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Abstract
In this paper, we consider numerical solutions of fractional ordinary differential equations 
with the Caputo–Fabrizio derivative, and construct and analyze a high-order time-stepping 
scheme for this equation. The proposed method makes use of quadratic interpolation func-
tion in sub-intervals, which allows to produce fourth-order convergence. A rigorous sta-
bility and convergence analysis of the proposed scheme is given. A series of numerical 
examples are presented to validate the theoretical claims. Traditionally a scheme having 
fourth-order convergence could only be obtained by using block-by-block technique. The 
advantage of our scheme is that the solution can be obtained step by step, which is cheaper 
than a block-by-block-based approach.

Keywords  Caputo–Fabrizio derivative · Fractional differential equations · High-order 
numerical scheme

Mathematics Subject Classification  26A33 · 34A08 · 65M12 · 65M06

1  Introduction

In the last decades the fractional calculus had a remarkable development as shown by many 
mathematical volumes dedicated to it. We can see for instance the monograph [26] and the 
references therein. For a general right-hand side function f, it is usually difficult to obtain 
the analytical solution to a fractional differential equation. Thus there is a need to develop 
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numerical methods for that equations. Cao and Xu [9] considered the fractional ordinary 
differential equations, and gave a modified block-by-block method for approximation to the 
fractional-order time derivative. Yang et al. [33] devoted to applications of fractional mul-
tistep methods for the fractional diffusion-wave equation. Sun and Wu [30] and Lin and Xu 
[21] analyzed a finite difference schema for the time discretization of the time-fractional 
diffusion equation, and proved that the convergence in time is of 2 − � order. Gao et  al. 
[14] gave a 3 − � order L1-2 formula to approximate the Caputo fractional derivative of 
order � . Huang et al. [18] proved that the convergence of this method is of order at least 
three. Some other related work includes fast solvers for time-fractional diffusion equations 
[2, 7, 8, 11, 20, 22, 25, 31, 34, 35] and special care for treating the starting time singularity 
of the solutions [17, 19, 29]. We would like also to mention some relevant work for similar 
problems such as numerical methods for the time-fractional coupled mKdV equation, frac-
tional Fisher’s type equations [15, 27].

However, some issues have been raised for the somewhat cumbersome mathematical 
expression of fractional operators and the consequent complications in the solutions of 
the associated equations. Caputo and Fabrizio [10] introduced in 2015 a new definition of 
fractional derivative with a smooth kernel, which is called the Caputo–Fabrizio fractional 
derivative. The Caputo–Fabrizio fractional derivative can be useful to understand some 
phenomena, such as the thermal analysis of a second grade fluid [28], the electrochemi-
cal phenomena [16], and the anomalous diffusion [32]. Numerically, Firoozjaee et al. [13] 
used the Ritz approximation for the Caputo–Fabrizio fractional derivative. In [4–6, 12, 23, 
24], the authors proposed some second-order finite difference schemes for the Caputo–Fab-
rizio fractional derivative. Very recently, Akman et al. [1] constructed a third-order finite 
difference scheme for this derivative. However, to the best of our knowledge, the conver-
gence order of the existing schemes is no more than three.

Inspired by the idea in [9], the current paper aims at constructing and analyzing a higher 
order numerical method for fractional ordinary differential equations with the Caputo–Fab-
rizio derivative. The outline of this paper is as follows: in Sect. 2, we present some basic 
properties of the fractional ordinary differential equation under consideration. In Sect. 3, 
we describe the detailed construction of the high-order scheme for the Caputo–Fabrizio 
derivative. The error estimation and stability analysis are given in Sect.  4. We provide 
some numerical examples in Sect. 5 to support the theoretical results. Finally, some con-
cluding remarks are given in the final section.

2 � Problem and Basic Properties

We consider the following initial value problem: � ∈ (0, 1),

subject to the initial condition u(0) = u0 . In (2.1), the operator D�
t
 is the Caputo–Fabrizio 

derivative, defined by

where M(�) is a positive normalization function satisfying M(0) = M(1) = 1.
This fractional derivative was first introduced by Caputo–Fabrizio in [10] with the aim 

of replacing the singular kernel in the traditional Caputo derivative by a regular kernel. It 

(2.1)D𝛼
t
u(t) = f (t), 0 < t ≤ T ,

(2.2)D�
t
u(t) =

M(�)

1 − � ∫
t

0

u�(�) exp
(
−�

t − �

1 − �

)
d�,
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was claimed that the new definition can better describe some class of material heterogenei-
ties, which cannot be well described by classical local theories or by fractional models with 
a singular kernel. Precisely, the Caputo–Fabrizio derivative is obtained by changing the ker-
nel (t − �)−� in the Caputo derivative by the exponential function exp(−�(t − �)∕(1 − �)) and 
1∕Γ(1 − �) by M(�)∕(1 − �) . According to the new definition, it is readily seen that if u is a 
constant function, then D�

t
u ≡ 0 as in the Caputo derivative. Contrary to the traditional defini-

tion, the main difference of the new definition is that the new kernel has no singularity for t = �.
It can be directly verified; see also [10], that the Laplace transform of the Caputo–Fabrizio 

derivative has the following expression:

This is one of the interesting properties of the Caputo–Fabrizio derivative since the Laplace 
transform of D�

t
u(t) is linked to the Laplace transform of u(t) in a very simple way. Thus if 

u is a solution of (2.1), then it follows from the relationship (2.3) that

Using known properties of the inverse Laplace transform, we deduce that

It is readily seen from (2.4) that u(t) satisfies the initial condition u(0) = u0 if and only if 
f (0) = 0 . In fact f (0) = 0 is a necessary condition for (2.1) to admit a C1 solution. This can 
be directly observed by taking limit of the both sides of (2.1) as t → 0.

Let us consider the case f ≡ 0 , i.e., D�
t
u(t) = 0 . It follows from (2.4) that u(t) = u(0) for all 

t ≥ 0 . This, together with the definition (2.2), proves that D�
t
u(t) = 0 if and only if u is a con-

stant. This is a good property of this new derivative, which is shared by the fractional Caputo 
and classical first-order derivatives.

Let us now consider the case f = �u , where � is a constant. Then (2.1) becomes an eigen-
value problem associated to the Caputo–Fabrizio differential operator D�

t
 . For integer-order 

differential equations such a problem has often been served as a standard test case for inves-
tigating the stability of numerical methods. We will do the same for the Caputo–Fabrizio dif-
ferential operator under consideration. Therefore it is interesting to see how the eigenfunc-
tions behave. First we notice that the solution of (2.1) with f (t) = �u(t) has the following 
expression:

In fact, by applying the Laplace transform to both sides of (2.1) and using (2.3), we obtain

Rearranging it, we arrive at the following equality:

(2.3)L[D�
t
u(t)](s) =

M(�)(sL[u(t)](s) − u(0))

s + �(1 − s)
.

L[u(t)](s) =
1

s
u(0) +

�

sM(�)
L[f (t)](s) +

1 − �

M(�)
L[f (t)](s).

(2.4)u(t) = u(0) +
�

M(�) ∫
t

0

f (�)d� +
1 − �

M(�)
f (t).

(2.5)u(t) =
M(�)u0

M(�) − �(1 − �)
exp

(
��t

M(�) − �(1 − �)

)
.

M(�)(sL[u(t)](s) − u(0))

s + �(1 − s)
= �L[u(t)](s).

(2.6)
L[u(t)](s) =

M(�)u0

[M(�) − �(1 − �)]s − ��
.
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Finally, taking the inverse Laplace transform on both sides of (2.6) gives (2.5). However, 
we immediately realize that the solution (2.5) does not satisfy the initial condition unless 
� = 0 or u0 = 0 . In the latter case, we have u ≡ 0 . This means that the eigenvalue problem

is not well defined since either eigenvalue or eigenfunction has to be zero.
The above discussion motivates us to consider an alternative eigenvalue problem as 

follows:

where

We first notice that the function f takes value 0 at t = 0 , which is a necessary condition for 
(2.7) to admit a non-trivial solution. In fact, it is not difficult to prove that the problem (2.7) 
admits the unique solution

A direct calculation with (2.9) shows that the solution is decreasing when u0𝜆 < 0 . This 
property will be used to analyze the stability of the scheme to be constructed in the next 
section.

3 � A Finite Difference Approximation to the Caputo–Fabrizio Derivative

In this section, we will construct and analyze an efficient numerical scheme for the prob-
lem (2.1). Particularly the scheme to be proposed will be tested for the problem (2.7) to see 
if the numerical solutions share same monotonic property as the exact solution (2.9).

First we propose a high-order approximation to the Caputo–Fabrizio derivative, 
and analyze its approximation property. Let us consider the following gird in [0,  T]: 
tj = jh, j = 0, 1, 2,⋯ , 2N , where N is a positive integer, and h =

T

2N
 is the grid size. We use 

ui to denote u(ti), i = 0, 1, 2,⋯ , 2N.
The question is how to efficiently approximate D�

t
u(t) at a given point t. Note that u(t) 

can be approximated in [t0, t1] by using the quadratic interpolation as

with u1∕2 = u(t1∕2), t1∕2 = t0 +
1

2
h , and

Plugging (3.1) into (2.2), we obtain an approximation

{
D𝛼

t
u(t) = 𝜆u(t), t > 0,

u(0) = u0

(2.7)
{

D𝛼
t
u(t) = f (t), t > 0,

u(0) = u0,

(2.8)f (t) = �
[
u(t) − u0 exp

(
−

�

1 − �
t
)]

.

(2.9)u(t) = u0 exp

(
��t

M(�) − �(1 − �)

)
.

(3.1)u(t) ≈ �0,0(t)u0 + �1,0(t)u1∕2 + �2,0(t)u1 ≐ I[t0,t1]u(t)

�0,0(t) =
2(t − t1∕2)(t − t1)

h2
,�1,0(t) =

−4(t − t0)(t − t1)

h2
,�2,0(t) =

2(t − t0)(t − t1∕2)

h2
.
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where

which can be exactly computed. The value of u1∕2 will be obtained by the following 
interpolation:

Inserting the above approximation into (3.2), we get

where

Similarly, u(t) in [t0, t2] can be approximated by

where �i,0(t), i = 0, 1, 2, are defined as follows:

Using this approximation yields

where

Now assuming that the values of u at the grid points tj, j = 0, 1,⋯ , 2m, are already known, 
we want to derive an approximation to D�

t
u(t2m+1) and D�

t
u(t2m+2) . Similar to the previous 

(3.2)

D�
t
u(t1) =

M(�)

1 − � ∫
t1

0

u�(�) exp
(
−�

t1 − �

1 − �

)
d�

≈
M(�)

1 − � ∫
t1

0

[�0,0(�)u0 + �1,0(�)u1∕2 + �2,0(�)u1]
� exp

(
−�

t1 − �

1 − �

)
d�

=w0,0

1
u0 + w

1,0

1
u1∕2 + w

2,0

1
u1,

w
i,0

1
=

M(�)

1 − � ∫
t1

0

��
i,0
(�) exp

(
−

�

1 − �
(t1 − �)

)
d�, i = 0, 1, 2,

u1∕2 ≈
3

8
u0 +

3

4
u1 −

1

8
u2.

(3.3)D�
t
u(t1) ≈ a

0,0

1
u0 + a

1,0

1
u1 + a

2,0

1
u2 ≐ D�

h
u(t1),

a
0,0

1
= w

0,0

1
+

3

8
w
1,0

1
, a

1,0

1
=

3

4
w
1,0

1
+ w

2,0

1
, a

2,0

1
= −

1

8
w
1,0

1
.

u(t) ≈ �0,0(t)u0 + �1,0(t)u1 + �2,0(t)u2 ≐ I[t0,t2]u(t),

�0,0(t) =
(t − t1)(t − t2)

2h2
,�1,0(t) =

(t − t0)(t − t2)

−h2
,�2,0(t) =

(t − t0)(t − t1)

2h2
.

(3.4)

D�
t
u(t2) =

M(�)

1 − � �
t2

0

u�(�) exp
(
−�

t2 − �

1 − �

)
d�

≈
M(�)

1 − � �
t2

0

[�0,0(�)u0 + �1,0(�)u1 + �2,0(�)u2]
� exp

(
−�

t2 − �

1 − �

)
d�

=a0,0
2
u0 + a

1,0

2
u1 + a

2,0

2
u2 ≐ D�

h
u(t2),

a
i,0

2
=

M(�)

1 − � ∫
t2

0

� �
i,0
(�) exp

(
−

�

1 − �
(t2 − �)

)
d�, i = 0, 1, 2.
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sub-intervals, we use the following quadratic interpolation functions to approximate u in 
[t2k−1, t2k+1], k = 1, 2,⋯ ,m:

where �0,k(t) =
(t−t2k)(t−t2k+1)

2h2
,�1,k(t) =

(t−t2k−1)(t−t2k+1)

−h2
,�2,k(t) =

(t−t2k−1)(t−t2k)

2h2
. This suggests 

the following approach:

where

with

In the sub-intervals [t2k, t2k+2], k = 0, 1,⋯ ,m , we approximate u by

where �0,k(t) =
(t−t2k+1)(t−t2k+2)

2h2
,�1,k(t) =

(t−t2k)(t−t2k+2)

−h2
,�2,k(t) =

(t−t2k)(t−t2k+1)

2h2
.

As a consequence

u(t) ≈ �0,k(t)u2k−1 + �1,k(t)u2k + �2,k(t)u2k+1 ≐ I[t2k−1,t2k+1]u(t),

(3.5)

D
�
t
u(t2m+1)

=
M(�)

1 − � �
t2m+1

0

u
�(�) exp

(
−�

t2m+1 − �

1 − �

)
d�

=
M(�)

1 − �

[
�

t1

0

u
�(�) exp

(
−�

t2m+1 − �

1 − �

)
d� +

m∑
k=1

�
t2k+1

t2k−1

u
�(�) exp

(
−�

t2m+1 − �

1 − �

)
d�

]

≈
M(�)

1 − � �
t1

0

[I[t0,t1]u(�)]
� exp

(
−�

t2m+1 − �

1 − �

)
d�

+

m∑
k=1

M(�)

1 − � �
t2k+1

t2k−1

[I[t2k−1,t2k+1]u(�)]
� exp

(
−�

t2m+1 − �

1 − �

)
d�

= a
0,0

2m+1
u0 + a

1,0

2m+1
u1 + a

2,0

2m+1
u2 +

m∑
k=1

[a0,k
2m+1

u2k−1 + a
1,k

2m+1
u2k + a

2,k

2m+1
u2k+1]

≐ D
�
h
u(t2m+1),

a
0,0

2m+1
= w

0,0

2m+1
+

3

8
w
1,0

2m+1
, a

1,0

2m+1
=

3

4
w
1,0

2m+1
+ w

2,0

2m+1
, a

2,0

2m+1
= −

1

8
w
1,0

2m+1
,

a
i,k

2m+1
=

M(�)

1 − � ∫
t2k+1

t2k−1

��
i,k
(�) exp

(
−

�

1 − �
(t2m+1 − �)

)
d�, i = 0, 1, 2; k = 1, 2,⋯ ,m

w
i,0

2m+1
=

M(�)

1 − � ∫
t1

0

��
i,0
(�) exp

(
−

�

1 − �
(t2m+1 − �)

)
d�, i = 0, 1, 2.

u(t) ≈ �0,k(t)u2k + �1,k(t)u2k+1 + �2,k(t)u2k+2 ≐ I[t2k ,t2k+2]u(t),

(3.6)

D
�
t
u(t2m+2)

=
M(�)

1 − �

m∑
k=0

�
t2k+2

t2k

u
�(�) exp

(
−�

t2m+2 − �

1 − �

)
d�

≈
M(�)

1 − �

m∑
k=0

�
t2k+2

t2k

[I[t2k ,t2k+2]u(�)]
� exp

(
−�

t2m+2 − �

1 − �

)
d�

=

m∑
k=0

(
a
0,k

2m+2
u2k + a

1,k

2m+2
u2k+1 + a

2,k

2m+2
u2k+2

) ≐ D
�
h
u(t2m+2),
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where

We are in a position to construct our numerical scheme for the fractional differential equa-
tion  (2.1) subject to the initial condition u0 . Based on the finite difference operator D�

h
 

defined in (3.3)–(3.6), we propose the following scheme:

to numerically solve the problem (2.1).

4 � Error Estimate and Stability Analysis

This section is devoted to carry out the stability and convergence analysis, and derive error 
estimates for the numerical solutions. We start with deriving an error estimate for the finite 
difference operator D�

h
.

Theorem 4.1  Assume u(t) ∈ C4[0, T] . Let

Then it holds

where c is a constant independent of h, but depends on u.

Proof  Applying the Taylor theorem, we have

(3.7)a
i,k

2m+2
=

{
M(�)

1−�
∫ t2k+2
t2k

� �
i,k
(�) exp

(
−

�

1−�
(t2m+2 − �)

)
d�,

i = 0, 1, 2; k = 0, 1,⋯ ,m.

(3.8)D�
h
u(tk) = f (tk), k = 1, 2,⋯ , 2N

(4.1)rk ∶= D�
t
u(tk) − D�

h
u(tk), k = 1, 2,⋯ , 2N.

(4.2)|rk| ≤ ch4, k = 1, 2,⋯ , 2N,

(4.3)
||||u1∕2 −

(
3

8
u0 +

3

4
u1 −

1

8
u2

)|||| ≤ ch3,

(4.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(t) − I[t0,t1]u(t) =
u(3)(�0(t))

6
(t − t0)(t − t1∕2)(t − t1), �0(t) ∈ (t0, t1),∀t ∈ [t0, t1],

u(t) − I[t2k−1,t2k+1]u(t) =
u(3)(�k(t))

6
(t − t2k−1)(t − t2k)(t − t2k+1),

�k(t) ∈ (t2k−1, t2k+1),∀t ∈ [t2k−1, t2k+1], k = 1, 2,⋯ ,m,

u(t) − I[t2k ,t2k+2]u(t) =
u(3)(�k(t))

6
(t − t2k)(t − t2k+1)(t − t2k+2),

�k(t) ∈ (t2k, t2k+2),∀t ∈ [t2k, t2k+2], k = 0, 1, 2,⋯ ,m.
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We begin with estimating r1 . It follows from (3.3), (4.3), and (4.4):

In the above derivation we have used the fact that exp(−𝛼 t1−𝜂

1−𝛼
) < 1 . In a similar way we can 

prove

For r2m+1 , we have

|r1| = |D�
t
u(t1) − D�

h
u(t1)|

=
|||||
M(�)

1 − � �
t1

0

u�(�) exp
(
−�

t1 − �

1 − �

)
d� − (a0,0

1
u0 + a

1,0

1
u1 + a

2,0

1
u2)

|||||
=
|||||
M(�)

1 − � �
t1

0

u�(�) exp
(
−�

t1 − �

1 − �

)
d� −

M(�)

1 − � �
t1

0

[I[t0,t1]u(�)]
� exp

(
−�

t1 − �

1 − �

)
d�

+
M(�)

1 − � �
t1

0

[
u1∕2 −

(
3

8
u0 +

3

4
u1 −

1

8
u2

)]
��
1,0
(�) exp

(
−�

t1 − �

1 − �

)
d�

|||||
≤ M(�)

1 − �

|||||�
t1

0

[u(�) − I[t0,t1]u(�)]
� exp

(
−�

t1 − �

1 − �

)
d�

|||||
+

M(�)

1 − �

|||||�
t1

0

[
u1∕2 −

(
3

8
u0 +

3

4
u1 −

1

8
u2

)]
��
1,0
(�) exp

(
−�

t1 − �

1 − �

)
d�

|||||
≤ M(�)

1 − �

|||||�
t1

0

exp
(
−�

t1 − �

1 − �

)
d[u(�) − I[t0,t1]u(�)]

|||||
+

M(�)

1 − �
ch3

|||||�
t1

0

exp
(
−�

t1 − �

1 − �

)
d�1,0(�)

|||||
≤ M(�)

1 − �

|||||
u(3)(�0(�))

6
(� − t0)(� − t1∕2)(� − t1) exp

(
−�

t1 − �

1 − �

)|||||

t1

t0

−�
t1

0

u(3)(�0(�))

6
(� − t0)(� − t1∕2)(� − t1)d

(
exp

(
−�

t1 − �

1 − �

))|||||
+ ch3

M(�)

1 − �

|||||
exp

(
−�

t1 − �

1 − �

)
|�1,0(�)|t1t0 − �

t1

0

�1,0(�)d
(
exp

(
−�

t1 − �

1 − �

))|||||
≤ M(�)

1 − �

|||||�
t1

0

u(3)(�0(t))

6
(� − t0)(� − t1∕2)(� − t1)d

(
exp

(
−�

t1 − �

1 − �

))|||||
+ ch3

M(�)

1 − �

|||||�
t1

0

�1,0(�)d
(
exp

(
−�

t1 − �

1 − �

))|||||
≤ cM(�)

(1 − �)2
�h4 exp

(
−�

t1 − �

1 − �

)
+ ch4

|�M(�)|
(1 − �)2

exp
(
−�

t1 − �

1 − �

)

≤ ch4, � ∈ (t0, t1).

|r2| ≤ ch4.



187Communications on Applied Mathematics and Computation (2020) 2:179–199	

1 3

The second term in the right-hand side, which will be denoted by R hereafter, can be 
bounded by

where c� =
�M(�)

(1−�)2
 , �̃k = t2k , R1 can be controlled as follows:

(4.5)

|r2m+1| =
|||||
M(�)

1 − � �
t1

0

[u(�) − I[t0,t1]u(�)]
� exp

(
−�

t2m+1 − �

1 − �

)
d�

+
M(�)

1 − � �
t1

0

[
u1∕2 −

(
3

8
u0 +

3

4
u1 −

1

8
u2

)]
��
1,0
(�) exp

(
−�

t2m+1 − �

1 − �

)
d�

+

m∑
k=1

M(�)

1 − � �
t2k+1

t2k−1

[u(�) − I[t2k−1,t2k+1]u(�)]
� exp

(
−�

t2m+1 − �

1 − �

)
d�

|||||
≤ M(�)

1 − �

|||||�
t1

0

[u(�) − I[t0,t1]u(�)]
� exp

(
−�

t2m+1 − �

1 − �

)
d�

|||||
+

M(�)

1 − �

|||||�
t1

0

[
u1∕2 −

(
3

8
u0 +

3

4
u1 −

1

8
u2

)]
��
1,0
(�) exp

(
−�

t2m+1 − �

1 − �

)
d�

|||||
+

m∑
k=1

M(�)

1 − �

|||||�
t2k+1

t2k−1

[u(�) − I[t2k−1,t2k+1]u(�)]
� exp

(
−�

t2m+1 − �

1 − �

)
d�

|||||
≤ ch4 +

M(�)

1 − �

m∑
k=1

|||||�
t2k+1

t2k−1

exp

(
−�

t2m+1 − �

1 − �

)
d[u(�) − I[t2k−1,t2k+1]u(�)]

|||||

= ch4 +
M(�)

1 − �

m∑
k=1

||||||
u(3)(�k(�))

6

2∏
i=0

(� − t2k−1+i) exp

(
−�

t2m+1 − �

1 − �

)||||||

t2k+1

t2k−1

−�
t2k+1

t2k−1

u(3)(�k(�))

6

2∏
i=0

(� − t2k−1+i)
�

1 − �
exp

(
−�

t2m+1 − �

1 − �

)
d�

||||||
≤ ch4 +

�M(�)

(1 − �)2

m∑
k=1

||||||�
t2k+1

t2k−1

u(3)(�k(�))

6

2∏
i=0

(� − t2k−1+i) exp

(
−�

t2m+1 − �

1 − �

)
d�

||||||
.

(4.6)

R =c�

m∑
k=1

||||||�
t2k+1

t2k−1

u(3)(�k(�))

6

2∏
i=0

(� − t2k−1+i) exp

(
−�

t2m+1 − �

1 − �

)
d�

||||||
≤c�

m∑
k=1

(||||||�
t2k+1

t2k−1

u(3)(�̃k)

6

2∏
i=0

(� − t2k−1+i) exp

(
−�

t2m+1 − �

1 − �

)
d�

||||||
+

||||||�
t2k+1

t2k−1

u(3)(�k(�)) − u(3)(�̃k)

6

2∏
i=0

(� − t2k−1+i) exp

(
−�

t2m+1 − �

1 − �

)
d�

||||||

)

≐R1 + R2,
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where B1 is an upper bound of u(3), t2k−1 ≤ sk
1
≤ t2k ≤ sk

2
≤ t2k+1.

Noticing that

where B2 depends on the upper bound of u(4) , we have

Bringing (4.5)–(4.8) together, we obtain

Similarly, we can prove

This completes the proof of Theorem 4.1.

(4.7)

|R1| ≤c�B1

m∑
k=1

||||||�
t2k

t2k−1

2∏
i=0

(� − t2k−1+i) exp

(
−�

t2m+1 − �

1 − �

)
d�

+�
t2k+1

t2k

2∏
i=0

(� − t2k−1+i) exp

(
−�

t2m+1 − �

1 − �

)
d�

||||||
=c�B1

m∑
k=1

||||||
exp

(
−�

t2m+1 − sk
1

1 − �

)
�

t2k

t2k−1

2∏
i=0

(� − t2k−1+i)d�

+ exp

(
−�

t2m+1 − sk
2

1 − �

)
�

t2k+1

t2k

2∏
i=0

(� − t2k−1+i)d�

||||||
=
1

4
c�B1h

4

m∑
k=1

||||||
exp

(
−�

t2m+1 − sk
1

1 − �

)
− exp

(
−�

t2m+1 − sk
2

1 − �

)||||||
=
1

4
c�B1h

4 �

1 − �

m∑
k=1

|||||�
sk
2

sk
1

exp

(
−�

t2m+1 − �

1 − �

)
d�)

|||||
≤c�B1

�

1 − �
h4

m∑
k=1

|||||�
t2k+1

t2k−1

exp

(
−�

t2m+1 − �

1 − �

)
d�

|||||
≤ ch4,

|u(3)(�k(�)) − u(3)(�̃k)| ≤ B2h,∀� ∈ [t2k−1, t2k+1],

(4.8)

|R2| ≤c�B2h

6

m∑
k=1

�
t2k+1

t2k−1

exp

(
−�

t2m+1 − �

1 − �

)||||||

2∏
i=0

(� − t2k−1+i)

||||||
d�

≤c�B2h
4

m∑
k=1

�
t2k+1

t2k−1

exp

(
−�

t2m+1 − �

1 − �

)
d�

≤c�B2h
4 �

t2m+1

t0

exp

(
−�

t2m+1 − �

1 − �

)
d� ≤ ch4.

|r2m+1| < ch4.

|r2m+2| ≤ ch4.
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In order to simply the stability analysis, we rewrite the scheme in the following form:

where

In the following lemma, we study the sign of the coefficients given in (4.13), which plays 
an important role in analyzing the stability of the scheme.

Lemma 4.1  Some of the coefficients defined in (4.13) have different signs under some con-
ditions as listed in Table 1.

Proof  First, we investigate the sign of b(m)
k

 . A direct computation gives

(4.9)b̂0u0 + b̂1u1 + b̂2u2 = f (t1),

(4.10)b̃0u0 + b̃1u1 + b̃2u2 = f (t2),

(4.11)
2m+1∑
k=0

b
(m)

k
uk = f (t2m+1),m = 1, 2,⋯ ,N − 1,

(4.12)
2m+2∑
k=0

b
(m)

k
uk = f (t2m+2),m = 1, 2,⋯ ,N − 1,

(4.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

b̂i = a
i,0

1
, b̃i = a

i,0

2
, i = 0, 1, 2;

b
(m)

0
= a

0,0

2m+1
, b

(m)

1
= a

1,0

2m+1
+ a

0,1

2m+1
, b

(m)

2
= a

2,0

2m+1
+ a

1,1

2m+1
,

b
(m)

2k
= a

1,k

2m+1
, b

(m)

2k−1
= a

2,k−1

2m+1
+ a

0,k

2m+1
, k = 2, 3,⋯ ,m; b

(m)

2m+1
= a

2,m

2m+1
;

b
(m)

0
= a

0,0

2m+2
, b

(m)

2k
= a

2,k−1

2m+2
+ a

0,k

2m+2
, k = 1, 2,⋯ ,m;

b
(m)

2k+1
= a

1,k

2m+2
, k = 0, 1, 2,⋯ ,m; b

(m)

2m+2
= a

2,m

2m+2
.

Table 1   Coefficients defined in (4.13)

Coefficients in (4.13) Sign Condition

b
(m)

0
< 0 h <

4

3

1−𝛼

𝛼

b
(m)

1
< 0 h <

1

3

1−𝛼

𝛼

b
(m)

2
< 0 -

b
(m)

2k
, k = 2,⋯ ,m < 0 -

b
(m)

2k−1
, k = 2,⋯ ,m < 0 h <

1

2

1−𝛼

𝛼

b
(m)

2m+1
> 0 -

b
(m)

0

< 0 h <
1

3

1−𝛼

𝛼

b
(m)

2k
, k = 1,⋯ ,m

< 0 h <
1

2

1−𝛼

𝛼

b
(m)

2k+1
, k = 0, 1,⋯ ,m

< 0 -

b
(m)

2m+2
> 0 -
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where F1(h) ∶= −
h

2
−

1−�

�
+ (

3

2
h +

1−�

�
) exp(

�

1−�
(−h)). It can be shown that F1(h) < 0 if 

h <
4

3

1−𝛼

𝛼
 . In fact, we have

Thus, F��
1
(h) < 0 if h <

4

3

1−𝛼

𝛼
 . Consequently, F�

1
(h) < F�

1
(0) = 0 , and furthermore 

F1(h) < F1(0) = 0 . This gives b(m)
0

< 0.
For b(m)

1
 , we have

where F2(h) ∶=
h

2
−

1−�

�
+ (

3

2
h +

3(1−�)

�
) exp(

�

1−�
(−2h)) − 2(h +

1−�

�
) exp(

�

1−�
(−3h)) , and 

we calculate the first and second derivatives of F2(h) as follows:

It can be checked that

if h <
1

3

1−𝛼

𝛼
 . Therefore, F��

2
(h) < 0 , F�

2
(h) < F�

2
(0) = 0 , F2(h) < F2(0) = 0 . This gives 

b
(m)

1
< 0.

For b(m)
2

 , it holds

where F3(h) ∶= 2(h −
1−�

�
) + (

3

2
h +

3(1−�)

�
) exp(

�

1−�
(−2h)) − (

h

2
+

1−�

�
) exp(

�

1−�
(−3h)).

It can be proved F3(h) > 0 by following the same lines. Thus b(m)
2

< 0.
For k = 2,⋯ ,m , we have

b
(m)

0
=

M(�)

�h2
F1(h) exp

(
�

1 − �
(−2mh)

)
,

F�
1
(h) = −

1

2
+
(
1

2
−

3

2

h�

1 − �

)
exp

(
�

1 − �
(−h)

)
,

F��
1
(h) =

�

1 − �

(
−2 +

3

2

h�

1 − �

)
exp

(
�

1 − �
(−h)

)
.

b
(m)

1
=

M(�)

�h2
F2(h) exp

(
�

1 − �
(−2m + 2)h

)
,

F�
2
(h) =

1

2
−
(
9

2
+ 3

h�

1 − �

)
exp

(
�

1 − �
(−2h)

)
+ 2

(
2 + 3

h�

1 − �

)
exp

(
�

1 − �
(−3h)

)
,

F��
2
(h) =

−6�

1 − �

[
−1 −

h�

1 − �
+
(
1 + 3

h�

1 − �

)
exp

(
�

1 − �
(−h)

)]
exp

(
�

1 − �
(−2h)

)

≐ −6�

1 − �
G1(h) exp

(
�

1 − �
(−2h)

)
.

G1(h) ∶= −1 −
h𝛼

1 − 𝛼
+
(
1 + 3

h𝛼

1 − 𝛼

)
exp

(
𝛼

1 − 𝛼
(−h)

)
> 0

b
(m)

2
= −

M(�)

�h2
F3(h) exp

(
�

1 − �
(−2m + 2)h

)
,

b
(m)

2k−1
=

M(�)

�h2
F4(h) exp

(
�

1 − �
(2k − 2 − 2m)h

)
,

b
(m)

2k
= −

2M(�)

�h2
F5(h) exp

(
�

1 − �
(2k − 2m)h

)
,
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where

It can be directly verified that F4(h) < 0 if h <
1

2

1−𝛼

𝛼
 and F5(h) > 0 for all h > 0 . This 

proves that for all k = 2,⋯ ,m , b(m)
2k−1

< 0 if h <
1

2

1−𝛼

𝛼
 , and b(m)

2k
< 0 for all h > 0.

Some more calculation gives

Now we turn to check the sign of the coefficients b
(m)

k
.

For b
(m)

0
 , we have

where F6(h) ∶=
1

2
h −

1−�

�
+ (

3

2
h +

1−�

�
) exp

(
�

1−�
(−2h)

)
 , which is negative if h <

1

3

1−𝛼

𝛼
 . 

Therefore, b
(m)

0
< 0 under the same condition.

Furthermore, it holds

The proof is completed.

Some more properties of the coefficients in (4.13) are given in Lemma 4.2.

Lemma 4.2  It holds

Furthermore, if h <
2

3

1−𝛼

𝛼
, it holds

(4.14)
F4(h) =

(
h

2
−

1 − �

�

)
exp

(
�

1 − �
(2h)

)
+ 3h +

(
h

2
+

1 − �

�

)
exp

(
�

1 − �
(−2h)

)
,

(4.15)F5(h) =h −
1 − �

�
+
(
h +

1 − �

�

)
exp

(
�

1 − �
(−2h)

)
.

b
(m)

2m+1
=

M(𝛼)

𝛼h2

(
3

2
h −

1 − 𝛼

𝛼
+
(
h

2
+

1 − 𝛼

𝛼

)
exp

(
𝛼

1 − 𝛼
(−2h)

))
> 0.

b
(m)

0
=

M(�)

�h2
F6(h) exp

(
�

1 − �
(−2mh)

)
,

b
(m)

2k
=
M(𝛼)

𝛼h2
F4(h) exp

(
𝛼

1 − 𝛼
(2k − 2 − 2m)h

)
< 0, if h <

1

2

1 − 𝛼

𝛼
, k = 1,⋯ ,m;

b
(m)

2k+1
= −

2M(𝛼)

𝛼h2
F5(h) exp

(
𝛼

1 − 𝛼
(2k − 2m)h

)
< 0, k = 0, 1,⋯ ,m;

b
(m)

2m+2
=
M(𝛼)

𝛼h2

(
3

2
h −

1 − 𝛼

𝛼
+
(
h

2
+

1 − 𝛼

𝛼

)
exp

(
𝛼

1 − 𝛼
(−2h)

))
> 0.

(4.16)𝛽1 ∶=�b1 + �b2 > 0,

(4.17)𝛽2 ∶= exp
(

𝛼

1 − 𝛼
(−t1)

)
�b2 − �b0 − exp

(
𝛼

1 − 𝛼
(−t2)

)
�b2 > 0.

(4.18)𝛽3 ∶= exp
(

𝛼

1 − 𝛼
(−t2)

)
�b1 − �b0 − exp

(
𝛼

1 − 𝛼
(−t1)

)
�b1 > 0.
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Proof  A direct computation gives

Summing these two equalities, we obtain

This proves (4.16). To prove (4.17), noticing

We have

Finally, using the equalities as follows:

we get

which is positive if h <
2

3

1−𝛼

𝛼
 . This proves the lemma.

A byproduct of the above lemmas is the well-posedness of the discrete problem (3.8), 
which is given in the following theorem.

b̂1 =
2M(�)

�h2

[
1 − �

�
−
(
h +

1 − �

�

)
exp

(
�

1 − �
(−h)

)]
,

b̃2 =
M(�)

�h2

[
3

2
h −

1 − �

�
+
(
h

2
+

1 − �

�

)
exp

(
�

1 − �
(−2h)

)]
.

𝛽1 =
M(𝛼)

𝛼h2

[(
h

2
+

1 − 𝛼

𝛼

)(
exp

(
𝛼

1 − 𝛼
(−h)

)
− 1

)2

− h
(
exp

(
𝛼

1 − 𝛼
(−h)

)
− 1

)]
> 0.

b̂0 =
M(�)

�h2

[
−
1

2
h −

1 − �

�
+
(
3

2
h +

1 − �

�

)
exp

(
�

1 − �
(−h)

)]
,

b̂2 =
M(�)

�h2

[
1

2
h −

1 − �

�
+
(
1

2
h +

1 − �

�

)
exp

(
�

1 − �
(−h)

)]
.

𝛽2 =
M(𝛼)

𝛼h2

[(
h

2
+

1 − 𝛼

𝛼

)(
exp

(
𝛼

1 − 𝛼
(−h)

)
− 1

)2

−h exp
(

𝛼

1 − 𝛼
(−h)

)(
exp

(
𝛼

1 − 𝛼
(−h)

)
− 1

)]
> 0.

b̃0 =
M(�)

�h2

[
1

2
h −

1 − �

�
+
(
3

2
h +

1 − �

�

)
exp

(
�

1 − �
(−2h)

)]
,

b̃1 = −
2M(�)

�h2

[
h −

1 − �

�
+
(
h +

1 − �

�

)
exp

(
�

1 − �
(−2h)

)]
,

�3 =
M(�)

�h2

[(
−
3

2
h +

1 − �

�

)(
exp

(
�

1 − �
(−h)

)
− 1

)2

−h
(
exp

(
�

1 − �
(−h)

)
− 1

)]
,
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Theorem 4.2  For any given function f(t) and initial condition u0, the linear system (3.8) 
admits a unique solution (u1, u2,⋯ , u2N)

T.

Proof  First, it follows from (3.3) and (3.4):

where S2 = (a
j,0

i
)2
i,j=1

, u2 = (u1, u2)
T, f 2 = (f (t1) − a

0,0

1
u0, f (t2) − a

0,0

2
u0)

T.
In virtue of the proof of Lemma 4.2, we have

Thus S2 is invertible, and consequently the system (4.19) admits a unique solution (u1, u2)T.
Furthermore, we deduce from (3.5) and (3.6),

where

uN = (u3, u4,⋯ , u2N)
T, fN = (̂f3, f̂4,⋯ , f̂2N)

T with f̂2m+1 = f (t2m+1) − a
0,0

2m+1
u0 − (a1,0

2m+1
+

+a0,1
2m+1

)u1 − (a2,0
2m+1

+ a
1,1

2m+1
)u2 , f̂2m+2 = f (t2m+2) − a

0,0

2m+2
u0 − a

1,0

2m+2
u1 − (a2,0

2m+2
+ a

0,1

2m+2
)u2,

f̂2m+2 = f (t2m+2) − a
0,0

2m+2
u0 − a

1,0

2m+2
u1 − (a2,0

2m+2
+ a

0,1

2m+2
)u2,m = 1,⋯ ,N − 1.

We see that SN is a lower triangular matrix. According to Lemma   4.1, all diagonal 
entries of SN are positive. Therefore, the linear system (4.20) admits a unique solution 
(u3, u4,⋯ , u2N)

T . This proves the theorem.

Now we turn to analyze the stability property of the scheme (4.9)–(4.12).

Theorem 4.3  If u0 > 0, 𝜆 < 0 , the scheme (4.9)–(4.12) applied to (2.1) with f given in (2.8) 
is stable with respect to the initial value under the condition

That is, the numerical solution {uj}2Nj=0 satisfies

Proof  First, inserting (2.8) into (4.9) and (4.10) gives

(4.19)S2u2 = f 2,

a
1,0

1
a
2,0

2
− a

2,0

1
a
1,0

2
= b̂1b̃2 − b̂2b̃1 =

(
M(�)

h�

)2(
exp

(
−

�

1 − �
h
)
− 1

)2 ≠ 0.

(4.20)SNuN = fN ,

SN =

⎛
⎜⎜⎜⎜⎜⎝

a
2,1

3
0 ⋯ 0 0

a
1,1

4
a
2,1

4
⋯ 0 0

⋮ ⋮ ⋮ ⋮

a
2,1

2N−1
+ a

0,2

2N−1
a
1,2

2N−1
⋯ a

2,N−1

2N−1
0

a
1,1

2N
a
2,1

2N
+ a

0,2

2N
⋯ a

1,N−1

2N
a
2,N−1

2N

⎞
⎟⎟⎟⎟⎟⎠

,

h <
1 − 𝛼

3𝛼
.

(4.21)0 < uj < u0, j = 1, 2,⋯ , 2N.
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The solution of this equation can be expressed by

where

with G =
(

M(𝛼)

h𝛼

)2(
exp(−

𝛼

1−𝛼
h) − 1

)2

> 0 and �1, �2 , and �3 defined in Lemma  4.2.
In virtue of Lemma 4.2, we have 𝛽1 > 0, 𝛽2 > 0, 𝛽3 > 0 under the condition h <

2

3

1−𝛼

𝛼
 . 

This means G1 > 0,G2 > 0,G3 > 0 . Furthermore, a direct calculation shows

As a result, we get

It follows from (4.11),

According to Lemma 4.1, it holds

This, together with (4.22), leads to

b̂0u0 + b̂1u1 + b̂2u2 =�
[
u1 − u0 exp

(
−

�

1 − �
t1

)]
,

b̃0u0 + b̃1u1 + b̃2u2 =�
[
u2 − u0 exp

(
−

�

1 − �
t2

)]
.

u1 =
G1

G2

u0, u2 =
G3

G2

u0,

G1 =G − ��2 + �2 exp
(
−

�

1 − �
t1

)
,

G2 =G − ��1 + �2,

G3 =G − ��3 + �2 exp
(
−

�

1 − �
t2

)

G1 − G2 =𝜆
M(𝛼)

𝛼h

(
exp

(
−

𝛼

1 − 𝛼
t1

)
− 1

)2

+ 𝜆2
(
exp

(
−

𝛼

1 − 𝛼
t1

)
− 1

)
< 0,

G3 − G2 =𝜆
2M(𝛼)

𝛼h

(
exp

(
−

𝛼

1 − 𝛼
t1

)
− 1

)2

+ 𝜆2
(
exp(−

𝛼

1 − 𝛼
t2) − 1

)
< 0.

(4.22)0 < u1 < u0, 0 < u2 < u0.

u3 =
[(

−b
(1)

0
− � exp

(
−

�

1 − �
t3

))
u0 − b

(1)

1
u1 − b

(1)

2
u2

]/
(b

(1)

3
− �).

−b
(1)

0
> 0,−b

(1)

1
> 0,−b

(1)

2
> 0, b

(1)

3
> 0.

0 < u3 <
[
−b

(1)

0
− 𝜆 exp

(
−

𝛼

1 − 𝛼
t3

)
− b

(1)

1
− b

(1)

2

]
u0

/
(b

(1)

3
− 𝜆).
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Furthermore, it can be directly verified that

Therefore we get

Next we deduce from (4.12),

Once again, it follows from Lemma 4.1,

Then using some relationships between these coefficients and (4.22)–(4.23), we obtain

Now we prove the remaining results by using mathematical induction. Assume (4.21) 
holds for all j = 1, 2,⋯ , 2m;m = 1, 2,⋯ ,N − 1 , we want to prove that it also holds for 
j = 2m + 1 and j = 2m + 2.

It follows from (4.11),

It is not difficult to see, by using Lemma 4.1, that all coefficients in the right-hand side of 
(4.25) are positive. Thus we deduce from the induction assumption

where

0 < −b
(1)

0
− 𝜆 exp

(
−

𝛼

1 − 𝛼
t3

)
− b

(1)

1
− b

(1)

2
< b

(1)

3
− 𝜆.

(4.23)0 < u3 < u0.

u4 =
[(

−b
(1)

0
− � exp

(
−

�

1 − �
t4

))
u0 − b

(1)

1
u1 − b

(1)

2
u2 − b

(1)

3
u3

]/
(b

(1)

4
− �).

−b
(1)

0
> 0, −b

(1)

1
> 0, −b

(1)

2
> 0, −b

(1)

3
> 0, b

(1)

4
> 0.

(4.24)0 < u4 < u0.

(4.25)

u2m+1 =
[(

−b
(m)

0
− � exp

(
−

�

1 − �
t2m+1

))
u0 − b

(m)

1
u1 − b

(m)

2
u2

−

m∑
k=2

b
(m)

2k
u2k −

m∑
k=2

b
(m)

2k−1
u2k−1

]/
(b

(m)

2m+1
− �).

u2m+1 <
G4

G5

u0,

G4 = − b
(m)

0
− 𝜆 exp

(
−

𝛼

1 − 𝛼
t2m+1

)
− b

(m)

1
− b

(m)

2
−

m∑
k=2

b
(m)

2k
−

m∑
k=2

b
(m)

2k−1
> 0,

G5 =b
(m)

2m+1
− 𝜆 > 0.
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Using the fact that the scheme (4.9)–(4.12) is accurate for the constant solution, we have

Thus

This proves

In an exactly same way, we can deduce from (4.12) and Lemma 4.1:

The proof is completed.

5 � Numerical Results

We present several numerical examples to verify the theoretical results obtained in the pre-
vious sections. Precisely, our main purpose is to check the convergence order of the numer-
ical solution with respect to the step size h.

We consider the initial value problem (2.1) with several right-hand side f(t,  u(t)) as 
follows:

i)	 f (t, u(t)) = G(t);
ii)	 f (t, u(t)) = G(t) − t3 + u(t);
iii)	 f (t, u(t)) = G(t) + t6 − u2(t);

where

b
(m)

0
+ b

(m)

1
+ b

(m)

2
+

m∑
k=2

b
(m)

2k
+

m∑
k=2

b
(m)

2k−1
+ b

(m)

2m+1
= 0.

G4 − G5 = −𝜆
[
exp

(
−

𝛼

1 − 𝛼
t2m+1

)
− 1

]
< 0.

0 < u2m+1 < u0.

0 < u2m+2 < u0.

Table 2   Maximum errors and 
decay rates with � = 0.3 and 0.7 
for f (t, u(t)) = G(t)

h � = 0.3 Rate � = 0.7 Rate

1

4
2.863 25E-004 - 1.498 51E-003 -

1

8
2.181 21E-005 3.714 45 1.131 70E-004 3.726 95

1

16
1.495 51E-006 3.866 41 7.205 32E-006 3.973 29

1

32
9.776 73E-008 3.935 14 4.431 21E-007 4.023 28

1

64
6.247 42E-009 3.968 01 3.077 29E-008 3.847 96

1

128
3.947 84E-010 3.984 12 2.045 96E-009 3.910 80
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In the first case, f is independent of u, while in the second and third cases f is function of u. 
In particular, f is nonlinear with respect to u. However, it can be verified that the exact solu-
tion is u(t) = t3 for all three cases. Note the main difference between these examples is that 
the first example considers a right-hand side function which is independent of the solution, 
while the second example addresses a right-hand side function linearly dependent of the 
solution, and the third one is a nonlinear function of the solution.

All the results presented in this example correspond to the numerical solution captured 
at T = 1 . As in [1, 3], we choose a special normalization function M(�) = 1 such that 
M(0) = M(1) = 1 in the numerical tests. In Tables 2, 3, 4, we list the maximum errors, i.e., 
max

i
|u(ti) − ui| as a function of h for several � . Also shown are the corresponding error 

decay rates. It is observed from these tables that for all tested right-hand side functions and 
values of � , the convergence rate is close to four. This is in a good agreement with the theo-
retical prediction. In particular, it is worthy to emphasize that the non-linearity of f seems 
to have no impact on the accuracy of the scheme.

The next test concerns the stability investigation. To this end, the scheme is applied to 
the problem (2.1) with the fabricated right-hand side function 
f (t, u(t)) =

M(�)

�2+(1−�)2
[(1 − �) sin t + � cos t − � exp(−

�

1−�
t)] , so that the exact solution is 

u(t) = sin t . The calculation is run up to T = 1 000 , long enough to study the stability of the 
scheme. Table  5 shows the error behavior as a function of t, computed with fixed h = 0.01 . 
It is observed that the numerical solution remains to be good approximation to the exact 
solution even after long time computation. This test demonstrates good stability property 
of the proposed scheme.

G(t) = M(�)

[
3

�
t2 −

6(1 − �)

�2
t +

6(1 − �)2

�3
−

6(1 − �)2

�3
exp

(
−

�

1 − �
t
)]

.

Table 3   Maximum errors and 
decay rates with � = 0.3 and 0.7 
for f (t, u(t)) = G(t) − t

3 + u(t)

h � = 0.3 Rate � = 0.7 Rate

1

4
1.044 48E-003 - 2.550 63E-003 -

1

8
7.592 63E-005 3.782 04 2.102 50E-004 3.600 67

1

16
5.354 74E-006 3.825 70 1.295 48E-005 4.020 54

1

32
3.633 26E-007 3.881 47 7.477 94E-007 4.114 70

1

64
2.381 44E-008 3.931 35 4.419 42E-008 4.080 70

1

128
1.319 38E-009 4.173 90 2.930 49E-009 3.914 64

Table 4   Maximum errors and 
decay rates with � = 0.3 and 0.7 
for f (t, u(t)) = G(t) − t

6 + u
2(t)

h � = 0.3 Rate � = 0.7 Rate

1

4
1.775 85E-004 - 8.363 73E-004 -

1

8
2.028 73E-005 3.129 85 6.067 24E-005 3.785 03

1

16
1.481 71E-006 3.775 24 5.186 95E-006 3.548 08

1

32
9.765 41E-008 3.923 44 4.325 88E-007 3.583 81

1

64
6.246 52E-009 3.966 55 3.077 10E-008 3.813 35

1

128
3.947 76E-010 3.983 94 2.045 95E-009 3.910 72
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6 � Concluding Remarks

We have proposed an efficient high-order scheme for fractional ordinary differential equa-
tions with the Caputo–Fabrizio derivative. The stability and convergence analysis was car-
ried out to prove that the proposed scheme is stable under a slight restriction on the step 
size, which only depends on the fractional order. The obtained error estimate shows that 
the proposed scheme is of order 4. The carried out numerical tests confirmed the theoreti-
cal prediction.
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