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Abstract

This paper is devoted to Professor Benyu Guo’s open question on the C'-conforming quad-
rilateral spectral element method for fourth-order equations which has been endeavored for
years. Starting with generalized Jacobi polynomials on the reference square, we construct
the C'-conforming basis functions using the bilinear mapping from the reference square onto
each quadrilateral element which fall into three categories—interior modes, edge modes, and
vertex modes. In contrast to the triangular element, compulsively compensatory requirements
on the global C-continuity should be imposed for edge and vertex mode basis functions such
that their normal derivatives on each common edge are reduced from rational functions to
polynomials, which depend on only parameters of the common edge. It is amazing that the C"
-conforming basis functions on each quadrilateral element contain polynomials in primitive
variables, the completeness is then guaranteed and further confirmed by the numerical results
on the Petrov—Galerkin spectral method for the non-homogeneous boundary value problem
of fourth-order equations on an arbitrary quadrilateral. Finally, a C'-conforming quadrilateral
spectral element method is proposed for the biharmonic eigenvalue problem, and numerical
experiments demonstrate the effectiveness and efficiency of our spectral element method.

Keywords Quadrilateral spectral element method - Fourth-order equations - Mapped
polynomials - C!-conforming basis - Polynomial inclusion - Completeness

Mathematics Subject Classification 65N35 - 41A10

1 Introduction

Fourth-order partial differential equations are widely used mathematical models in phys-
ics, engineering, and geological science such as physical flows, fluids in lungs, the elas-
tic vibration and the plate deviation theory. There is an abundant literature on various
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numerical methods to solve fourth-order equations because of their great importance to
scientists and engineers. These numerical methods mainly fall into several categories. The
first type uses classical nonconforming elements such as the Adini element [1] and the
Morley element [31, 33, 37]. A disadvantage of this method is that such elements do not
come in a natural hierarchy and existing nonconforming elements only involve low-order
polynomials which are not efficient for capturing smooth solutions. The second type is
the mixed finite-element method [14, 30] which only requires C°-conforming elements to
approximate the solution. However, for the simply supported boundary condition, some
mixed finite-element methods may result in spurious solutions on non-convex domains
[15, 18, 43]. Besides, the solution of the saddle point problems resulting from the use of
mixed finite-element method is also more involved than that for a direct discretization of
the fourth-order operator. The third type is the interior penalty Galerkin method [11, 17]
which is a discontinuous Galerkin method based on standard C%-conforming approxima-
tion spaces usually used for second-order elliptic problems. Alternatively, researchers also
expect Cl-conforming elements such as the Argyris/Bell triangular elements [2, 4] and the
Bogner—Fox—Schmit [10] or Melkes/Watkins [29, 39] rectangular elements for a direct
approximation to fourth equations. The advantage of the direct approximation is obvious,
however, it requires C'-conforming basis functions which are more difficult to construct
and implement than C°-conforming finite elements.

There is a growing trend toward the use of high-order methods to directly solve fourth-
order equations owing to their high accuracy; see [5, 6, 12, 16, 21, 24, 25, 34-36, 40, 41]
and the references therein. In [34, 35], Shen proposed some efficient spectral methods
using basis functions in compact combinations of Legendre/Chebyshev polynomials for
fourth-order equations, the algorithm of which was subsequently studied in [7, 8]. Aimed
at the numerical solutions of high-order equations in a one-dimensional interval together
with high-dimensional tensorial domains, Guo et al. developed generalized Jacobi polyno-
mials [22, 23]. Spectral methods using generalized Jacobi polynomials lead to straightfor-
ward and well-conditioned implementations, and can be analyzed with a unified approach
leading to more precise error estimates. Recently, Yu and Guo [41] proposed a spectral
method for fourth-order problems on an arbitrary convex quadrilateral based on a bilinear
mapping from the reference square to the computational domain. Inspired by the success of
these direct and efficient spectral methods, some tentative progress has also been made in
extending spectral methods to C'-conforming spectral elements for more flexibility.

Indeed, spectral element methods were first introduced by Patera [32]. Analogue to p-
and hp-finite-element methods, spectral element methods inherit the high order of conver-
gence of the traditional spectral methods, while preserving the flexibility of the low-order
finite-element methods. Theoretical and numerical evidences on second-order equations
[13, 27, 28, 32] approve that spectral element methods can enjoy some essential priorities
over the traditional spectral method and most of low-order methods. Although great efforts
have been made on the C!- and H*-conforming finite elements on rectangles and cuboids
(see [26, 42] and the references therein), few achievements have been reported on C'-con-
forming spectral element methods [3, 40, 44], especially on the C'-conforming spectral
element method on the commonly used quadrangulated meshes, for solving fourth-order
problems. After all, the construction of basis functions of the C'-conforming approxima-
tion space is usually difficult. In particular, it has remained for years a question on how to
construct the C'-conforming spectral elements on an arbitrarily quadrangulated mesh.

The purpose of the current paper is to make efforts to construct the C'-conforming quad-
rilateral basis and then to propose a Cl-conforming quadrilateral spectral element method
for solving fourth-order partial differential equations. Similar to C%-conforming basis, C"
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-conforming basis functions can be divided into vertex modes, edge modes, and interior
modes. The interior modes themselves together with their normal derivatives are identi-
cally zero on all edges. The edge modes involve eight one-dimensional trace functions
constituted of function values and normal derivatives on four edges. For each edge basis
function, all trace functions but one vanish identically. In analogy to Argyris [2] or Bell [4]
triangles, the vertex modes on a given quadrilateral adopt 24 degrees of freedom consti-
tuted of all partial derivatives up to second order in primitive variables at four vertices. For
each vertex basis function, all the 24 quantities but one are enforced zero.

With the help of the bilinear mapping from the reference square to the physical element,
it is always easy to construct the interior mode basis. Starting with the corresponding basis
functions on the reference square, it is also not difficult to derive such a type of mapped
polynomial that all but one of their traces up to first-order on four edges vanish identically.
Moreover, by searching in the space of all mapped polynomials of separate degree equal or
less than 5, one can also obtain such functions that all but one of 24 partial derivatives at
four vertices are zero.

Nevertheless, apart from the tedious procedure above, one of the main challenges of
the construction of Cl-continuous basis on an unstructured quadrilateral mesh lies in that
any first-order partial derivative of a piecewise mapped polynomial with respect to primi-
tive variables is generally piecewise rational functions in the reference coordinates, whose
denominator is exactly the Jacobi of the bilinear transformation on each quadrilateral.
Hence, to guarantee the C'-continuity of a piecewise mapped polynomial across the com-
mon edge of two adjacent quadrilaterals, the normal derivatives along the common edge
from both sides should be reduced to the same polynomial. This compulsive requirement is
fulfilled on each element by sacrificing one degree of freedom per common edge. However,
this would cast some doubts upon the completeness of our Cl-conforming basis. Fortu-
nately, owing to the polynomial inclusion of our basis functions, the completeness can be
easily proved, and then confirmed by numerical experiments on the spectral method on a
single quadrilateral for non-homogeneous boundary value problems and the C!-conform-
ing quadrilateral spectral element method on a multi-domain for biharmonic eigenvalue
problems.

The next section is for preliminaries on the bilinear mapping and the generalized Jacobi
polynomials. In Sect. 3, we construct the Cl-conforming quadrilateral basis functions for
interior modes, edge modes, and vertex modes. The completeness of the C'-conforming
quadrilateral basis is first proved in Sect. 4, then a quadrilateral spectral method is pro-
posed for the non-homogeneous boundary value problem of fourth-order equations to
confirm the completeness theory. Finally, a C'-conforming quadrilateral spectral element
method is proposed for biharmonic eigenvalue problems. Numerical experiments are also
presented to demonstrate the effectiveness and efficiency of our spectral element method.

2 Preliminaries

2.1 Mapping from the Reference Square onto Quadrilateral

Let Q be an arbitrary convex quadrilateral with the vertices P;(x;, y;), the edges I'; and the inner
angles 6;,i < i < 4; see Fig. 1. The side length of I'; is denoted by /;. Further let 0=[-1,1]

be the reference square with the vertices P; and the edges I, 1 < i < 4. We now make the
variable transformation F : Q = O,
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Fig. 1 Arbitrary convex quadrilateral (left) and the reference square [—1, 1]? (right)

<x> _ FQ (f) - <x10'1(§, n) + x,065(&, 1) + x305(&, 1) + x404(&, ’7)) ) @.1)

y n y161(&, 1) +y,0,(&, 1) + y305(E, 1) + y404(E, 1)
where
1-&)1 - 1 1-
oem =100 e = EEIIZD,
1 1 1-&)1
o3(E.n) = w oy(En) = w

Throughout this paper, we always associate a function ¢ defined on Q with its partner

~

¢ = ¢oly, 2.2)
defined on Q. For simplicity, we hereafter write
Yii =X T X Vi = VT Vie
It is easy to see from the chain rule that
0 =AM, +ApMIyd, 0,0 = Ay (D), + Ay ()0, 23)
under (2.1), (2.2), where

Xy l=n X34 14pg

Ay =AM :Z%T + %T’ Ap=ApM) =
Xy l—=& x3p1+4¢

Ay =Ay(9) :=%T + %Ta Ay =Ap) 1=

Yal—n yultn
2 2 2 27
yul=¢ ynl+é

2 2 2 2

We denote by V, 0, and 0, the gradient operator, the outward normal derivative operator,
and the anti-clockwise tangent derivative operator, respectively; while we adopt the sym-
bols V, 9, and 9, for differentiation operators in the reference coordinates throughout the
current paper for clarity. Then, one can simply write (2.3) as

A A A A
Vo = 11 ]2) Vd)
d) <A21 A22
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The Jacobian of the variable transformation reads

X1 Y41 = Yo1Xg (1 = E(A = 1) + X3Y12 =YX (1 + 81 —1n)

J=J¢&.n) = ) ) 2 2
X3Y23 = YazXoz (1 + (1 +1) | X4¥34 — YigXsg (1 = (A + 1)
+ +
4 4 n 4
L1, sin 6 3L, sin 6, I,ls sin
=T61(§, n + TGZ(& m+ 7 63(5 n)
l,1,sin @
.

Although we write J as a combination of bilinear polynomials in & and #, J is indeed linear
since its leading term is exactly zero. For O being convex, the bilinear mapping F, is a
bijection and thus admits an inverse mapping since J > 0 on Q.

Conversely, we also have

Azz(f) 12(’1) 2 _ A21(§) 11(’7)

0.¢ = 0: — 0, b, 0y .+ 0,
JEm T JEm T ) JEm ST T JEm T
Specifically, at the vertex P, i.e., (§,5) = (=1, —1), one has
2y A 2y N 2x, A 2x A
0. = 5. - 2_9.b, o= 4 29, (24)

ILLsin6, <" L lsin6, " “LLsing, ¢TIl sin6),

We are interested in the normal derivatives along the four edges of Q. To this end, we
introduce the following bilinear function:

Iy, cos 6, I31, cos 6,

K =K@En) == 2o+ Tffz(é, m
ll cos 6
@ + hlacosbs  em,

and then arrive at the following lemma.

Lemma 2.1 It holds that

o8], = _llagé _ 2Ko,¢ 1,0, ¢ ~ 2Ko;| 1309
AU 2J Lol 2 LI |0 2]
1 2
2Ko,p| 1,0, .\ 2K9,$ ] 25
A Y Wy,

hereafter, we use the tetrads for the trace on four edges, i.e., ¢|r = [d;h‘—] , <13|f2, <13|f3, <f)|f4 .

Proof We start with the directional derivative (i) 14) .V,
41
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-1
1,0,¢ = )’14> <Y14> <A11 AlZ) @d;
" X41 Ay Ay

y41 +x41 1-¢ Yuyptxyxp 1+€ 2
65(]5
+
+

2 2J 2 2J
1+.§]

2 2J
+X4% 1 =1 +x4x3, 1+ N
(}’41)’21 41%21 " Y4134 417434 n >an¢

+ l1l3cos(65 + 0,) ()5(]5

(1 I cos 0, =1 4] — 1,1, cos 6, 4J">an¢3.

Hence on T,

I 1- I+n N
0nq§|1_l = - 2—J65q§+ <12 cos 0, —— 4J — 1l cos0, oy, >0ﬂ¢,

1 . ,
nn=§pﬂﬁmegl—m+hamn@u+nﬂ

Similar reductions give 0,¢|.. 9,¢|, and 0,¢|;. in Lemma 2.1, and thus completes the
proof. '

Let us now turn to the second-order derivatives. One gets from (2.1)—(2.3) that

9;h =AT, (NI} + 241, (A1, (1)0,0,¢ + AT, (10} &,
07 =A3,(£)02 + 24,,(D)A(£)0,0,¢ + A3, ()02,
00, =A, (INA5,(£)02 + [A 5 ()A,,(&)
+A11(MAR(©)]0,0, + A1 (NAR(E)Sd
+ A} (M0,p + AL (E)0,¢.

Conversely,
P = 2A|2A22(—A;2A2] +A22A'”)a s 2A12A22(—A12A'” +A”A;2)a .
x T J3 fd’ Jg 'l¢
2 2
~  2A,,A A
J2 §¢_ 12 22656¢+ 1zaz¢
(—ALAy +A22A11)(A12A21 +A11A22) R
axayd) = - 13 ()5
(AL Ap +ALALARA,, "'AnAzz)a N
- _]3 n
_AyAp o a Apdy A4y, 11A12 24
7 J:¢+ 7 0:0,¢ — 9,
= 24114y (AL, Ay, "‘AzzA'u)a bt 11A21(_A12A +A11A22)
vy 73 ¢ J3 n
2 2

5({)_ 2A11 21

A
11 32 ¢
p 9:0,b + —50,9.
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In particular, at the corner (£,7) = (-1, —1),

P = Ay lilsinbs o Ay vy blysinbs o
x (l,l,sin6,)> ° (Il sin,)3 "
2 2
43?41 2 — 8)’4.1)’21 050,,q§ + 4)le 2,
(I, Lsin@,)2 €7 (I,1,sin6,)? (I, sin@,)2 "
0,0, = 21,15 sin 95(x2.]y4l -|3-y21x41) b - 2bl, sin 96(362'1)’41 "3‘)’21x41)a”q§ 2.6)
(I}, sin0)) (I, sin )
P
_ 4x4.1y4] _ ? P ST ."')’212541)05617(]3 _ 4x2.,y21 252<13,
(1, sinB,)* © (1, sin0)) (4 sin@))> "
P2 = Ax41 %5013 sinOs . dxyxy, L1, sinbg L
v (Il sin6,)> ¢ (ising) "
2 2
Ax 22 8x41%; A 45 22
22— 2 g ht 22,
(L1, sin ,)? (1,1, sin 6,)? (L1, sin6,)2 "

where 05 (resp. ;) is defined as the angles between the edges I'; and I'; (respectively, I',
andI'y),

. Y23X14 — X23Y14 Y23Y14 T Xo3X1y4
Sinfy = —————, cosfs = ———,
L, Ll
. YV34Xo1 — X34)21 Y34Y21 F X34%0
sinffg = —————, c0sfy = ————
Ll Ll

First and second-order partial derivatives at other vertices can be readily derived by parity.

2.2 Generalized Jacobi Polynomials

For any a, f# > —1, denote by Jfl"ﬂ () the n-th classic Jacobi polynomial with respect to the
weight function (1 — £)%(1 + ¢)? on [—1, 1]. Various generalizations have been introduced to
allow a and/or f§ being negative integers [23, 24, 38]. In the current paper, we define the fol-
lowing generalized Jacobi polynomials:

(A-0P6L+9+8)

16 bl b

(A-0PCLSCHD

(((1-02Q+0) n=0 16 ’ ’

4 R =0 C+1? n=2

<1—¢>4<1+c), n=1, T )

o A+0’@-0 _ s (40’ (BL2-9¢+8) _

an* 28) =4 3 n=2, Jn3* 3() =4 — e n=23,
A+0*¢-1) n=3 S

YR , _WHPGESHED gy

gt 2J2’2 > 4 10 ’ ’

( 4 ) €z A+ -1 n=5

16 E - 9

2-1 313,3 ©) > 6

—4 n—6 , n=z0.
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It is readily checked that {.];2*‘2 :n >4} and {Jn‘3"3 : n > 6} coincide, up to a con-
stant, with the generalized Jacobi polynomials in [23], while {J-%>7% : 0 <n <3} and
{Jn‘3"3 : 0 <n <5} are exactly the Hermite or Birkhoff interpolating basis functions on
[—1, 1] up to the first and second derivatives, respectively. More precisely,

oL 22 (=1) = &y, 0L 272 (1) = b4 s 0<1<1,0<n<3, (27

e CIVE R 0.0, > (1) = 81430 0<1<2,0<n<5  (28)

Besides, it holds that

IO+ =1, (2.9)
IO+ 0 =1, (2.10)
WO+ = L+ O, @11
07O = =117 O + IO, @12
977 = —151272(0). (2.13)

3 C'-Conforming Quadrilateral Elements

In this section, we present our main theory on the construction of C'-conforming basis
functions on an arbitrary convex quadrilateral element Q. All basis functions are derived
from polynomials on the reference square ), and thus are referred to as mapped polyno-
mials. The C'-conforming basis functions are divided into vertex modes, edge modes and
interior modes. The interior modes themselves together with their normal derivatives are
identically zero on all edges. The edge modes are further divided into two groups, the first
group has magnitudes on one and only one edge while their normal derivatives are enforced
zero on all edges; the second group vanishes identically on all edges while their normal
derivatives have magnitudes on one and only one edge. The vanishment up to order two at
four vertices is then characteristic of our C'-conforming interior and edge basis functions.
In analogy to the Argyris/Bell triangle [2, 4] and the Melkes/Watkins rectangle [29, 39],
the vertex modes are defined such that all the function values, first-order derivatives and
second derivatives are enforced as zero at four vertices except one quantity at one vertex.

3.1 Interior Modes
It is easy to find the interior modes on an arbitrary quadrilateral Q.

Theorem 3.1 Define the interior mode basis ¢, ,, m,n > 4 such that

mn>

Bon = 2222, mon 2 4.
Then,

Gon|r =10,0,0,0],  0,0,,,|- =10,0,0,0], m,n > 4.
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3.2 Edge Modes
3.2.1 Derivative Edge Modes

To construct normal derivative edge modes on I'}, we also start with the basis functions
on a rectangular element. By Lemma 2.1 and (2.7),

222729 = 10,0,0,00,  m >4,

[
WOl = |- s T .0.00), w24 O

Owing to the fact that
1 . .
e, = 3 [0y sin 0,(1 — ) + 1,1, sin 0,(1 + 1),

we find that the normal derivative on I'; relies on the geometric quantities /5, ,, 6, and 6,.
While the normal derivative of a typical C'-conforming basis function on I'; only relies
on geometric quantities of the edge I';. This observation motivates us to add a multiplier
J(—1, ) to basis function above,

2, 20, | 7-2.-2 _ 1 _ 2.2 22,
O 11J( LmJ, =7 (m)J] (é)”rl = =TTy C LI TR D
4K(=1,1) 5 2.2 22
- V22 g [J(=1,p)T > = —J272(p).
B (=)o, [J(=1,n)J;>7*(n) ~272(n) (3.2)

We now end up with the desired basis functions and summarize our main theory on the
normal derivative edge modes.

Theorem 3.2 Define the derivative edge mode basis by their partners
buo= ZILLE0HO, m2d
1

¢m, 1

%J(é, DO, m>4,
2

2 o o
Pn = —J(l, WA I @), m>4,

Bz = J(5 DIE2ET7 ), m>4

Then, for m > 4,

Buolr =10,0,0,01,  9,,,0|r- = [-/,,>72(0),0,0,0],
G| =10,0,0,01, 9,6, |- = [0,-7,27%(£),0,0],
G| =10,0,0,0], 0y Pz = [0,0,77>72(), 0],
G| = 10,0,0,0], 0w = 10,0,0,7->72(8)].
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3.2.2 Function Edge Modes

Let us concentrate on the construction of function edge modes. Once again, we start with a

(n=5)(n=4)  y-2.-2/, ~ 7~2,—-2 (n=3)(n=2)
combination of edge modes on a rectangle: d) = syt 4)Jn Iy 7)) = fTo—s

T THE) = T () 7T (@). By (2.7) and (2.5), it is readily checked that
0

| = [7,>71),0,0,0],

- 5K(-1,
0n¢|r=[—(n K(=1,1)

T2, 0,0, 0]
N e

Inspired by (3.2), we find that

[K(=1.)J 22729 |- = 10.0.0,0],
1, K(=1,7)

0y [K(=1, )22 @) | = [——2,(_1, )

T2, 0,0, 0]

This allows us to modify ¢ as
¢ =TT = 2 = DI KL 2 @),
and finally get that
®| = [/;>®.0,0,0], 90| =10,0,0,0].

Theorem 3.3 Define the function edge mode basis by their partners

b, =12 00 - DKL @, e
1

1 = I33OI 2 () — 20 - 203 e DI @I ), 6,
2

o =J;3"3(n)J;2"2<§)—¥K<1 D22, 026,
3

By, = T3 ) — 2(”1 D ke WA ), 026,
4

Then, forn > 6,

boulr = [7373),0,0,0],  0,¢0,|- = [0,0,0,01,
brale = [0.77373©).0,0],  9,,,| = 10.0,0,0],
bl = [0.0.97373m), 0], 9,¢ba,| = [0,0,0,0],
bl = [0.0.0.77373@)].  ,¢h5,]1- =10.0,0.0].

It is worthy to note that all interior modes and edge modes are charactered by the homo-
geneity of their function values together with the first and the second derivatives at the four
vertices.
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3.3 Vertex Modes

We now concentrate on the vertex modes, which actually are the Hermite or Birkhoff
interpolation basis on the arbitrary quadrilateral Q. For simplicity, we use the sextuplet
¢ =1[¢,0.0,0,0, a§¢, 00,9, ()34)] for the derivatives up to second order of a given function
¢ defined on Q, and further use the tetrad ¢|,, = [p(P)), p(P,), p(P3), $(P,)] to denote all
the derivatives up to second order at the four vertices. For simplicity, we abbreviate cos 6,
as ¢; and sin 6, as s;, and write

Xji = X~ X Yii =Y; — Vi

X = (D00 X3 —x = x), ¥ = (D0 +y3 =2 — Ya)
Each vertex mode basis function ¢ associated with a given vertex P; has one and
only one unit entry in ¢ at P; and has a zero sextuplet ¢ at any other vertices. Thus,
there are a total of 24 vertex mode basis functions just as the second type of Mel-
kes rectangle [29]. We shall search all the vertex mode basis functions in the space
span{&™n® : 0 < m,n < 5, min(m, n) < 3} and write them as symmetrically as possible in
a combination of

Y9 Y ) N e () (O N S s ()
The 24 vertex modes can be divided into six groups, according to the non-vanishing entry
(i.e., the non-vanishing partial derivative) of ¢ at four vertices.

3.3.1 Function Vertex Modes

We only need to explicitly construct the function vertex mode ¢ associate with P, such that
$|, = [11,0,0,0,0,01,[0,0,0,0,0,0],[0,0,0,0,0,01,[0,0,0,0,0,0]],
¢|l"gul"4 = and)|l"3ul“4 =0.

The last equation above states that the partner ¢ of ¢ has a polynomial factor
(1 = &)?(1 — 1)? and thus is a combination of the following generalized Jacobi polynomials:

{1;2’-2@)1;3’-3(;1), T2 I3, me (0,1}, n€{0,1,2,5), a3

22T, mone (0,1},
To proceed, we calculate the partial derivatives with respect to & and # of order up to two of

the above low-order Jacobi polynomials at four vertices, and list them in Tables 1, 2 and 3.
In the sequel, we start the construction with the following polynomial:

G =J7T @I T ) + I T @) = IR T ().
It is readily checked from Tables 1, 2 and 3 that

d-1,-=1,  $(1,-1)=¢(1,1)=d(-1,1)=0,
0,h(x1,£1) = d:p(x1,£1) =0,
g1, x1) = (=1, £1) = 0,0, d(x1, x1) = 0.

Further by (2.4) and (2.6), one has
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Table 1 Partial derivatives (I, 0, 9,, 03 02,0

four vertices

0;0, az) of J;272(E)J;373(n) for m € {0,1} and n € {0,1,2,5} at

(m, n)

E.n=(1-1

Emn=~1,-1)

Em=~1,1)

Em=(-11)

0,0)
0, D
0.2)
©,5)
1,0
1 n
1.2)
1,5)

(1,0,0,-2,0,0)
(0,0, 1,0,0,0)
(0,0,0,0,0,1)
(0,0,0,0,0,0)
(0.1,0,-2,0,0)
(0,0,0,0,1,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)

(0,0,0,2,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,1,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)

(0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
0,0,0,0,0,0)

(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
0,0,0,0,0,1)
0,0,0,0,0,0)
(0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)

Table 2 Partial derivatives (I, 0,9, 03 02,0

four vertices

0:0, 02) of ]‘2 2(?])]‘3 —3() for m € {0,1} and n € {0,1,2,5} at

(m, n)

& =(1-1)

&m=~1,-1)

Em=~11)

Em=(-11)

0,0)
0. D
0,2)
0,5)
1,0
an
1,2)
1,5)

(1,0,0,0,0,—3)
(0,1,0,0,0,0)
(0,0,0,1,0,0)
(0,0,0,0,0,0)
(0,0,1,0,0,-2)
(0,0,0,0,1,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)

(0,0,0,0,0,2)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,1)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)

(0,0,0,0,0,0)
(0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)
0,0,0,0,0,0)

0,0,0,0,0,0)
0,0,0,0,0,0)
(0,0,0,0,0,0)
0,0,0,1,0,0)
0,0,0,0,0,0)
(0,0,0,0,0,0)
0,0,0,0,0,0)
(0,0,0,0,0,0)

Table 3 Partial derivatives (I, d;, d,,0; 02,0

0;0, 02)of J27HE)7272(n) for m,n € {0, 1} at four vertices

(m, n) (&m=(-1,-1)

& m=(1,-1)

&m=(1,1)

(Em=(=11)

0,0
0, 1)
(1,0)
1, 1)

3 3
(1,0.0.-2,0.-9)
0,0,1,0,0,-2)
0,1,0,-2,0,0)
(0,0,0,0,1,0)

(0,0,0,3,0,0)
(0,0.0,0,0,0)
(0,0,0, 1,0, 0)
(0,0.0,0,0,0)

(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)
(0,0,0,0,0,0)

(0,0,0,0,0,3)
(0,0,0,0,0, 1)
(0.0.0,0,0,0)
(0.0.0,0,0,0)

¢|, =1[1,0,0,0,0,0,[0,0,0,0,0,0],[0,0,0,0,0,01,0,0,0,0,0,0]].

However, by (2.7), (2.8) and (2.5),

The awkward dependence of 0 ¢|F and 0 q,'>|r on

ol =1y ). 1;77(8),0,01,
3OK J2-2

aﬂd’lr l J 4

30K
T

J7272#),0,0].

X make ¢ hard to be a globally C'-con-

tinuous basis function across the edges I, and I,. To conquer this difficulty, we resort to
the “kerner]” functions defined in (3.1). Indeed, in view of (3.1), we simply change ¢ to
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(i; =J(;2’_2(§)J(;3’_3 (7]) + J(;Z,—Z(n)‘](;&_g,(g) _ J62>—2(§)J52,—2(’1)

+ 61—201((—1,11)1;2’_2(71)11_2’_2(5) + ?—ZOK@, PO g4
1 2

and find that
0,8|- =10,0,0,0].

This finally completes the construction of the vertex mode of order zero at P,.

By a parity analysis, we obtain the vertex mode of order zero at P, (respectively, P,
and P,) by replacing (&,#) by (1, —¢&) (respectively, (=&, —x) and (—#,¢&)), and the sub-
scripts (1, 2, 3, 4) of ¢, s and [ by (2, 3, 4, 1) (respectively, (3, 4, 1, 2) and (4, 1, 2, 3)).

Theorem 3.4 Define the basis of the function vertex mode by their partners
A GV () R A () Vs G B A GV ()

+ I_ZK(_L I I E) + l—zK«:, —DJ2THEI T (),
1 2

o=l IO + 1‘2’4(:)1—3’—3(;1) — I IO

—?—ZOK(cf —DJ2TE@I 2+ & ; KA, I 27,
2 3

20 =J—2’_2(§)J_3’_3(11) + 1‘2"2@)1‘3"3(5) /R OV ()

-7 0 k1, a2 - Z 80 ke, 2222,
3 4

o =1 @) + J_z’_2(5)1_3’_3(n) — I IO

+ SRE P OI7 00 = SR @)
4 1

Then, it holds that

boolr = 15 70,073 7(),0,01, 9yl = 10,0,0,0],
brole = 10,973,177 ),01, 9,,0] =10,0,0,0],
baolr = [0,0,77 ). I @1 9yéay|r = 10.0,0,0],
biolr = 573, 0,0,7773©), 9,50 = [0,0,0,00;

and

ool = [11,0,0,0,0,01,[0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0]],
10|, = [10,0,0,0,0,01,[1,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0]],
0|, = [10,0,0,0,0,0], [0,0,0,0,0,01,[1,0,0,0,0,0],[0,0,0,0,0,0]],
0|, = [10,0,0,0,0,0], [0,0,0,0,0,01, [0,0,0,0,0,0],1,0,0,0,0,0]].
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3.3.2 Gradient Vertex Modes

Among the generalized Jacobi polynomials listed in (3.3), we are interested in
I I 7€) and T (€)J5772(), which vanish up to order 2 at Py, Py and P,
By (24) and (2.6), the partial derivatives [1,0,,0,,02,0,0,,02] of J>>(&)J;>7*() and
T I (@) at Pyare

2y 2xy Ayl sinbs
"Lilysin®,” L Lsing,"  (l,1,sin6,)3
2013 8in O5(xp1 41 + Vo1 X41) _4x41x2111 I3 sin 65
(l,1,sin0,)} " (L1,sing,)?

and

2y 26 4yaYablysinbe
T LLsing, " L Lsing,” (1,1, sin6,)3
2Ly sin 0600y yay + Ya1Xg1) 4Xg1 %01 Lol sin G
(1,1, sin6,)3 T (LLsing)3 |°

respectively. Thus, taking

§ = 2P @8+ 2T I ),

we have

2ypyaXen  (1Yar + YarXa)X, _ 2X41 %1%, 4
(I,1,sin6,)?’ (L1, sin 6,)? " (4l sing)? |

¢|P1 = (0,1,0,— (35)

where the following identity has been used for deriving the equality sign:
Xy lyl3 sin 05 — x4 1, sin0g = x, 11,1, sin 0.

Fortunately, one finds that the last three entries in (3.5) are respective multiples
of three coefficients of d;d, in (2.6). Looking up Tables 1, 2 and 3, one also finds that
J 1_2’_2(5)1 1_2’_2(;1) vanishes up to order 2 at four vertices except for its unit mixed derivative
with respect to £ and # at P; such that the derivative tetrad reads

0.0.0. — 8y41¥21  4001Yar Yo Xa) 841 X1 X, |
T (Lsing)?” (L sing)? 7 (L sing))? ]

[0,0,0,0,0,01,[0,0,0,0,0,0],(0,0,0,0,0, 0]] .

Thus, we modify P as

§ = ==L 2O )+ 2T @170 + ST 0l e,
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and then get

|, = [10,1,0,0,0,0],[0,0,0,0,0,01, [0,0,0,0,0,01, 0, 0,0,0,0,0]].
Next, we evaluate ¢ and its normal derivative on I'; UT,. By (2.7) and (2.8),

X41 _3_ X1 ,-3—
Slr, = S5-I, ¢, =577 @

Meanwhile, by (2.5), (2.7), (2.8), (2.11) and (2.12),

_ L Xel =22 X1 ,-2,-2
Wl == g S
2K(=1,m) X4y 33
TlaCty 2
hx, 22 L, 22
=[m(1+’7ﬂ0 (m - WJ4 (m)
l% 21 —2 2( )
TSR
15x, K(=1,1) 722 — xy K(=1,n) 272
1,J(=1,1) /s ET %o
4];2"2(:1) 30x,,
l (L +1) — 2sz21 - 8x41K(—1,r/)J_2’_2( )
8L,J(—1L,n) o

Further using (3.1) together with the following identity:
By J(=1,1) — 8xy K(—1,1) = l%le(l -1+ lfx34(1 + 1),

one derives that

Anlr, =0n K 3olx“ K(-1, 17)+x*1>1_2 2> 2(5)“ + 2 2y,

1 roh

A parity argument also yields
30x _h o y
blr, =0y l—( oK1~ x*l)a RNGY 2(11)] .

-2,-2
lzj ().

2 I,

Hence, we modify ¢ once again as
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AS
Il

Xel -0 — 9y X 3 2 X, 3 9

=TI ) + ST O o + ST I

30xy,
2

K(=LmJ )70 = xa 77 o)I70)
1

30x
2

2LKE DI EOI 72 0) = x0T @I (),
2

and then find that
‘I’lr =1[0,1,0,0,0,0], [0 0,0,0,0,01,[0,0,0,0,0,0],[0,0,0,0,0,01],

X4 — -3,-3
ol = 25207, -

~L777@,0,0),

0l = [ L 2() 22,0, 0]
L b
We now draw our conclusion on the gradient modes with the following two theorems.

Theorem 3.5 Define the following gradient vertex mode basis by their partners:

Gor =201 @ + SO0 ) = SO )
Ox,
e N () DR ) e )
1
30
2R~ 2O ) — xR ),
2
LD U —2,-2 X33 .33 —2,-2 X2 12,2 -2,-2
bri== SO + T T O + T T @)
30x‘2K(: DI 2O ) = x0TI ()
2
+ 30;“” K222 + x0T 72 (),
3
$r1=— §3J“ S RE) - “31‘* @I ) - 1‘2 GV
o ) Y ) VA (S W e (Vo 2(:)
3
_ 3003 —2,-2 —2,-2 -2,-2 -2,-2
K& DO 0) + x50, 0T (),
4
A G R R e DR WA i ©
% e, DI 2O 0) + x40, I ()
4
Oxyy K(=1 T 220022 (E) — x T2 ()22
12 J’I) 4 (’7) 1 (f) x*4 4 ("I) 1 (5)
1
Then,
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¢01|r 41 73 3() 21 73 3(5)00]’
d1alr = [0 e 3(:) 22500
¢21|r [0 0. zzrs 3( ), x34J4 3(5)]’

R - ) 34,—% “@],

ddoalr = |50 PR @.00),
debrs |- = |0, %J;Z*‘Z@), %ng’_z(n),O :
tbailr = 0.0.7257 0. 22,
an¢l]|r _ y14j—2 2( ),0,0, Y43J—2 2(5) )

1, 1,70

and

$0.1|y = 110, 1,0,0,0,01,[0,0,0,0,0,01,[0,0,0,0,0,01, 0,0, 0,0, 0,011,
$..1|y = 110,0,0,0,0,0],[0, 1,0,0,0,0],[0,0,0,0,0,01, 0,0, 0,0, 0,0]],
$,.|, = 110,0,0,0,0,01,[0,0,0,0,0,01, [0, 1,0,0,0,0],[0,0,0,0,0,01],
¢s,|, = 100,0,0,0,0,01,[0,0,0,0,0,0], [0,0,0,0,0,0],[0,1,0,0,0,0]].

Theorem 3.6 Define the following gradient vertex mode basis by their partners:

doa =S I @ + BT @I o = S s o)
30
+ ly“ K(=1,mJ > ;> 2(5)—y*.J;Z"Z(mJ;z"Z(f;)
1

3
22 e, DI RO ) - v 0T ),

2
dra == 2107 o+ 7T @O + 220 @)
30
222 e, 1222 - v d 2T HOI )

2

30
ly 2 K227 + 32220,
3

bra == 210700 - ST @1 - 220705 m)

_0 s N e )V 2(:>+y*31‘2 ROYAS 2(:)

3

30“3 —EKE DO + y.ady T OI T ),

4
(532—})34 -3, 3(6)‘,—2 2('7) y14 —3 3(’1)‘,—2 2(§)+y»p4 -2, 2(’1)‘, (5)

+ 30; = (AW 2(:)1‘2 ) + yaad O ()
4

_ T R LI 0T = v )T,

1
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Then, there hold that
boalr =

I

[y41J_3 (), yﬁﬂ =3(8),0, 0]
05
$oolr = [0,0 2 y%f} B )]’
5

0. 217773, yﬁﬂ “n. 0],

G52l = | 2L 0.0, yﬁrz 3(:)],

an ¢0,2 |F

%152’*2(:1), %152'*2@, 0,0,
L “1 2 |

REST—. X3 oo ]
izl = (0.2 0. T 0. 0],

Outbaalr = (0.0, %1‘2 2.5 7 2(:)

an¢3,2|r _ 141J_2 “2(1),0,0, %J—z 2(5)
L 4

and

$0.|y = 10,0, 1,0,0,0], [0,0,0,0,0,0],[0,0,0,0,0,01, 0,0, 0,0, 0,0]],
$,,|, = 110,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,01, 0,0, 0,0, 0,0]],
$,,|, = [10,0,0,0,0,0,[0,0,0,0,0,0],[0,0,1,0,0,01, 0,0, 0,0, 0,0]],
¢35/, = 1[0,0,0,0,0,01,[0,0,0,0,0,0], [0,0,0,0,0,0],[0,0, 1,0,0,0]].

3.3.3 Hessian Vertex Modes

We start our construction of the xx-Hessian vertex mode basis functions at P, with
b = a7 THEOITTI0) + oI + a7 T I E)
for certain coefficients to be determined such that
¢|, =110,0,0,1,0,0],[0,0,0,0,0,01,[0,0,0,0,0,0,[0,0,0,0,0,0]].
Then, we mend ¢ by adding the “kernel” terms with the unknown coefficients a,, and a,,,
ay (O, EOT 20 + a2 )
such that the function value and the normal derivative of ¢ on I'; are dependent on the geo-

metric parameters of I'; (i = 1,2). We shall omit the details, and simply draw the conclu-
sion with the following three theorems.

Theorem 3.7 Define the following xx-Hessian vertex mode basis by their partners:
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2
¢°3=T’ OV 2<‘5>+ LI+ 2 @I )

+ 5"41’(1(2_1”7) 22, )J—z 25— x41x*1 —2,—2(’1)11—2,—2(5)
1
+ —Sx;Kl(f’ D U U OB ’%J;Z-*R:)Jﬁ*(n),
$ia=- 1‘3 2@ + 321‘3 2P E) - ‘2"”1‘2 257 )
- —Sx”Kl(f’_ )J;Z"2<:>J;2~‘2(n) - R )
2
+ —5x§2';(1’") 5 (n)J;Z*Z @+ 2222 ),
bz = ff B + B 1*3 @) + 434231*2 2@
_ _5x32’; ) oy ey 4 R/
3
- —SX‘Z‘JZZ@’ I)J;Z-‘Z(f)fgl‘zm) + %J;Z-‘Z(@J;H(m,
$rs == ﬂ S + "‘1*3 SI e - RO )
+ _5x341;<¢, I)J;Z~‘2<§)J;2~‘Z<n) + ’%J;Z*Z@)J;Z*‘z(n)
:
_ 5x%4Kl(2_1"7)J—2 2(11)1_2 20— X4, *41—2 2(11)1_2 ().
1
Then, we have
bos|r = ’%153"3(11), %Jﬁ‘%é), 0,01,

b1 = |0 —1‘3 ), 3 1‘3 NOXIE

L 4 n
baslr = _0, 0, %15‘3"301), %1;3"3@_ ,
baslr = _%Jﬁ”(m,o, 0, %J;H(:)_ :
sl = | e .00,

[\ X212 2 X32Y32 ,-2,—
0ud15lr = [0, %Jﬁ (), 2—131,2 2(n),o],

201, STy

[ Y1414 ;00 X34Y34 122
J 0,0, — J|
20 (), 2, (é‘)]

e
ddrslr = (0.0, 21722, - 221727 (E)

an¢3,3|F =
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and

$03|y = [10,0,0,1,0,0,[0,0,0,0,0,0],[0,0,0,0,0,01, 0,0, 0,0, 0,0]],
¢, = 110,0,0,0,0,01,[0,0,0,1,0,01, [0,0,0,0,0,01,[0,0,0,0,0,01],
$,3|, = 1(0,0,0,0,0,01,[0,0,0,0,0,0], [0,0,0, 1,0,0],[0,0,0,0,0,0]],
¢33/, = 1(0,0,0,0,0,01,[0,0,0,0,0,0], [0,0,0,0,0,0],[0,0,0, 1,0,01].

Theorem 3.8 Define the following xy-Hessian vertex mode basis by their pariners:

X41Y41 -3 — -2 X21Y21 ,-3,— 2
Goa == IO + ST O )

2
+
X21Y41 ; Y21X41 J_z’_z(i)Jl_z’_2(n)

10x K(-1, X41Ye1 T Ya1Xs
41)’4112 (- n)J_z’_z(ﬂ)Jl_z’_z(f) X1V : V41X

10xyK(§ -1 _,_ o X21 Vi1 T V21X
21 2ll2 J42’ 2(§)J12’ 20y = 221 12 21%41

PRI )Y R3]

VAR (S VA ()

N X12V12 3 o X35V30 3. o
$14 =5 IO ) + R T ) @)

X + Y3 X
_ Y3V . Y32 '21‘2"2(§)J‘2"2(;1)

10x,y,,K(¢, -1) J22
_ 1—2
2

10x3,v5,K(1,1) 5 _ o X300 F V30Xo o s
+ 32Y32 J42’ 2(;1)J3 2, 2(§)+ 32Ys2 T V32 2142, 2(’1)132, 2(5),
L 2

X12Y40 + V12 Xi2 —2 -2

2,2
2 (7 )

&) -

R X23V93 3 o X43V43 3 o
¢24_ 23223J 3, 3(’7)‘]22’ 2(§)+ 43243‘]53, 3(5)‘]22, 2(’7)

X43Y23 T Ya3X23 J_z,—z MI272()
3

4
10xyK(lr])_ _ Vi3 T Y23X,3 -
323; 22()J22(§)+ X3 32233 22()122(5)
_ W0mgypKE D _ Vi Yarkss - -
43 z; 2 2(5)12 () + X43 32 43%43 2 2(5)12 (),
2 V34— _ Vi — _
ya= 342%4J3 3(§)J2 200 + 14214J3 3 )Jz ()
_ X14Y34 F Vi4¥34

—2,-2 4 =222
1 Y (Y ()]

10x3, v, K(E, 1) _ _ Via + V3aXas
+ 343; 22(5)12 2()+ X34 42 34 x4 22(5)‘,2 2()
4
10x,y 4 K(=1,1) _,_ e XiaYss + V1aXes o o
_ 14, 14;2 ]42, 2(”)112, 2(5)_ 14) %4 > 14 4]42’ 2(’1)]1 2, 2(5)
1

Then, we have
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an¢1,4|1“

an¢2,4 |I‘

0n¢3,4|1" =

and

X41Ya1

X
0.0 X23Y23 —3 -3
2

21)’21

: ]_z 3( ).

X12Y12 ,-3,-3 2Y32
J

) ©,

43)’43
,0, ), ——
34)’34

2
2
- Vi) —2 2y, 221 Y1

4 ;-3,-3

I3 1), 0,0,
) Q)

X

41

— A
O, 12J 2-2(g), 2

2L
2 _ 2
Y23 T X3 o 2
0,0, —J
2
Xy~ y14

I3, 0, 0
o ),

-3,-3
J2

577@,0,0[,

R S OXI

|
577,
@).

21 —2 2(5) 0,0

32J—2 2( ) 0

13

y43 22
J
214 (€3]

R e (9!

-y 34
21

¢0,4|V = [[09 0, Oa 0’ 17 0]! [07 07 Os 07 07 0]’ [07 O! 09 0, Oa 0]7 [Oa O’ 07 07 Os 0]]7

¢1,4|v =

((0,0,0,0,0,0],(0,0,0,0, 1,01, [0,0,0,0,0,01, [0,0, 0,0, 0, 0]],

$».4|, = 110,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0, 1,0],[0,0,0,0,0,01],
$5.4|, = 110,0,0,0,0,01,[0,0,0,0,0,0,[0,0,0,0,0, 01, [0,0,0,0, 1,0]].

Theorem 3.9 Define the yy-Hessian mode basis by their partners

430. y:l st 3('7)sz 2(§)+ 21 14 3(.{;)]’2 2('7)+ y22’4] sz 2(5)172 2( )+ yilkl(z_l’”)1;2‘72('1”172‘72(5)
1
)412)’*1 sz 2(’1)]72 2(5) yle(f,— )J’Z 2(5)]’2 2() }212)’*1172 2(5)]’2 2('1)’
2
b5 = 2 PR 2(»1>+ 00 = PRI ) - 2REeD ﬁkff’_I)J;Z"2<§>J;2"2(n)
2
)ﬁzzhzj-z 2(5)1_2 200 + y3zl( '7)]—2 2('7)]_2 z(§)+y122)’*zj—z 2('7)] 2228,
3
brs yizrz 3 )rz 2(§)+ ]4 1(5)]72 20 )+y43)’23rz 2 )sz () - ¥ ( '7)]72 2 )rz -2
3
yZzzhsrz 2( )sz 2(5)_ y43ll(2(§’ )sz 2(5)]’2 2(71)+ YAsy*zrz 2(5)] 2, 2( ),
Q-?’zs—yu @0 2(n)+y B I - TR @I ) + —Sy”l(g L en )

J/342}*4rz 2(5)172 2( )

Then, we have

Sy K(=1.m)
i

IR -

4

}14)’*4J72 2('1)1 2, 2(5)
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_ y41 33 21 33
Gosle = |7 7, 570,779,004,
- 2 2 Z
bsh = |0. 227720, 22w 0),
- 2 ) 2 N z
Baslr = 0.0, 2270, 25T @ |,
_ y14 -3,-3 -3,-3
Dsh = [ 2077 .0.0.> J GIF
[ X4141 - y -
an¢0,5|F= 421141 l2 z( ) — X21Y21 21 4 2 2(5) 0, O]
[ Xy - y -
an¢1,5|F= 0,— 1221 12 32 2(5) X32Y32 32, 2 2( ). 0]
[ Y23 J22 X43Y43 —2 -2
0 = |0,0,- 222
sl = 0.0~ . =5 (:)]
'x14y14 Jo2-2 X34)34 —2 -2
0 = 0,0, ——
iasle = |00, 0.0. =7 (:)]
and

¢/, = [10.0,0,0,0, 1], [0,0,0,0,0,0],[0,0,0,0,0,01, [0, 0,0, 0,0, 0]],
¢,5|, = 10,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,0,01, 0,0, 0,0, 0,0]],
$,5|, = [10,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0, 11,0, 0,0, 0, 0, 0]],
¢35/, = 1(0,0,0,0,0,01,[0,0,0,0,0,0], [0,0,0,0,0,0],[0,0,0,0,0,1]].

4 Applications to Fourth-Order Equations

In the section, we shall propose the C!-conforming quadrilateral spectral element meth-
ods for fourth-order equations. To this end, we start with the discussion of the complete-
ness and the C!-global continuity of the quadrilateral basis functions together with the
spectral method using our C'-conforming basis for solving non-homogeneous boundary
value problems of fourth-order equations on an arbitrary quadrilateral.

4.1 Completeness and Global C'-Continuity of the Quadrilateral Basis

We first explore the completeness of our quadrilateral basis. It is easy to see that all the basis

functions constructed in the former section are linearly independent. Let N be an integer

> 5. Denote by Py (£2) be the mapped polynomial space of separate degree < N on Q. We

list in Table 4 all the C'-conforming basis functions which have a separate degree of < N.
Let us introduce the corresponding mapped polynomial space

Vy(Q) = span{¢,,,, : 0<m<M,, 0<n <N},
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Table 4 The statistics on the

basis of degree < N on an Mode Basis Cardinality

arbitrary quadrilateral Q Interior G A<M N, 4<n<N (N-3)?
Function edge Gy 0<m <3, 6<n<N 4N-5)
Derivative edge  ¢,,,, 4<m<N-1, 0 <3 4WN-4)
Vertex Gy 0<m <3, 0<n<5 24

where M, = N —1if0 <n <3and M, = Nif4 <n < N.Itis obvious that

dim Vy(Q) = (N + 1) =4 < (N + 1)*> = dim Py (Q).

It then seems that {¢,,, : m,n > 0} is not necessarily complete in CY(Q) or H*(Q). Neverthe-
less, the following lemma states that V,(Q), N > 5 contains lower-order polynomials on Q.

Lemma 4.1 It holds that

1=¢go+ b1+ dro+ P30 4.1)
X=xX1$o0 +XP10 + X3P + XaP30+ by + Py Doy + D3y 4.2)
Y=Y1Po0+ 2P0+ V3Prg + Vabsg+ dop + Dio+ dont P 4.3)

Proof One readily obtains from Theorem 3.4, (2.9) and (2.10) that

Boo + Pro+ bag + 3o =I5 ET T ) + I 7T ©) = Iy ETHEOITT A ()
+ I I @ + IO T ) = I )
+ 2O ) + I T E) = 1O )
+ 1,27 E + IO T ) = I IR
=22 + 2O > + 97 )
+ [I72 72 + | [0 @ + 17 @)
= 722 + I [0 + 1))
=1+1-1=1,
which exactly gives (4.1).
Further by Theorems 3.4 and 3.5, one finds
X ¢30,0 + x2$1,0 + x3¢;2,0 + x4<l§3,0
= x, I3 ) + I I T E) = I THEIT T ()
+ 1, [T + IO T ) = I )T )
+ x5 [ 2O ) + I )T @) = 1T ()

+x, 27T @) + I @I T ) = I I T )]

60(x, — 60(x, —
- B e - R - o)

1 2
60(x; — x,) o o 60(x; — x4)
- — KT TE - ———
L i

KE DI ),
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and

b1+ P11+ Py + D3

R R R G e R 0]

+ BRI ) + 2

@) + I @ON )

2

e TR G R ) V)

60(x2 X))

3% [11_3’_3(’7) + 1;3,—3(’7)] Jz—z,—z(@ + )
+ 60(x, — x;)
12

X
+

K(=1.mJ > 2 I 72726 + K& =DI> 2T
1 2
60(x; — 60(x. —
+ _(x% 2 k(22 + —(xji %)

K& DI 2T (),

respectively. On the other hand, it is readily checked that

3 TV @+ IO T+ Il = IO )

11‘2 PRI;TE - I @ - 177 @)

+ %ng~‘2(§>[2jg3"3(n> RO

_ EHDEE-Da+Dutn—1) G- DE+D0 -1’1 +2)
16 16
=D +29E-D  E-DPE+)@m-1)

8 8
1-&6(1 -
= —( fi‘f ) =0 ),
- }tu;z"%:) +IT O + I ] = 1T EOI ()

+ ;ng RO+ @O+ 7@
+ %J;z*‘%a[wﬁ*(m R () B ()

1-6)(1 -
S48,
TV + IO 00 + 4322 - 200> )

+ %J;Z"2<n)[2fg3*‘3(:) +IPP @O+ @)

;ng ORITTm I ) + I )
1+81+n)

= =oaén.

- L—lt[J?”(:) HIT O + I ] = IO ()
1 N O P A (S e e (O B R (9

éJaz ORI + I + 17w
d-8+n

= =&,
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In the sequel, one derives

X1®oo + X010+ X3020 + X430+ Py + 1+ Doy + D5y
=x,01(&,n) +x,0,(&, 1) + x303(&, ) + x,04(E, 1) = X,

which states (4.2).
A parity analysis also yields (4.3). The proof is now complete.

Remark 4.1 Define the Hermite interpolation operator /5 : C%(Q) ~ Vs(Q) such that

[Usul(x, y) =ulxy, y)g o + u(xy, y2)Py o + u(xz, y3)Pa o + ulxs, y4) P30
+ 0,u(xy, y1)bo,1 + 0xu(xXp, ¥2) Py g + 0, u(x3, ¥3)0 1 + O u(xy, Y43
+ 0,u(xy, y)Pop + Oyu(xy, ¥2)@y 5 + 0,u(xs, y3)Pr 5 + Ou(Xy, Ya)b3 5
+ afu(xl’)’1)¢o,3 + aiu(xz’)’2)¢1,3 + af”(xa’ya)d’zj + afu(x4,y4)¢3’3
+ 6x0yu(xl,yl)¢0,4 + 0,0,u(x, )b 4
+0,0,u(x3,y3)y 4 + 0,0, u(Xy, Yy )3 4
+07u(xy, o s + Oy ulxy, ) 5 + 05ulxs, y3)hy s + 0ouCxy, YB3 5.

Then, I recovers polynomials of total degree no greater than 3 on Q,

[ISM](-X’ y) = M(X, y)’ ue HS(Q)’ (44)

where TIy(Q) = {x'y/ : 0 <i,j,i+j<N}. We do not intend to give a tedious proof for
(4.4) in this paper, however, it can be verified using a symbolic computational software
such as MAPLE.

Generally, for u € Il (Q), we have the following hypothesis:

N N N-1 3 N 3
u(x’ y) - [Iﬁu](x’ y) = Z Z Cm,nd)m,n + Z Cm,id)m,i + Z Z Ci,n¢i,n’ (45)
m=4 n=4 m=4 i=0 n=6 i=0
where the coefficients ¢, ,, = ¢, ,(u) are defined by

S [ 02020, n) - 0202, (& m) d& dn

1 1 2907 2
S5 I [#02d e n)| dedn

Conn(U) =

form,n > 4, and
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= /_11 (0,00t 030]1(13,”,0)(—1, ) dn _ f—ll (0, - as‘f’o,n)(—l, n)dn
Cm,()(“) = ; — , CO,n(“) — 1 _ !
J-1@0n (=1 dn S\ @b, Py
! il 2 1 . o
o = A G LN S TG LR U Gl
| J21@;0,617¢, ~D 2 S @R -1
o) = S @20, 020,,,,)(1.m) dn e S @ (1 dn
| L1@ 00z 1m | S\ @3, dn
o) = J11(020, 1 020,,,5)(E. 1) dE e [\ @0 33,06 1) dé

J11(020,,,2)%(E. 1) dé S @3 bs )2E 1) de

for m > 4 and n > 6. The hypothesis (4.5) can be partially (up to N = 5, for instance) veri-
fied using the MAPLE software. In particular, for 0 < i,j;i +j < 4,

(i+j—3)

a1 (=2 +2x3 = x)' O =2+ 3 = V) as, (4.6

Xy = L'Y) +
where we have used the Pochhammer symbol (a), = a(a + 1) --- (a + k — 1). It then indi-
cates all polynomials of total degree no greater than 4 on Q are in V5(Q).

Now let us turn to the completeness of our basis functions. To this end, we define

v = .
N=5

which is exactly the set of all functions with a finite expansion in ¢, ,,m,n > 0. Then,
V(Q) is characterized by those mapped polynomials whose trace functions up to first order
on each edge are polynomials depending on only the geometric parameters of the edge. As
a result, we claim that V(Q) is an algebra of functions on Q. Indeed, for any f,g € V(Q)
and ¢ € R, it is obvious that cf, cg,f + g € V(Q). Moreover, fg is also a mapped polyno-
mial on Q, and (fg)lr,. =f|r, . g|ri and dn(fg)|ri = (g&nf)|r‘_ + (fang)|ri are certainly polyno-
mials depending on only the geometric quantities of I';, i = 1,2, 3, 4. This clearly states that
feg € V(Q). Hence, by Lemma 4.1, any monomial x'y/, i,j > 0, is a function in V(Q).
In return, we claim our main theory on the completeness of our basis functions.

Theorem 4.1 V(Q) includes all polynomials on Q, and thus is complete on Q.

Let us concentrate on the global C'-continuity of the quadrilateral basis before conclud-
ing this subsection. It suffices to explore the trace of Isu and show its global Cl-continuity.
Indeed, one readily finds that

s, = Gy >0 + e, 25>

[ s l 3

= 5 04, 100 YOI ) = 0, uxg, y) T ()
l% 2 -3,-3 l% 2 -3,-3

+ 0% UG YOI T ) + 07wy, y )T

@ Springer



Communications on Applied Mathematics and Computation (2019) 1:403-434 429

0y Ust)], =0, uCxy, yIg 272 (n) + 9, ulxy, y Iy > ")
[ o l o
= 5 05,0, ey YDIT 200 = 50,,0, uCg, y)IT ),

where n; is the unit outward normal vector of I';, 7; is the unit tangent vector to I'; following
the positive orientation with respect to Q. It turns out that (/5 u)|1-l is the second-order Her-
mite interpolation of u on I'}, and d,,(/su)|- is the standard first-order Hermite interpolation
of d,u onI'. And this states that I5u is globally continuous on I';.

Similar arguments lead to the global continuity of /su on I';, I'; and I',. In return, one
derives the global continuity of all the quadrilateral basis functions.

4.2 Quadrilateral Spectral Method for Non-homogeneous Boundary Value
Problems

To testify our completeness theory, we consider the following non-homogeneous boundary
value problem of the biharmonic equation:

A’u=f inQ,
u=g; onl}, i=1,2,3,4, 4.7)
o,u=h; onl;, i=1,2,3,4,

where Q is a given convex quadrilateral; while f is supposed to be in H ~2(Q), and
(g1, h) € Hi(Fi) x H2(T;),i=1,2,3,4, are compatible boundary data. The equivalent var-
iational form reads: to find u € H*(Q) such that

(Au, Av) = (f,v), v € HX(Q),
u=g; onl};, 1 <i<4,
o u = h; onl;, 1 <i<4

By the extension theorem and the Lax—Milgram lemma, it admits a unique solution
u € H*(Q).
4.2.1 Approximation Scheme and Implementation

Assume that f € H*(Q) and (g, h;) € H*'3(I')) x H¥>(T), 1 < i <4, k > —1 with the fol-
lowing compatibility conditions:

8i(Py) = gi(Py),
0.8i(P;)) = —cos 0,0, &; +sin0;h;(P)),1 < i <4, (4.8)
hi(P;) = —sin 0,0, g; — cos 0;h;(P)),
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where i = i+ 1if1 < i <3andi= 1ifi = 4. In addition, assume that

—Cosﬂiazg(P)—sme 0. h,(P;) = —cos 0, 02g(P)+sm6' 0.h(P), 1<i<4,

LT [

4.9)
when k£ > 0 and
1
/ | cos o, [—df‘gi(Pi — slyry) + 02 gi(P; + sl;r;)]
0 y (4.10)
o+ 5in 0, [~0, (P, = sl;7) = 0,g:(P; + 5777 | = < o0,
i i P
when k = —1. Further assume that the equations
sinh(46,) = A%sin’ 0, 1<i<4
have no root (other than —i) on the line Im A = —k — 2 excluding the case k = —1 whenever

tan @, = 0, for some i. Then, the solution u € H***(Q) owing to the lifting theory [6, 9, 19].
For N > 5, define the approximation space

V2%0) = Vy(Q) NHX(Q) = {¢,,,, : 4 <mn <N}

Then, the (Petrov—Galerkin) spectral approximation scheme is, to find uy € Vy(Q) such
that

Aty Av) = (f.v). v € (0}
uN—n gl onl};, 1 <i<4, “.11)

2,-2 .
Ogut =7, h onl;, 1 <i<4,

where [7,7 g/ ](P; - -(1 — ) =77 g - %(1 -0 with %7 L HO(=1,1)
— Py(—1,1) being deﬁned such that

o lmy %78 — 8l(x1) =0, 0<j<o-1,

<ag[n1;"¢ %9 g0 ) =0, hePy()nHID.
Assume that
N M,
uy(x,y) = Z Z ME)2
g< : ) 2 S (o)
h< ‘ >=2 A (9}

Then, the coefficients {i,, , } of the vertex and the edge modes are given by
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Ui_10 =83 = &y l<i<4,
A~ zx’l ~ yl! N Xii o i
11 = 2t T8 = 2 2+ T8 I<i<4,
i 1 ; 1
2y;i » i 2y;i i
Ui1p= l_zhi,z_Tgf,l = l_zhlz L SiL 1<i<4,
; 1 ; 1
4y; 4y; 4y,
R yii(xigsi + yl‘gci) . yiiyzjil Vi l<i<4
N3 T T e T g, T i =T
i % i % i3%
. 4)’igxig . ZYi,gxﬁ + zxigyl? N 4Yigxig . L<i<4
hira = =55 8is + PLs 3T ppatiy 1SIS%
ivi ivi i7vi
2
. Ax(visSi — X;iC) Ax;ixi; N 4xig ) l<i<q4
Ui15= 85— i3 8i2s <154,
’ BLs? T B T BEsT
ﬁm,i—l = hi,m’ i\ti—l,n = gi,n’ m Z 4’” Z 6’ i= 2’ 3’

Uiy = (_l)mili,m’ Uy, = (_l)ngi,m mx4,n26,i=14,

where i=i—1if 2 <i<4 and i =4 if i = 1; while solving the first equation in (4.11)
yields the coefficients {i,, , } of the interior modes.

4.2.2 Numerical Experiment

Now we take the computational domain Q as the quadrilateral with four vertices
1,-1),, —%), (2,0),(—2,2) in our numerical experiment (see the left side of Fig. 2). The
source term f and the boundary data (g;, #;), 1 < i < 4, are determined by the exact solution

u(x,y) = sin(k, x) sin(k,y).
The surface plots of the exact solution with k; = k, = 7z and the numerical solution with
N = 32 are demonstrated in the center and the right side of Fig. 2. Maximum errors are
reported in Table 5 with various N, where an exponential order of convergence is clearly
observed. This partially validates the completeness of our basis functions.

4.3 (-Conforming Quadrilateral Spectral Elements for Biharmonic Eigenvalue
Problems

We shall propose the quadrilateral spectral element method and show its effectiveness for
fourth-order equations. It is better for us to consider the following biharmonic eigenvalue
problem on a polygon Q:

A%u = Au in Q,
w=0u=0 ondQ. (4.12)

The weak form for (4.12) is to find u € H3(€), such that
(Au, Av) = A(u,v), Vv € Hy(Q). (4.13)
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Fig.2 The computational domain Q (left), the surface plots of the exact solution (center) and the numerical
solution (right)

Table 5 Maximum errors of the C'-conforming spectral element method vs. N

N 16 20 24 28 32

ki=k,=m 4.091 39E-04  1.411 08E-06  2.221 79E—-09 1.840 93E—12 2.828 85E—13

4.3.1 Approximation Scheme and Implementation

Let X = {Q;} be a quadrilateral partition of €2, where each element Q; is a convex quadrilat-
eral. X is regular in the sense that the intersection Q; N Q;, i # j is either empty or a node or
an entire edge of both Q; and Q.

We now define the approximation spaces Wy (Z) as follows:

Wy (2) = span{u € HX(Q) : uly € Vy(0),0 € E).

Then, the C'-conforming quadrilateral spectral element approximation scheme for the
biharmonic eigenvalue problem of (4.13) reads: to find Ay € R and uy, € Wy (), such that

(Auy, Ay) = Ay(uy, ),  w € Wy(2). (4.14)
Assembling the global “stiffness” and mass matrices A, B, we arrive at the following equiv-
alent algebraic eigenvalue system:

At = AyBil, (4.15)
where @t is a column vector of expansion coefficients of the unknown eigenfunction in
global basis. Note that the matrices on both sides of the algebraic eigen-equation (4.15)

are nonsingular, thus can be efficiently solved by algebraic eigenvalue packages such as
ARPACK or FEAST.

4.3.2 Numerical Experiment

We simply carry out our numerical experiment of the C!-conforming quadrilateral spec-
tral element method for the biharmonic eigenvalue problem (4.12) on Q = [—1, 112. The
computational domain is partitioned with four convex quadrilaterals with five random grid
points, see Fig. 3a.

We take A, = 80.933373724482024, A, = A; = 336.666 035048 6215, A, = 731.925702 387 858,
As = 1082.093732611044 as the reference values of the 5 smallest eigenvalues of (4.12) on
Q = [—1, 1]?> which are obtained by the classic rectangular spectral method with a polynomial degree
of 200. The errors|4; — 4;51,i = 1, -+, 5 versus the polynomial degree /N are then plotted in Fig. 3¢ in
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(-1,1) (—0.0465,1) (1,1)

(0.1244,0.162 8)

[Ai = Ainl
[Ai = Ain

(—1,0.044)
(1,-0.1501)

PP

-

|
10 20 30 40 50 607080

VDoF

(~1,-1) (~0.1726,~1) (1,-1)

() (b) (0

Fig.3 a Partition of Q = [—1, 1]? with four quadrilaterals; b eigenvalue errors of the spectral method; ¢
eigenvalue errors of the quadrilateral spectral element method

semi-log scale. It can be observed from Fig. 3¢, our conforming quadrilateral spectral element method
possesses a high order of convergence. As a comparison, we also plot in Fig. 3b the errors of the classic
spectral method for the first five biharmonic eigenvalues. Roughly speaking, our C'-conforming spec-
tral element method exhibits the same order of convergence as the classic spectral method, although it
has a relatively lower accuracy with the same degrees of freedom. This reflects the effectiveness and
efficiency of the our C-conforming quadrilateral spectral element method.
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