grid, k . Each 
base-grid k is refined to a HCT grid k by cutting each triangle into three sub-triangles, by 
connecting its bary-center and three vertices. The first two levels of grid are shown in Fig. 4.

5.1  Example 1

We compute the finite element solutions approximating the exact solution

of the tri-harmonic equation

with non-homogeneous boundary conditions that u|�Ω , �
�
u|�Ω and �

�2
u|�Ω are given by 

(5.1). As expected, the finite element solution does reproduce the exact solution, a polyno-
mial of degree 3, shown in Table 1.

5.2  Example 2

We approximate the exact solution

by solving the tri-harmonic equation

with homogeneous boundary conditions that

As shown by the theorem, the finite element solution does converge at the optimal order, 
shown in Table 2.

(5.1)u = x3 − y3,

Δ3u = 0,

(5.2)u = 26
(
x − x2

)3(
y − y2

)3
,

Δ3u = f ,

u|�Ω = �
�
u|�Ω = �

�2
u|�Ω = 0.

Fig. 4  The level one grid 
1
 and level two grid 

2
 in computation
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Typically, for solving problems like (5.2), nonconforming finite element solutions are 
bigger than the exact solution while conforming finite element solutions are smaller. To see 
how conforming the new H3 P3 finite element is, we plot its error in Fig. 5. As expected, 
the nonconforming finite element solution is bigger (negative error).

5.3  Example 3

We solve the problem of Example 2 again, by the P4-bubble enriched P3 H3-nonconform-
ing finite element method. This finite element is designed by [9], and extended to a full-P4 
element by [8]. On one triangle K = △�1�2�3 with barycentric coordinates (�1, �2, �3) , 
where �i is a linear function assuming 1 at a vertex �i and 0 on the opposite edge, the 
shape-function space is

Note that �1�2�23 = �1�2�3 − �2
1
�2�3 − �1�

2
2
�3 is already in the above linear space. The 

local degrees of freedom are exactly the same as our macro-element:

that is, dof = 3 × 4 = 12 = dimVK . Here ei is the edge opposite to vertex �i with the nor-
mal vector �i.

The error and the order of convergence are listed in Table  3. Though the order of 
convergence, in various norms, is same for the two finite elements, the errors of the P4

-enriched P3 element are much less than those by the HCT P3 elements. The total number 
of unknowns in the two linear systems is same. But the condition number of the linear 
system of P4-enriched P3 element seems much bigger, as the number of conjugate-gradient 

(5.3)VK = span
{
P3(K), �

2
1
�2�3, �1�

2
2
�3
}
.

vh(�i), �xvh(�i), �yvh(�i),∫ei

�
�i�i

vhds, i = 1, 2, 3,

Table 1  Example 1. The error 
e
h
= I

h
u − u

h
 and the order of 

convergence, for (5.1)


k

‖e
h
‖
0

|e
h
|
1,h

|e
h
|
2,h

|e
h
|
3,h

1 0.000 00 0.000 00 0.000 00 0.000 00
2 0.000 00 0.000 00 0.000 00 0.000 00
3 0.000 00 0.000 00 0.000 00 0.000 00
4 0.000 00 0.000 00 0.000 00 0.000 00
5 0.000 00 0.000 00 0.000 00 0.000 00

Table 2  Example 2. The error 
e
h
= I

h
u − u

h
 and the order of 

convergence, for (5.2)


k

‖e
h
‖
0

h
n |e

h
|
1,h

h
n |e

h
|
2,h

h
n |e

h
|
3,h

h
n

1 0.146 56 0.0 1.092 86 0.0 10.099 66 0.0 59.004 16 0.0
2 0.071 37 1.0 0.391 52 1.5 1.906 23 2.4 12.481 70 2.2
3 0.045 88 0.6 0.243 54 0.7 0.500 82 1.9 6.429 73 1.0
4 0.012 17 1.9 0.061 82 2.0 0.191 54 1.4 3.348 29 0.9
5 0.003 08 2.0 0.015 42 2.0 0.057 53 1.7 1.665 54 1.0
6 0.000 79 2.0 0.003 98 2.0 0.016 11 1.8 0.840 93 1.0
7 0.000 20 2.0 0.001 01 2.0 0.004 22 1.9 0.422 49 1.0
8 0.000 05 2.0 0.000 25 2.0 0.001 07 2.0 0.211 55 1.0
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iterations (without any preconditioning) is about ten times as many as that for the HCT P3 
element.

5.4  Example 4

We solve the tri-harmonic equation

with appropriate boundary conditions so that the exact solution is

We apply the P3-H3-nonconforming finite element method, on the HCT grids described 
above. The finite element solution converges at the optimal order, shown in Table 4.

Δ3u = −26ex+y,

(5.4)u = 23ex+y.

( 1.0, 1.0,   –0.000015653)

( 0.0, 0.0,    0.015625000)

( 1.0, 1.0,   –0.032208983)

( 0.0, 0.0,    0.000000949)

Fig. 5  The solution u
h
 of (5.2) and the error e

h
= I

h
u − u

h
 (bottom graph), on the fourth-level grid

Table 3  Example 3. The error 
e
h
= I

h
u − u

h
 and the order of 

convergence, for (5.2), by P
4
- 

bubble enriched P
3
 element (5.3)


k

‖e
h
‖
0

h
n |e

h
|
1,h

h
n |e

h
|
2,h

h
n |e

h
|
3,h

h
n

1 0.135 99 0.0 0.619 80 0.0 2.100 8 0.0 10.167 0.0
2 0.007 66 4.1 0.038 05 4.0 0.273 5 2.9 2.413 2.1
3 0.003 51 1.1 0.017 93 1.1 0.127 1 1.1 1.742 0.5
4 0.001 07 1.7 0.005 47 1.7 0.037 7 1.8 0.987 0.8
5 0.000 29 1.9 0.001 46 1.9 0.010 0 1.9 0.513 0.9
6 0.000 07 2.0 0.000 37 2.0 0.002 6 2.0 0.259 1.0
7 0.000 02 2.0 0.000 09 2.0 0.000 6 2.0 0.130 1.0
8 0.000 00 2.2 0.000 02 2.2 0.000 1 2.1 0.065 1.0
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Table 4  Example 4. The error 
e
h
= I

h
u − u

h
 and the order of 

convergence, for (5.4)


k

‖e
h
‖
0

h
n |e

h
|
1,h

h
n |e

h
|
2,h

h
n |e

h
|
3,h

h
n
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