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Abstract

In this paper, a compact difference scheme is established for the heat equations with
multi-point boundary value conditions. The truncation error of the difference scheme is
O(z? + h*), where 7 and h are the temporal step size and the spatial step size. A prior esti-
mate of the difference solution in a weighted norm is obtained. The unique solvability,
stability and convergence of the difference scheme are proved by the energy method. The
theoretical statements for the solution of the difference scheme are supported by numerical
examples.

Keywords Heat equation - Multi-point boundary value condition - Compact difference
scheme - Energy method
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1 Introduction

The classical type of conditions is referred to as local conditions when the values of the
unknown function or its derivative are specified only at the boundary points of the prob-
lem domain, while the non-local boundary conditions are proposed where the values of
the unknown function at all or some points inside the problem domain take part in the con-
dition formulation. The development of numerical methods for the solution of non-local
boundary value problems has been a very important research area. There are many models
and works about non-local boundary conditions, such as elliptic equations [10, 15], ellip-
tic—parabolic equations [3, 4], hyperbolic equations [2, 7, 16, 17], hyperbolic—parabolic
equations [5] and parabolic equations [1, 8, 9, 11-13].

We recall two cases of non-local boundary conditions. The first one is the integral
boundary conditions
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L
u(0,1) =/ a(s)u(s, t)ds + g,(),
0
L
uL,t) = / B(s)u(s, f)ds + g,(f), 0<t<T, (D
0

where a, f§, g,,8, are known functions. Another one is the multi-point boundary value
conditions

M
w0, =Y a, (&, 1)+ g,
r=1

N (2)
u(L,0) = Y B(Ouln, ) + g0, 0<t<T,
s=1

where a,, f,, g, 8, are known functions.

There is a lot of research on the integral boundary conditions and multi-point boundary
conditions under different models. Sun considered the heat equations with integral bound-
ary conditions (1) and got unconditional solvability and L, convergence for the difference
scheme which was second order in time and fourth order in space [13]. Martin-Vaquero and
Vigo-Aguiar provided a compact difference scheme for the same problem by the fourth-order
Simpson’s composite formula and Crandall’s formula [11]. They improved the accuracy of
this algorithm and studied the convergence later in [12]. They all used the composite Simpson
rule to approximate the boundary conditions. Yildirim and Uzun established stable difference
schemes with third and fourth order for the hyperbolic multi-point non-local boundary value
problem [16]. They provided stability estimates and numerical analysis for the solutions of the
difference schemes. Ashyralyev and Gercek considered a finite difference method for solv-
ing the multi-point elliptic—parabolic partial differential equation and obtained stability, and
coercive stability for the solution of the difference scheme [4]. Alikhanov studied multi-point
boundary conditions (2) for the heat equation with variable coefficients in the differential and
finite-difference settings [1]. He established the difference scheme which is second order both
in space and in time. Using the method of energy inequalities, prior estimates for the corre-
sponding differential and finite-difference problems are obtained. Due to the characteristic of
the multi-point boundary condition, he just proved the prior estimates in a weighted L? norm.

Our work is a good supplement to the previous researches. In this article, we construct a
compact difference scheme for the multi-point boundary value problem of the heat equation
taking the form of

ou 0*u

= _ 2= = L <T
o5 aax2+bu fx,H, O0<x<L, 0<t<T, 3)

M
w0,0) = Y a, (&, 1) + 1, 1),
r=1

N “)
WL =Y BOuln.t) + (), 0<t<T,
s=1
ux,0) =pkx), 0<x<L, Q)
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where a>0 and b >0 are given constants, a.(?), f,(), u, (@), u,() € C[0,T],
0<é <6< <y <L 0<n <ny < <ny<L,fand ¢ are continuous functions.
We establish a compact difference scheme with the truncation error O(z? + h*) and get a
weighted L2 norm prior estimate. Then, we prove the unique solvability, convergence and
stability using the energy method.

The rest of this paper is organized as follows: some notations are introduced and several
important lemmas are given in Sect. 2. Then, a compact difference scheme is constructed
in Sect. 3 and a prior estimate is provided in Sect. 4. Based on a prior estimate, the unique
solvability, stability and convergence are proved in Sect. 5. Besides, a compact finite-dif-
ference scheme is also given for the multi-point boundary value problems of the heat equa-
tion with variable coefficients in Sect. 6. At last, two numerical examples are presented in
Sect. 7 and a brief conclusion is given in Sect. 8, respectively.

2 Preliminary

In this section, some useful notations and lemmas will be prepared.

For finite-difference approximation, we discretize equally the interval [0, L] with
x; =ih (0 <i<m),[0, T witht, = kz (0 < k < n),where h = L/mand r = T /n are the spa-
tial and temporal step sizes, respectively. Denote 7, L= e+ 14:0)/2,2, ={x | 0< i <m},
Q. = {t, | 0 <k < n}, then the computational domain [0, L] X [0, 7] is covered by €2, X Q..
For any mesh function v = {v:.‘ |0<i<m, 0<k<n} defined on Q, X Q_, introduce the
following notations:

Lk, k4 (ST TS R
Vi zz(vi+vi ) 6,v,; _;<"i "z)’
5.k —l(vk —vk) 62\1k=l Sk —8F
X i+l h i+1 i/’ X 0 h X i+% X l’—% :
Let vk = (W&, vk, ..., vk ), then v is a mesh function defined on Q.
Denote
V,= {v|v= (vo,v],...,vm)}
and

px)=+vx(L-x), 0<x<L.

For any v € V), introduce the following norms or seminorms:

m—1

V|l = max |v,], vl =alkl =v Zv. —y2
IVl = max [vil. V] AP
=

m—1 m—1 m—1 ,2 2
p; +p; 2
2 _ ) _ i i+1
BY R lpvllo =k Y pivE vl =g Y S (5 )
i=1 i=1 i=0
Forany 0 < ¢ < d < L, define
X, = min x;, X, = max Xx;.
0 xeled] 0 xeled
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With an assumption that 2 < d — ¢, we give similar definitions in the interval [c, d]:

ny—1
”V”oo,[c,d] gg{?;(dwll, ”V”[c,d] ( Vm0+ Z v + ),

i=my+1
np—1
WVlifear = |7 Z (5 Vig! > )
V2
no—1
”pV”[C’d] = ‘\ h( mo m(, 2 P ”0 ”0)
i=my+1
ng—1 2 2
P+ Py,
— 2
|pv|l,[c,d] - \ h[; D) (5xvi+%) .
=m

For any grid function w € V,,, define

(Aw) %(wi_1 +10w; +wy), 1<i<m-—1,
w); =

w;, =0, m.

We need some lemmas for establishing and analyzing the difference scheme for (3)-(5).

Lemma 2.1 [14] Let v € V,,. Then, for any € > 0, we have

1 1
2 < 2+<—+—) 2
Vil < e+ (2 + 7 )i,

1 1

2 2

A% < elv + e —— v .
” ”og,[c,d] | |1 Jled] (6 xno ) ) ” ”[c,d]

Lemma2.2 Letve V,and0 <c<d<L.Ifh < (d—c)/4, then for any € > 0, we have

1 2
v <elpv? + | — + —— )Ipvli3,
VI oy < 1PV} <cgg co(d—c)>”p I3

where ¢, = min{c(L — ¢),d(L — d)}.
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Proof According to Lemma 2.1, we have

1
”V”oo[cd] <C05|V|1[Cd] (_6 >”v”[cd]
Fmg
1
(C_ >||V”[(d

1
< 5|pv|1 led] <T )“pV”[( d]
O
<elpvli+ ( ==+ —— )il

0 Co(d

Lemma 2.3 For any grid function v € V,,, we have

2
< Cof|"|1,[g,d] +

+

This completes the proof.

2 12 2 th 2 2
IpvI < Zpani + 256 + 12,

Proof From the definition, we can get
m—1 m—1

2 _ 2 2
IPCAVIG = h 2% P’ = 75 Zp iy +10v; 4 v,y

m—1

= Zp [Viey + Vi) + 100v7 + 20v,(vi_y + vy

IV

T Zp [100v2 — 2002 — 1002 | +12,))]

5h3 (L — h)
> —||pv||2 + = Z(zp — DL =P~ 0 )
5 5h L
> S lpvll? = == 0g +v).
In obtaining the last inequality, we have used 2p - pl . p[ 1 > Owhenl <i<m-1.

This completes the proof.

Lemma 2.4 Suppose f(x) € Cld,d + 3h]. Taking d, d + h, d + 2h, d + 3h as the inter-
polation points, we obtain the third-order interpolation polynomial of f(x):

: CPr x—d+jh)
Ly(x) = Z;f(d+lh)g—(d+ih)_(d+jh).

@ Springer



550 Communications on Applied Mathematics and Computation (2019) 1:545-563

Then, it satisfies

5
<=
dhexEg+2h IL; (0l 7 onax lf(d + ih)].

Proof Let
s=x—d)/h, x €[d+ h,d+2h)].
We have

1

x—(d+jh)
(d + ih) — (d + jh) ZH

i=0 j=0 i=0 j=0 J 2
J#i J#i
Therefore, we obtain
—(d +jh)
d+h<x<d+2h IL; ()] < lz:; 1_0[ (d+ih) — (d +jh) 0<a<>§ f(d + i)
J#i
- 5—(s—§)2nmwi+4m|<§nmxvu+4ML
4 2 0<i<3 ~ 4 0<i<3

This completes the proof.

Lemma 2.5 [14] Let h > 0 and c be two constants. Suppose g(x) € C®[c — h, ¢ + h). Then,

li[g'%c — 1)+ 10g"(c) + g (c + )]

h[gc+m 2g(c) + glc — )| + @@)c—h<§<c+h

Lemma 2.6 [6] Let {F* | k> 0} and {G* | k > 0} be two nonnegative sequences and
satisfy

Fk+l S(1—|—CT)Fk+TGk’ k:0,1,2,...,

where c is a nonnegative constant. Then, we have

k
Fhl Sec(k+1)T<F0+TZGl)’ k=0,1,2,....

=0
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3 Derivation of the Difference Scheme

Define a grid function
U={U'10<i<m 0<k<n}
on Q, X Q_, where
U =ux,t), 0<i<m 0<k<n.

Suppose & is small enough satisfying &, > 2h, ), < L —2h, 5, > 2h, and iy < L — 2h, that
is, h < 3min{&, L — &y, m,L— 1y}

C0n51der1ng the differential equation (3) at point (x; 1), we have

i zk+

2
au(x,,tk+ >— u <xl,tk+ >+bu<xi,tk+l>=f<x,«,tk+1>, 0<i<m, 0<k<n-1
2 2

ot ox2
(6)
By the Taylor expansion, we get
e+ 3 0%u o%u ket L
oU;, * - —[a > (x i,tk)+ﬁ(xi,tk+l) +bU; *
—f +0(T) 0<i<m, 0<k<n-1,
1
where fl.kJr ? = f(x;,t,,1). Acting the operator .4 on the above equation, we obtain
2
e+t 41
AsU; ? _E[ (x,,tk)+A (x,,tkH) +bAU i
] ©)
k+ =
—Af T H0GD), 1<ism—1,0<k<n—1.
Using Lemma 2.5, we have
et
5[ (x,,tk) + A (xl,tk+1)] = 52U > + O(h™). )
Substituting (8) into (7), we obtain
1 41 1 L
AU — a8 U 4 b AU = Af AR 1 <i<m—1,0<k<n—1.
©))
There exists a constant ¢, such that
k+ L
R <e,@+hY, 1<ism—1,0<k<n—1. (10)
Considering boundary value conditions (4) at 7, 1, we have
2
M
51 i) tu §r7 7
Zar<tk+ > 3 . (& ti) #m(n,1)+0(F), 0<k<n-1,
2
r=1
1)
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N

) tulng,t
Zﬁs<tk+ > m k) u(ﬂ k+l) +ﬂ2<tk+l>+0(72)’ 0<k<n-1.
2

- 2
12)
For any &,, there exists a unique i, such that &, € [x; ., ; ;»). Taking x; , x; 1, X; 45, %; 1388
the interpolation points, we obtain the third-order interpolation polynomial of u(x, ):

i+3 i.+3
LOG, 1) = Y ulx
p=i, q=ir
q#p
and we have
u,t)=LO¢.n+00", 1<r<M. (13)

Similarly, for any #,, there is a unique j, satisfying 1, € [x; 1, ;). Taking x; , x; .1, x; 5,
X; ;3 as interpolation points, we obtain the third-order interpolation polynomial of u(x, 1):

J+3 Ji+3
O =Y ux
P=i 4=s
q#p
and we have
u(n, ) = L (n,,0) + Oh*), 1 <s<N. (14)

Substituting (13) into (11) and (14) into (12), we get

M (0) 0
ek Lr fr,l‘ +Lr fr,t kL
0+2=Za(tk+l> (&) 2 ( k+1)+:“1<tk+}>+Ro+2’ O<k=n-1,
r=1 -
N 1) )
ke LO (ne 1) + L (1,0 141 kg
mh=;ﬂs(tk+'—> 2 +/’l2<tk+%>+Rm2’ OSkSn_l?
or
) M i.+3 1+3 —x fa !
L ; ot L
Uo'_z (’k+)ZU Hx _x +”1(tk+%)+Ro Y 0<ks<n-—1,
—1 i p T Mg
;#p
5)
k1 al i3 1/’ Ny — X K+
1 s = Xy 1
Um2=2ﬁs(tk+)ZU Hx — +;42<tk+%)+Rm2, 0<k<n-1,
s=1 P=Js a=jis " P 4q
q#p
(16)
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and there exists a constant ¢, such that

k+1
R <o (@40, IR < (+ht), 0<k<n—l.
Noticing the initial condition (5),

U =o), 0<i<m, 17

k+ l
omlttlng the small items R, > (0 £ i < m) in the formula (9), (15) and (16), and replacing
U k by u , we obtain the followmg difference scheme:

k+ 3 1 kel

1 1
A" —astu b Au T = AR, 1<i<m—1,0<k<n—1, (8)

el M i,+3 11+3
u, z=zla,(tk+%> Z Hx . +;4](tk+%), 0<k<n-1, (19

r= q=iy

q7p

N Jst3 Ji+3

](+1 > l\ r]s_‘x

umZ:Z/}SQHQZ HX = +H2<tk+%)’ 0<k<n-1, (20

s=1 D= f/;c

qaFp
W=p(x), 0<i<m. 2D

4 Prior Estimates

Lemma 4.1 The solution of (18)—(21) satisfies the following equality:
L || (Auk+1)||2_ I (Auk)||2 +a| s “uk"'% ‘2
<\ o WP 0 14

_alhz H (52 ko ) Z+pr<Auk+;>'2=h’§pg<f1ﬁk+;><,4uf+i> (22)

aL k3 ? i)
e +( u, , 0<k<n-1.

k+ 1
Proof Multiplying equality (18) by h.Aul.+2 and summing the result with respect to i from
n to &, we obtain

o
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2 k4 ket d o k+i ke d k4 2
hZ(A&,ui >(Aui >—ahz<6xui ><Aui >+th<Aui >
=n =n =n
< k+2 K+l
=hz<,4]§ 2><Aui 2), 1<n<éE<m-1,0<k<n-1.
=n

We multiply the above equality by 4 and sum up for & from # to m — 1, and then multiply
the result by 4 and sum up for # from 1 to m — 1to get

(23)

24

Due to

and

i, k1 ket i, 1\ kel h i, k2
—ah Zplz <5§ui ? ) <.4ul. 2> = —ah szz <5§ui 2)ul. ? - al—2 p? <5f_ui 2) ,
i=1 i i
we obtain

1

%(”p(/{uk“ ” Hp AM || >—ah2p <52 k+ >Mf 2
Lo Bl (). vsrses

i=1
(25)
Some calculation yields

+ b”p(AuH% )

o

m—1 1 1 m—1 1\ 2
2of 2 K5\ k5 ah 2 > k+ 35
—ah Zpi (5xui : )ui =5 Z (P,« +P,»+1) <5xui+5>
i=1 i

@ Springer



Communications on Applied Mathematics and Computation (2019) 1:545-563 555

Substituting the above equality into (25), we can get (22).
This completes the proof.

Theorem 4.1 Let {uf.C | 0 <i<m,0< k< n}be the solution of (18)—(21). Denote

M 2 N 2
o= (33]a(n)]). som s (23 [0(on)
O osks 441 3 T T ok \ 4 el BN ’
co=min{ (L% St (p_u ,ﬂ(L—ﬂ),"—N(L—"—W :
2 2] 2 2)2 2/ 2 2 (26)

¢ = min {&; — &y =}
24 L(6 L
4 (a0+ﬁ0)a < ((x0+ﬁ0) +L>, c; = max{1,4aL}.

1
2 5 Cé CoCq

CH =

When h and © are small enough, we have

acf s e fptanifp s 53 ()],

0 27)
o) () 05
Proof By Lemma 4.1 and inequalities
2
Al

() (i) < a0

ﬁ <5zuk+%> 2<@m21 ; 5uk+% 2+ 5uk+l 2 <6—l| bthr%|2
12 |[P\%" 7 0_6i=1pi it il =3P ’

2

S}

we have

s (It = st ) 5

“glpla > R e [ R G N

According to Lemmas 2.2 and 2.3, when 4h < min{&,,L — &, n,, L —n,, &y — &1y — 11 )
we have
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2
i + # <t 3 )
00,[)(,’] ’X‘M+3] 1 k+2

1 1 2 1
< agelp*i 2 + a()(T + —)”PblkJrz
& Co (xiM+3 _xi,)

2 12¢q,
Sz amey )
1 5 ce CO(fM—fl)
+Ot()h2L 1 + 2 < k+;>2+< k+;>2 . 2<t
—_ _— u U, u i l>,
o\t at—a [\ (1
2

1 k+% pa 2 2( )
5 <
2<Mm > _ﬂo“u 3 I

112 1 2 1
< foepil 1+”0<T + —>||pu"+z
GE  Co (xjN+3 — X )

1
< a0£|puk+2

Taking € = 1/(6L(a + f,)), we have

1 (@t B)PL(6(a+B)L 2 (“i)Z <k+é>2
5 + — u + | u,
2 6 cé €oCq 0

Ly gl 12(a+ ) (6(ag+B)L 2 N
S6L|pu [+ * HP(A” )

1 5 Fors o€y 0

0
2 2
+ Ky (tk+% ) + ”2<tk+% >

3¢
Whenh<ﬁ\/ ! , we get
2 (ay+Py)LI3c; (ay+Py)L+cy] g

i1\ 2 =\ 2 P
(6 () s

+4ﬂ%<tk+%> +4M§<tk+%).

1 5 2 coC
< 0¢1 0

2+48(a0+/30)(6(a0+/30)L+L)Hp<Auk+;) 2
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Substituting the above inequality into (28), we obtain

L (sl - ptas )
<5 (o[ + ) + 2

That is

2

2 2
’ + 4 (tk+i) T4 (tl<+l )]
0 2 2

()

(1= e7) () (1 + c2) ()|

0
p(Ar?)

2
+ M%(IHL) + ”g(tk+% )] :
0 2

29

+C3T[

When ¢,7 < 1/3, we have

()|

Hp(Auk“)Hi <(1+ 3c21-)Hp(Auk)H(2) + 3031 .
+,u%(tk+%) +ﬂ§<tk+%>], 0<k<n-1.

By Lemma 2.6, we obtain (27).
This completes the proof.

5 The Unique Solvability, Stability and Convergence

5.1 Unique Solvability

Theorem 5.1 Difference scheme (18)—(21) has a unique solution.

Proof The difference scheme (18)-(21) is a linear system of algebraic equations. Let
= (u,ut, ..., uk). According to (21), we obtain the value of u°.If the value u* of the k-th

time level is obtained, then we can obtain the value of u**! through (18)—(20). Consider the
homogeneous system about u**:

3Aujf“—a5jujf“+b,4u§“=o, 1<i<m-1, (30)
T
i+3 t+3
k k
+1 Z“(H)Z HHx —| 31)
b
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Js+3 J+3

=Bl | 2 T
! q#}?

According to Lemma 4.1 and similar to the derivation of (29), we get the result

(- czr)”p(Auk“)“z <0.

When 7 < 1/c,, we have ||p(Au**1)||5 = 0, that implies that

AUt =0, 1<i<m-1.

Then, it follows from (30) that

St =0, 1<i<m-1.

Both above equalities yield that

2
Ut = Aut - %5juf+l =0, 1<i<m-1

Combining with (31) and (32), we know u =0, 0 < i < m. Thus, the homogeneous sys-
tem only has a trivial solution.
This completes the proof.

5.2 Stability and Convergence
According to Theorem 4.1, we can obtain the following result easily.
Theorem 5.2 The difference scheme (18)—(21) is stable to the initial value and the right

term in the sense that: let {uf.‘ | 0 <i<m,0<k<n} be the solution of difference scheme
(18)—(21), then we have
2
.

k
[t} <esesr [ () + 2226 3 [
1=0
1 (1 )+ 18 (10) )] 0 < k<=1,

where ¢, and c; are defined in (26).
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Theorem 5.3 The finite-difference scheme (18)—(21) is convergent with the convergence
order of O(t? + h*) in the weighted norm.

Proof Let
ef:Uf—uf, 0<i<m, 0<k<n.

Then, subtracting (18)—(21) from (9), (15), (16) and (17) yields the error equations

k+ i k+3 k+t e+
Abe, > —ad’e, > +bAe, > =R,

i s

ST

1<i<m-1,0<k<n-1, (33)

ket & 3 ket i3 & —x e+ 2
7 _ B r g 2
e —Za,<tk+%) De, —|+R, 7, 0<ksn-l, (34)
r=1 " =i, g=ir *P q
q#p
N 3 3
k+1 o iy X el
e = 2 h(t )| Do [I =L [+R " 0<k<n-1, @33
2 “ Lx —x
s=1 P=js a=jis " P q
q#p
=0, 0<i<m. (36)

From Theorem 4.1, we obtain

2

fptag [y e 3 (p(an)
j=0

() (7)) o o)

This completes the proof of the theorem.

6 A Compact Difference Scheme for Heat Equations with Variable
Coefficients

We have discussed a compact difference scheme for the heat equation with the constant
coefficients in above sections. In this section, we will consider the heat equation with vari-
able coefficients in [1]:

w, = ax)w,, + bw, +clx,Hw + g(x, 1), 0<x <L, 0<t<T.
Let
1

wix, 1) = Dulx, 1),  k(x) = -3 /
0

* b(s)
—=ds.
a(s)
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Then, the function u(x, 7) satisfies that

1
Ix)u, =u,, +cix, Hu+f(x,1),
where c(x, 1) = k" (x) + (K'(x))? + b()k' (x)/a(x) + &(x, ) Ja(x), f(x,1) = e *Pg(x,1). The
convection term disappears now. Thus, we consider the multi-point boundary value prob-
lem of the heat equation with variable coefficients:

qXu, = u, +clx, Hu+f(x,1), 0<x<L, 0<t<T, 37)

M
wO0,0) =Y a,(Ou(&,. 1) + uy(0),

r=1 (38)
u(L,t) = Y B(Du(ng1) + (), 0<1<T,

ux,0) = pkx), 0<x<L. 39)
Similar to the establishment of (18)—(21) for problem (3)—(5), we present a compact differ-
ence scheme for (37)-(39) as follows:

k+1

1 1 1
A(q(xl-)étuerZ) —6k A, = AL, 1<i<m—1,0<k<n—1,

(40)
ek M i+3 k+l t+3
uy :é%(b&%) Z Hx iy +M1(tk+%), 0<k<n-1, (41
4#p
N Js+3 | Js+3
k+1 s SN — X,
Uy = = ;ﬂs<tk+%> [; Hx —x, +,M2(tk+%>, 0<k<n-1, (42)
’ q#p
u? = (p(xi), 0<Li<m. (43)

The truncation errors of (40)—(42) are all O(z> + h*). The proof of solvability, stability and
convergence of (40)—(43) is similar to that of (18)—(21), so we do not repeat it here and just
show a numerical example in Sect. 7.
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7 Numerical Tests

Example 1 Use the compact difference scheme (18)—(21) to solve the following problem

-

%—327;‘+u:—e*", 0<x<1, 0<r<1,
u(0,1) = 0.2 X [1(0.215, 1) + u(0.345, 1) + u(0.455, 1) + u(0.5, 1) + u(0.785, 1)]
) +[1 —02x% (60'215 + 60'345 + 60'455 + eO.S + 60'785)16_1, 0<t < 1’
u(1,t) = 0.4 x [u(0.375, ) + u(0.435, t) + u(0.575, ) + u(0.695, 1)]
+[e —04% (60‘375 + 60‘435 + 80‘575 + 60'695)]6_1, 0<t < 1’
ux,0)=¢", 0<x<I1.

The exact solution is u(x, r) = . Define

Eh,r)= max ”p(.A(Uk - ”k))Ho'
1<k<n

Table 1 presents the errors in a weighted L? norm when we take different space step sizes.
When the time step size is fixed to 1/16 000 and the space step size shrinks, the spatial
convergence order is 4. Table 2 lists the errors in a weighted L? norm when we take differ-
ent time step sizes. When the space step is fixed to 1/1 600 and the time step shrinks, the
temporal convergence order is 2. Table 3 provides the errors in a weighted L? norm when

Table 1 The spatial convergence

7 . n n log(E(h;_,.,t)/E(h;,7))
order of difference scheme (18)— Pk i Un Eth.7) log(}ly,,, /h)
(21) (z = 1/16 000)
1 1710 0.99993143 1.00000000 1.884E—5
2 1/20 0.999 99528 1.00000000 1.310E-6 3.846
3 1/30 099999911 1.00000000 2433E-7 4.152
4 1740 0.99999978 1.00000000 6.059E-8 4.832

Table 2 The temporal ‘ i1 " U E(h, 7) log(E(h,7,_)/E(h,7,))
convergence order of difference " " log(z;_y /7;)

scheme (18)—(21) (h = 1/1600)

1710  1.01079955 1.000 00000 2.881E-3

1720 1.002 69521 1.000 00000 7.189E—4 2.003
1730 1.001 197 31 1.000 000 00 3.194E—4 2.001
1/40  1.000 673 45 1.000 00000 1.796E—4 2.000

T

Table 3 The spatial and temporal convergence order of difference scheme (18)—(21)

(h,7) ! ur E(h,7) EQh,47)/E(h,7)
(1/10, 1/10) 1.010 728 98 1.000 000 00 2.845E-3

(1120, 1/40) 1.000 668 69 1.000 000 00 1.781E—4 15.977

(1/40, 1/160) 1.000 041 86 1.000 000 00 1.116E-5 15.955

(1/80, 1/640) 1.000 002 62 1.000 000 00 6.976E-7 15.997
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we take different space and time step sizes. The numerical results are consistent with the
theoretical analysis of convergence and stability.

Example 2 Use the compact difference scheme (40)—(43) to solve the following problem:

( _.o0u 0° o _
e T = —e T — e 0<x<1,0<t<1,

u(0,1) = 0.2 X [u(0.215, 1) + u(0.345, t) + u(0.455, 1) + u(0.5, t) + u(0.785, 1)]
) + [1 —02x% (6’0'215 + 60‘345 + 6’0'455 + 60'5 + 60,785)16—1, 0<t < 1’
u(1,t) = 0.4 X [u(0.375, 1) + u(0.435, t) + u(0.575, 1) + u(0.695, 1)]

+ [e —04 % (60'375 + 60'435 + 60'575 + 60‘695)]€_t, 0<t < 1’
L u(x,0) =¢", 0<x<1L

The exact solution is u(x, r) = e**.

Table 4 presents the errors in a weighted L? norm when we take different space step
sizes with fixing time step size, which shows the spatial convergence order is 4. Table 5
lists the errors in a weighted > norm when we take different time step sizes with fixing
space step, which presents the temporal convergence order is 2. Table 6 provides the errors
in a weighted L> norm when we take different space and time step sizes. The numerical
results are consistent with the truncation errors.

Table 4 The spatial convergence

[ . n n log(E(h;_,,7)/E(h;,7))
order of difference scheme (40)— iohy Y Un Eth, ) log(}lz,,, /h)
43) (r = 1/16000)

1 1/10 0.99991661 1.00000000 2.276E—5

2 1/20 0.999994 24 1.00000000 1.587E—6 3.842

3 1/30 0.999998 93 1.000 00000 2.936E-7 4.162

4 1/40 0.999999 73 1.000 00000 7.335E—-8 4.821

Table 5 The temporal . "
. i T u
convergence order of difference m

scheme (40)—(43) (h = 1/1600)

ur E(h’ T) log(E(h,7;_)/E(h,;))
m
log(i_i /i)

1/10  1.009 213 81 1.000 000 00 2.460E-3

1720 1.002 29561 1.000 00000 6.159E—4 1.998
1730 1.001 01948 1.000 00000 2.734E—-4 2.003
1/40  1.000 573 31 1.000 00000 1.538E—4 1.999

B W =

Table 6 The spatial and temporal convergence order of difference scheme (40)—(43)

(h,7) ! ur E(h,7) EQ2h,47)/E(h,7)
(1/10, 1/10) 1.009 127 10 1.000 000 00 2.421E-3

(120, 1/40) 1.000 567 53 1.000 000 00 1.520E—4 15.927

(1/40, 1/160) 1.000 035 55 1.000 000 00 9.534E—6 15.945

(1/80, 1/640) 1.000 002 22 1.000 000 00 5.960E~7 15.997
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8 Conclusion

In this article, a compact difference scheme is constructed to solve the multi-point bound-
ary value problem of the heat conduction equation with constant coefficients. Using the
energy method, the prior estimate is obtained and the unique solvability, stability and
convergence are proved rigorously. Because of the complexity of the multi-point bound-
ary conditions, the convergence order O(z? + h*) is obtained only in a weighted L? norm.
Besides, a compact difference scheme is also constructed for the problem with variable
coefficients. Numerical examples are provided to confirm the accuracy of the difference
scheme, which are consistent with the theoretical analysis. In the future, efforts will be
taken to perform an analysis on the difference scheme in L? norm and in L_, norm.
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