Communications on Applied Mathematics and Computation (2020) 2:57-72
https://doi.org/10.1007/542967-019-00032-x

ORIGINAL PAPER

®

Check for
updates

Numerical Algorithm for the Time-Caputo and Space-Riesz
Fractional Diffusion Equation

Yuxin Zhang' - Hengfei Ding’

Received: 30 January 2019 / Revised: 21 April 2019 / Accepted: 22 April 2019 / Published online: 10 June 2019
© Shanghai University 2019

Abstract

In this paper, we develop a novel finite-difference scheme for the time-Caputo and space-
Riesz fractional diffusion equation with convergence order O(t2~% + h?). The stability
and convergence of the scheme are analyzed by mathematical induction. Moreover, some
numerical results are provided to verify the effectiveness of the developed difference
scheme.
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1 Introduction

With the development of science, it has been found that the fractional derivatives and frac-
tional differential equations provide an excellent instrument for the description of memory
and hereditary properties of various materials and processes. Therefore, they are widely
used in the field of science and technology, such as the fields of control theory, biology,
electrochemical processes, porous media, viscoelastic materials [7, 14, 15].

However, unfortunately, for most fractional differential equations, it is not an easy task
to seek for their analytical solutions. For some simple linear equations, even if the analytic
solutions are obtained, it is not convenient to calculate, because the analytic solutions con-
tain some special functions. Therefore, it is essential to develop the effective numerical
solutions of the fractional differential equations.

Since the numerical approximation of fractional derivatives is the most important
step in numerical solutions of fractional differential equations, we first review the pro-
gress made in numerical approximation of fractional derivatives. As for the Caputo
derivative, Gao et al. proposed a so-called L1 — 2 formula with order (3 — @) [8]. Using
the different methods, Li et al. also got a numerical differential formula with conver-
gence order (3 — ) [11]. Later, Alikhanov proposed another (3 — a)th order numerical

differential formula at the superconvergence point 7 = f;, ,, and named it as the L2 — 1
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formula [1]. Furthermore, Li et al. developed a series of high-order formulas using
the rth (r > 4 is a positive integer) degree interpolation function [9]. For approximat-
ing the Riesz fractional derivative, the first-order accurate normal/shifted Griinwald
formula [13], second-order accurate weighted and shifted Griinwald by choosing the
appropriate weight coefficients [16], second-order accurate fractional centered dif-
ference formula [3], and some other higher-order formulas [5, 6, 20] have been con-
structed. Based on the above mentioned and other approximation formulas, a tre-
mendous amount of finite-difference methods for solving the fractional differential
equations have been developed. For example, Cui constructed a compact finite-differ-
ence scheme with the temporal accuracy of first order and spatial accuracy of fourth
order for the one-dimensional fractional diffusion equation in [2]. Wang and Vong [17]
developed two high-order finite-difference schemes for the fractional modified anoma-
lous subdiffusion equation and the diffusion-wave equation, respectively. Based on the
fractional multistep methods in time and central difference formula in space, Zeng [19]
proposed several finite-difference schemes for solving the time-fractional diffusion-
wave equation.

In this paper, we propose a novel finite-difference scheme for the following time-
Caputo and space-Riesz fractional diffusion equation:

Pu(x,t
D e = 285D | 0<x<L 0<1<T,
0, alxlﬂ
u(x,0) = p(x), 0 < x < L, M

u0,)=u(lL,t)=0,0<t<T.

Here, Cng u(x, 1) denotes the Caputo derivative of order a € (0, 1) and defined by [15]

t
a ]
DE u(e,t) = — / Mo 1 g 0<a<l,
g ra-a jy ds (t—s)”
APu(x,1) . . o .
and | is the Riesz derivative of order f € (1, 2) which is defined below [15],
X
Pu(x,t
ux, 1) =_ 1 (RLDﬂ + RLDﬂb>u(x, N, 1<p<2,
olxl? 2cos (ﬂ}) “ "
2

where RLDf . denotes the left Riemann-Liouville derivative

1 [ u(rr)

D? u(x,t)= ——— — dr, 1<p<2,
DD = T 555 /|, G b
and RLDf , 18 the right Riemann-Liouville derivative
1 ® " ur
D’ u(x,)= ——— = ———dr, 1<p<?2.
DD = T o / r—xp 1 d

This paper is organized as follows. In Sect. 2, based on a second-order accuracy approxi-
mation operator for the Riesz fractional derivative, we develop a finite-difference scheme
for the time-Caputo and space-Riesz fractional diffusion equation. The stability and
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convergence analysis of the constructed scheme is studied in Sect. 3. Numerical results are
provided in Sect. 4 to demonstrate the effectiveness of the numerical algorithm.

2 The Development of the Numerical Algorithm

Let h= % and 7= 1% be the spatial and temporal stepsizes, respectively. Set
xj=jh(0 <j<M),t, =nt (0 <k <N).Denote

W = ux;, 1), £ =0 ).

J

First, we introduce the following L1 formula [10, 14] to numerical treatment of the Caputo
fractional derivative CDgJu(t) atr=t,(n=0,1,...,N).

n—1

1 Tiy1 —oz
eD§ u®)l 2, = TR k:ZO / (t, — $)™u' (s)ds

n—1

| Z / 1 1, — )" [w + O(7)|ds ()

r-a =0
.
- ﬁ kgo by (ulty)) — ult) + 0(12701),

where the weights are defined by
by=Gk+D"" k""" k=0,1,....,n—1,
and which have the following properties.
Lemma1 [12] Let b, = (k + D= — k1= k=0,1,2,...and 0 < a < 1. Then, one has

1=by>b >by>-->b,—0,ask > +oo,

e k* < (b)7" < ¢ k% where ¢, and c, are constants,

n n—1
Dby = b))+ by =1 =b)+ Y (b= b)) +b, = 1.
k=0 k=1

In [4], the authors constructed the following second-order numerical differential
formula:

P u(x) _ 1
olxl? 2005(’25,3)

(B + *Blut) + 0 3

for the Riesz space fractional derivative, where the operators

Ly = LN 0
Byu() = - ;‘6 K u(x — (£ — 1h),
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and

RBu(x) = o Z KD u(x + (£ = Dh).

=0

Here, the coefficients

K o362 "o (B=2\"(# B _
= 1)< 2p ) %(313—2) (m)(f—m) £=01

can be obtain by the novel generating function

~ 3-2 2(-1 ~2.\’
WZ(Z)=< ﬂ2ﬂ B (ﬂﬁ )Z+ﬂ2ﬂ Z2>.

()

Besides, we can also calculate the coefficients K. . by the following recursive relations:

o _ (32 g
20 - Zﬁ ’
4p - p)
Il = W%a
2 T 76— [40 ==+
+p-20p-r+2x)|. £22

Next, we list the properties of the coefficients K(ﬂ ) ¢ =0,1,...).

Lemma 2 [4] The coefficients K(ﬁ ) (¢ =0,1,...) have the following properties for
1<p<2:

O <3ﬂ—2>ﬁ>0 @ _ ABA —P) @ <0

) K= 28 Ko = 35-2 =7, K0 <
3 2
i) K;{’;=ﬂ(8ﬁ é;ﬂ ;“)jw 2 K- k) < 0if p € (1, %), while k) > 0if p € [5*,2),
3
621 + 484/87
where f* = % + - + 19 ~1.5333;

\/621 + 484/87
iii) k%) > 0if¢ > 3;
) - _sin (nﬁ)F(ﬂ + 1)f_ﬁ_l

iv) Ky, - ast — oo;
V) K;ﬂ; > 0as? — oo;

vi) ZK(ﬂ) 0, ZK(ﬂ)<0 m>2.
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Now, we consider Eq. (1) at point (x;, 7). For the space fractional derivative, we apply the
second-order formula (3) to approximate the Riesz derivative for x € (0, L), that is,

P ux,t,)
Pt m e (R A Yt 1,) + O(RR), A
9|x|? 2 cos (fﬂ) @
2
where
J+l1
LA u(x;, ) = - Z K u(x; = (£ = Dh,t,),
and
M—j+1
RAgu Xty ﬂ 2 K(ﬁ)u x + (€ — Dh,t )

Finally, substituting (2) and (4) into (1), and omitting the high-order terms (9(12‘“ + hz).
Replacing the function u(x;, 1,) with its numerical approximation value U;‘, we can obtain
the following finite-difference scheme:

Jj+1 M—j+1
n B ym B ym —_ gm—1
Ui+q ZK Ulpm Z Ky o Ui 1] =U
n—1
n—k n—k—1 a n
J —];bk<Uj - U )+rr(2—a)Jj., )
0 _ .
Uj = (p(xj), 0<j<M,
Uy=U;,;=0,1<n<N,
Q2 —a)
where g = ———.
2hﬂcos<§ﬂ)

3 Stability and Convergence Analysis

In this section, the stability and convergence analysis of the above difference scheme are
studied in detail.

3.1 Stability Analysis
From Lemma 2, we easily know that

Lemma 3 Under the condition

\/ 621 + 481/87 19
+ + <p<2, (6)

24
\/621 + 484/87

[eJ RN
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the coefficient K'(ﬂ ) satisfy

5)
Ky, > 0.

Theorem 1 Under the condition (6) and 0 < a < 1, the finite-difference scheme for the
time-Caputo and space-Riesz fractional diffusion equation (1) is unconditionally stable.

Proof Let V].” be the exact solution of the finite-difference scheme (5). Denote

5;’ = Vi" - U;’, then we can obtain the following perturbation equation:

( J+1 M—j+1
() (ﬂ) (ﬂ) 0
(1+2‘1K )5 +ql Z K3, Lot Z 5+f 1] =&
£=0.7#1 £=0.2#1

J+1 M—j+1 ‘|

()] B ()
) (1+2q’( >§"+ql Z KpeSira1 T Z Ko eSiveot

£=0,0#1 ¢=0,0#1

n—1
= (1-0)g" + Z (biet = b)& ™ +b,18).
=2

Below, we will discuss the stability of the numerical algorithm by mathematical induction.
Denote

£ = letl = e [

m
Note that Lemma 2, that is, 2 K'(ﬂ ) <0 (m > 2), then we have
£=0

1 B jH (17) + (ﬂ)
ol =le = (o 2mefvo] 3 el wele

M-, +1
< <1+2qK(ﬁ)>|§ ‘_H]l (ﬂ)’ £+l|+ (ﬂ)| ! 1|l
Jj+1 M—j+1
= <1+2q’((ﬂ))§ 'HI[ Z K(ﬂ) —en1 T Z Ké@ j1+f—1]
£=0,0#1 £=0,0#1
= la] <.

Furthermore, let

IE" |

ax ”|
/ _J<M 1|£ ’
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and assuming that we have proved that ||EX|| < ||E°||,, for 1 <k <n— 1. Then, we also
know that

j+1 M—j+1
1B = |&2| < (142068 |e l Y olel+ Yo« ]
£=0.0# £=0,0#1
" J+1 M—j+1
<1+2‘1K )fn +aq| X Koe|Sien| T 2 Kor ;+f—1|
£=0,/#1 £=0,/#1

A+l M—j+1
(B) ) (ﬂ)
(H'ZqK )‘f +q[ Z KyeSiea1 t Z 268740 1”

£=0,0#1 £=0,0#1
n—1
=|(1=6))&+ Y (b —b) & + b, &
k=2

n—1
AT S e

< (1=by)|[E]_ + e

n—1
[+ 2 e =]

=1E

This ends the proof.

3.2 Convergence Analysis

Theorem 2 Denote by u(xj, t)(G=12,....M—1;n=1,2,...,N) the exact solution of (1)
at mesh point (x;,t,), and let { U;’ |0 <j<M,0<n < N} be the solution of the finite-differ-
ence scheme (5). Define

s = u(x;, t)—U” j=1L2,....M;n=1,2,...,N,

then there exists a positive constant C, such that

lle"]l < C (" +h*), 0<n <N,

under the condition (6) and 0 < a < 1.

Proof Denote &" = (&, ¢, ..., &" )" then it follows from (1) and (5) that
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1 M—j+l
(B) B 1 # 1 _ .0 1
<1+2q1< ) +q Z Ky r€ipn T Z Ky r€jvr— —ej+Rj,
£=0,0#1 £=0,6#1
1 M—j+1

()] B .n B) _n
<<1+2‘1’f ) +4q 2 Kye€ier1 T Z Ky e

¢=0,0#1 £=0,0#1

—b)el+ Y (b —by)er ™ + b, &) + R,
k=2

Here, the truncation error R]’.’ satisfies

<C(P?+11), j=1,2,.... M= I;n=1,2,...,N

where C is a non-negative constant.
Below, we give the convergence result using mathematical induction. First, for the case

ofn=1,let

Then, one has

Tﬂ

d
(o]

IA

IA

1 1 a 1 a
E = |& = max E. .
“ ||oo | f|/T lSiSM—l) J|/T
J+1 M—j+1
’ ’ <1+2qK(ﬁ))’£},’+q Z (ﬂ) |+ K‘éﬂ; elf|
£=0,6#1 =041

j+1 M—j+1

J J
()] 1 ()] B 1
<l+2qK ))6j|+‘1 Z Ko |8i- f+l|+ Z Koe £j+f—l|
£=07#1

=0,0#1

Jj+1 M—j+1
(RPN » .1 B 1
(1+2‘1K )5,/ +aq| Y e e T Y, ke e-1
£=0,0#1 £=0,6#1
0, pl
’51 +Rf’.

Using € = 0 and |R;,| < C(z2 + th?), then there holds that

As the before, set
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and

”ska <O +71M), k=1,2,...,n—1,

then we further have

Tallgn”oo ’ n) < < +2qK(ﬂ)> &

Jj+1 M—j+1
n n
2 KyelEe Z Kyr|Ee
¢

=0,/#1 £=0,6#1
Jj+1 M—j+1
(B) n n
S<1+2qK )e Z Kyp|€ipi| T Z K> 0 ej+f_1|
£=0,£#1 £=0,£#1
j+l M—j+1
B\ n ()] £n B n
= <1+2‘1K )Ej +t4q Z Kpe€j—er1 t Z Ky eEjve—1
£=0,6#1 £=0,0#1
n—1
— n n—k 0 n
= (l - b,)ej + g (bk_, - bk)e; +b, € + R

n—1

(=0 e+ 5 -0
k=2

IA

e”_k” +
n—1 -
< { (1=b,)+ ) (by = by) }C(r2 + 7% + C(2% + 1°R?).

k=2

RI'L
J

Therefore, there exists a positive constant C, such that

"l < C@*™ + B2

This finishes the proof.

4 Numerical Examples

In this section, we apply the method proposed in this paper to solve the fractional partial
differential equation. We obtain the numerical results and plot graphs for these problems
with the help of MATLAB routines.

Example 1 Let us consider the following equation:

0P u(x, 1)
olx|?

Dg u(x, 1) = +f(x,1), a€(0,1), pe(1,2)
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on a finite domain 0 < x < 1,0 < ¢ < 1 with a given force term

flx, 1) =@t2x2(1 —x)?
e 2+2)! revp e
t s (zf/2) cos (7f/2) & Z( f!(Z—f)![‘(3+bﬂ_ﬂ) [x +(1-x) ]

Its analytical solution is

u(x, ) = £H%(1 = %)%

Tables 1 and 2 list the maximum errors and convergence orders using the finite-dif-
ference scheme (5) at time ¢ = 1 with different stepsizes. It is observed that the numeri-
cal convergence orders are consistent with our theoretical analysis. In addition, Figs. 1,
2, 3 and 4 compare the graphs of the exact and approximate solutions with different
values of @, f§, 7, and h. The graphs show excellent agrement between the solutions.

Table 1 Temporal convergence

orders of Example 1 withp=1.6 * ’ The maximum errors I:;vt;r;gfcr:l
and h = m orders
0.2 11_0 3.100 519E—-005 -
L 1.573 542E—005 1.6727
g 9.722 013E—-006 1.673 8
L 6.700 211E—006 1.668 2
g 4.951 918E—-006 1.658 4
0.4 % 1.245 707E-004 -
L 6.713 991E—-005 1.524 4
g 4.318 225E-005 1.5342
% 3.063 135E—-005 1.5389
L 2.312 765E—005 1.5412
0.6 z 3.782 137E—-004 -
% 2.189 031E—-004 1.348 6
L 1.480 504E—-004 1.3594
? 1.091 674E—004 1.365 4
g 8.505 257E—005 1.369 1
0.8 11_0 1.010 018E—-003 -
L 6.309 231E—004 1.160 5
g 4.504 827E-004 1.1710
L 3.464 5S36E—004 1.176 7
i 2.793 741E—-004 1.1803
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Ta(l;le 2 fSIE:)atial clonlvergflnce_ 04 p h The maximum errors The spatial
orders_o xample with @ = 0. convergence
and 7 = o orders
1.6 % 2.155 992E—003 -
1‘_5 9.409 768E—004 2.044 8
210 5.276 218E—004 2.0110
% 3.335 257E—-004 2.055 4
2LO 2.303 227E—004 2.030 7
17 LO 2.208 103E-003 -
1
% 9.633 981E—-004 2.045 6
2‘_0 5.397 315E—-004 2.0140
% 3.413 537E—-004 2.053 2
% 2.357 280E—004 2.0307
1.8 % 2.230 580E—003 -
% 9.751 993E—-004 2.040 6
% 5.467 731E—-004 2.0113
2‘_5 3.464 373E—004 2.0450
% 2.394 909E—004 2.0249
1.9 % 2.217 223E-003 -
1‘_5 9.740 071E—004 2.028 8
210 5.476 063E—004 2.0017
% 3.481 438E—004 2.029 8
% 2.412 347E—004 20121
Fig. 1 Comparison of exact and x 1073
numerical solutions for Example 14
1 withz = ;—O,h = ;—Oattime
t=0.5 12 -
10 -
—_
v 8
o
Il
Soor
No)
S 4 |
2L
—<— (. B) = (0.6, 1.8)
0 44 ——(a,)=(0.8,1.8) 2]
—o—(a, $)=(1.0, 1.8)
-2 1 I 1 1
0 0.2 0.4 0.6 0.8 1.0
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Fig.2 Comparison of exact and
numerical solutions for Example
1 withz = %,h = %attime
t=05

Fig.3 Comparison of exact and

numerical solutions for Example

Iwitht= = h= Latspace
30° 20

x=028

u(x, t1=0.5)

u(x=0.8,7)

0.012
0.010 |
0.008
0.006
0.004 - —o—(a, /)= (0.6, 1.55)
—=—(a,p)=(0.6, 1.65)
< (a,$)=(0.6,1.75)
0.002 - —— (a, )= (0.6, 1.85)
——(a, ) = (0.6, 1.95)
0 : : b
0.2 0.4 0.6 0.8 1.0
X
0.030
o (@=0.1,8=1.7)
——(@=03,=1.7)
0.025F < (@=058=17)
——(@=0.7,8=1.7)
0020 ¢ (@=09,=17)
0.015
0.010
0.005

Ol

Example 2 Consider the following equation:

CD(")”tu(x, 1) =

where
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Fig.4 Comparison of exact and 0.030
numerical solutions for Example _ _
terical solutions | (@=08,=16)
lw1th1—5,h—5atspace s (a=0.8 ﬁ=ll7) b
x=028 0.025 <l A
—<—(@=0.8,=18)
—— (2 =0.8,=19)
~ 0.020 —%—(¢=038,=2.0)
.
=)
I 0.015 |
B
3
0.010 -
0.005
0

1.0

—ﬂ d—a 41 _ N4
fed=Fs 5t =9
a S (=141 @4 +2)! dre—p 4+e—p
+Zcos(£ﬁ)fg()f!(4—f)!l"(5+f_ﬂ)[x + (1 -x) |
2

The exact solution is

u(x, ) = *x*(1 = x)*.

In Table 3, we list the maximum error for # = 1.2, A = 1/500 and different values of
a. In Table 4, we list the maximum error for « = 0.7, 7 = 1/400 and different values of .
From these tables, we can conclude that the developed numerical solutions are in excellent
agreement with the exact solution.
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Table 3 Temporal convergence

orders of Example 2 with f = 1.2 * ’ The maximum errors I:vat;mfscr:l
and h = ﬁ orders g
0.15 11_0 5.992 925E—-006 -
L 3.119 961E—006 1.609 9
g 1.961 602E—006 1.6131
L 1.372 343E—-006 1.601 0
f 1.028 883E—006 1.5799
0.35 % 2.032 757E-005 -
L 1.102 994E—-005 1.507 8
E 7.106 417E—-006 1.528 1
g 5.043 203E—-006 1.536 9
L 3.808 692E—-006 1.5399
0.55 z 5.827 195E—-005 -
% 3.382 003E—005 1.3418
L 2.284 980E—-005 1.3630
? 1.681 387E—005 1.374 6
g 1.306 956E—005 1.3817
0.75 11_0 1.300 527E—004 -
L 8.070 317E—-005 1.176 8
f 5.724 104E—-005 1.194 1
2 4.375 TT0E—-005 1.203 7
L 3.509 557E—-005 1.2099
0.95 % 2.682 839E—-004 -
L 1.781 985E—-004 1.009 1
E 1.328 735E—-004 1.020 2
g 1.056 765E—004 1.026 3
L 8.758 086E—005 1.0302
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Table4 Spatial convergence p h The maximum errors The spatial
orders of llExample 2 witha = 0.7 convergence
and 7 = = orders
1.55 1_10 1.625 279E—-004 -
é 1.142 747E—-004 1.9320
ﬁ 8.480 268E—005 19350
% 6.548 636E—005 1.9358
1_18 5.214 072E—-005 1.9349
1.65 % 1.548 145E—-004 -
é 1.084 935E—-004 1.9501
ﬁ 8.032 008E—005 1.950 5
1 6.190 909E—005 1.949 7
:L: 4.921 736E-005 1.947 8
1.75 1_10 1.426 306E—004 -
L 9.974 747E—-005 1.9615
E 7.372 765E—005 1.960 8
E 5.675 414E—-005 1.9595
g 4.507 008E—-005 1.957 1
1.85 % 1.261 905E—-004 -
é 8.820 379E—-005 1.964 3
ﬁ 6.515 927E—-005 1.964 4
% 5.013 117E—-005 1.963 5
ﬁ 3.979 032E—-005 1.961 4
1.95 1_10 1.056 483E—-004 -
é 7.398 705E—005 1.953 8
ﬁ 5.471 822E—005 19571
% 4.212 694E—-005 1.958 4
L 3.345 178E—-005 1.9577
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