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Abstract
High-order strong stability preserving (SSP) time discretizations are often needed to ensure the 
nonlinear (and sometimes non-inner-product) strong stability properties of spatial discretiza-
tions specially designed for the solution of hyperbolic PDEs. Multi-derivative time-stepping 
methods have recently been increasingly used for evolving hyperbolic PDEs, and the strong sta-
bility properties of these methods are of interest. In our prior work we explored time discretiza-
tions that preserve the strong stability properties of spatial discretizations coupled with forward 
Euler and a second-derivative formulation. However, many spatial discretizations do not sat-
isfy strong stability properties when coupled with this second-derivative formulation, but rather 
with a more natural Taylor series formulation. In this work we demonstrate sufficient conditions 
for an explicit two-derivative multistage method to preserve the strong stability properties of 
spatial discretizations in a forward Euler and Taylor series formulation. We call these strong 
stability preserving Taylor series (SSP-TS) methods. We also prove that the maximal order of 
SSP-TS methods is p = 6 , and define an optimization procedure that allows us to find such SSP 
methods. Several types of these methods are presented and their efficiency compared. Finally, 
these methods are tested on several PDEs to demonstrate the benefit of SSP-TS methods, the 
need for the SSP property, and the sharpness of the SSP time-step in many cases.
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1  Introduction

The solution to a hyperbolic conservation law

may develop sharp gradients or discontinuities, which results in significant challenges to 
the numerical simulation of such problems. To ensure that it can handle the presence of a 
discontinuity, a spatial discretization is carefully designed to satisfy some nonlinear stabil-
ity properties, often in a non-inner-product sense, e.g., total variation diminishing, maxi-
mum norm preserving, or positivity-preserving properties. The development of high-order 
spatial discretizations that can handle discontinuities is a major research area [4, 6, 15, 28, 
30, 35, 46–49, 54].

When the partial differential equation (1) is semi-discretized we obtain the ordinary dif-
ferential equation (ODE)

where u is a vector of approximations to U. This formulation is often referred to as a 
method of lines (MOL) formulation, and has the advantage of decoupling the spatial and 
time discretizations. The spatial discretizations designed to handle discontinuities ensure 
that when the semi-discretized equation (2) is evolved using a forward Euler method

where un is a discrete approximation to U at time tn , and the numerical solution satisfies 
the desired strong stability property, such as total variation stability or positivity. If the 
desired nonlinear stability property such as a norm, semi-norm, or convex functional, is 
represented by ‖ ⋅ ‖ and the spatial discretization satisfies the monotonicity property

under the time-step restriction

In practice, in place of the first-order time discretization (3), we typically require a higher 
order time integrator, that preserves the strong stability property

perhaps under a modified time-step restriction. For this purpose, time discretizations with 
good linear stability properties or even with nonlinear inner-product stability properties 
are not sufficient. Strong stability preserving (SSP) time discretizations were developed 
to address this need. SSP multistep and Runge-Kutta methods satisfy the strong stability 
property (6) for any function F, any initial condition, and any convex functional ‖ ⋅ ‖ under 
some time-step restriction, provided only that (4) is satisfied.

Recently, there has been interest in exploring the SSP properties of multi-derivative 
Runge-Kutta methods, also known as multistage multi-derivative methods. Multi-derivative 
Runge-Kutta (MDRK) methods were first considered in [3, 21, 22, 31, 33, 34, 40, 41, 45, 
51], and later explored for use with partial differential equations (PDEs) [9, 29, 36, 39, 50]. 
These methods have a form similar to Runge-Kutta methods but use an additional derivative 
Ḟ = utt ≈ Utt to allow for higher order. The SSP properties of these methods were discussed 
in [5, 32]. In [5], a method is defined as SSP-SD if it satisfies the strong stability property (6) 
for any function F, any initial condition, and any convex functional ‖ ⋅ ‖ under some time-step 

(1)Ut + f (U)x = 0,

(2)ut = F(u),

(3)un+1 = un + ΔtF(un),

(4)‖un + ΔtF(un)‖ ≤ ‖un‖,

(5)0 ≤ Δt ≤ ΔtFE.

(6)‖un+1‖ ≤ ‖un‖,
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restriction, provided that (4) is satisfied for any Δt ≤ ΔtFE and an additional condition of the 
form

is satisfied for any Δt ≤ K̃ΔtFE . These conditions allow us to find a wide variety of time 
discretizations, called SSP-SD time-stepping methods, but they limit the type of spatial 
discretization that can be used in this context.

In this paper, we present a different approach to the SSP analysis, which is more along 
the lines of the idea in [32]. For this analysis, we use, as before, the forward Euler base 
condition (4), but add to it a Taylor series condition of the form

that holds for any Δt ≤ KΔtFE . Compared to those studied in [5], this pair of base condi-
tions allows for more flexibility in the choice of spatial discretizations (such as the methods 
that satisfy a Taylor series condition in [7, 10, 37, 39]), at the cost of more limited variety 
of time discretizations. We call the methods that preserve the strong stability properties of 
these base conditions strong stability preserving Taylor series (SSP-TS) methods. The goal 
of this paper is to study a class of methods that is suitable for use with existing spatial dis-
cretizations, and present families of such SSP-TS methods that are optimized for the rela-
tionship between the forward Euler time step ΔtFE and the Taylor series time step KΔtFE.

In the following subsections we describe SSP Runge-Kutta time discretizations and pre-
sent explicit multistage two-derivative methods. We then motivate the need for methods 
that preserve the nonlinear stability properties of the forward Euler and Taylor series base 
conditions. In Sect. 2 we formulate the SSP optimization problem for finding explicit two-
derivative methods which can be written as the convex combination of forward Euler and 
Taylor series steps with the largest allowable time step, which we will later use to find 
optimized methods. In Sect. 2.1 we explore the relationship between SSP-SD methods and 
SSP-TS methods. In Sect. 2.2 we prove that there are order barriers associated with explicit 
two-derivative methods that preserve the properties of forward Euler and Taylor series 
steps with a positive time step. In Sect. 3 we present the SSP coefficients of the optimized 
methods we obtain. The methods themselves can be downloaded from our github reposi-
tory [14]. In Sect. 4 we demonstrate how these methods perform on specially selected test 
cases, and in Sect. 5 we present our conclusions.

1.1 � SSP Methods

It is well known [13, 42] that some multistep and Runge-Kutta methods can be decom-
posed into convex combinations of forward Euler steps, so that any convex functional prop-
erty satisfied by (4) will be preserved by these higher order time discretizations. If we re-
write the s-stage explicit Runge-Kutta method in the Shu-Osher form [43],

‖un + Δt2F̃(un)‖ ≤ ‖un‖

����u
n + ΔtF(un) +

1

2
Δt2F̃(un)

���� ≤ ‖un‖

(7)

y(0) = un,

y(i) =

i−1∑
j=0

(
�ijy

(j) + Δt�ijF(y
(j))

)
, i = 1,… , s,

un+1 = y(s),
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it is clear that if all the coefficients �ij and �ij are non-negative, and provided �ij is zero only 
if its corresponding �ij is zero, then each stage can be written as a convex combination of 
forward Euler steps of the form (3), and be bounded by

under the condition �ij
�ij
Δt ≤ ΔtFE . By the consistency condition 

∑i−1

j=0
�ij = 1 , we now have 

‖un+1‖ ≤ ‖un‖ , under the condition

where if any of the � s are equal to zero, the corresponding ratios are considered infinite.
If a method can be decomposed into such a convex combination of (3), with a positive 

value of  > 0 then the method is called strong stability preserving (SSP), and the value  is 
called the SSP coefficient. SSP methods guarantee the strong stability properties of any spa-
tial discretization, provided, only, that these properties are satisfied when using the forward 
Euler method. The convex combination approach guarantees that the intermediate stages in 
a Runge-Kutta method satisfy the desired strong stability property as well. The convex com-
bination approach clearly provides a sufficient condition for preservation of strong stability. 
Moreover, it has also been shown that this condition is necessary [11, 12, 16, 17].

Second- and third-order explicit Runge-Kutta methods [43] and later fourth-order methods 
[23, 44] were found that admit such a convex combination decomposition with  > 0 . How-
ever, it has been proven that explicit Runge-Kutta methods with positive SSP coefficient can-
not be more than fourth-order accurate [27, 38].

The time-step restriction (8) is comprised of two distinct factors: (1) the term ΔtFE that 
is a property of the spatial discretization, and (2) the SSP coefficient  that is a property of 
the time discretization. Research on SSP time-stepping methods for hyperbolic PDEs has pri-
marily focused on finding high-order time discretizations with the largest allowable time step 
Δt ≤ ΔtFE by maximizing the SSP coefficient  of the method.

High-order methods can also be obtained by adding more steps (e.g., linear multistep 
methods) or more derivatives (Taylor series methods). Multistep methods that are SSP have 
been found [13], and explicit multistep SSP methods exist of very high order p > 4 , but have 
severely restricted SSP coefficients [13]. These approaches can be combined with Runge-
Kutta methods to obtain methods with multiple steps, and stages. Explicit multistep multistage 
methods that are SSP and have order p > 4 have been developed as well [1, 24].

1.2 � Explicit Multistage Two‑Derivative Methods

Another way to obtain higher order methods is to use higher derivatives combined with the 
Runge-Kutta approach. An explicit multistage two-derivative time integrator is given by:

‖y(i)‖ =

������

i−1�
j=0

�
�ijy

(j) + Δt�ijF(y
(j))

�������
≤

i−1�
j=0

�ij

�����
y(j) + Δt

�ij

�ij
F(y(j)

�����
≤

i−1�
j=0

�ij
���y

(j)���,

(8)Δt ≤ ΔtFE, where  = min
i,j

�ij

�ij
,
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where y(1) = un.
The coefficients can be put into matrix-vector form, where

We also define the vectors c = A� and ĉ = Â� , where � is a vector of ones.
As in our prior work [5], we focus on using explicit multistage two-derivative methods as 

time integrators for evolving hyperbolic PDEs. For our purposes, the operator F is obtained 
by a spatial discretization of the term Ut = −f (U)x to obtain the system ut = F(u) . Instead of 
computing the second-derivative term Ḟ directly from the definition of the spatial discretiza-
tion F, we approximate F̃ ≈ Ḟ by employing the Cauchy-Kovalevskaya procedure which uses 
the PDE (1) to replace the time derivatives by the spatial derivatives, and discretize these in 
space.

If the term F(u) is computed using a conservative spatial discretization Dx applied to the 
flux:

then we approximate the second derivative

where a (potentially different) spatial differentiation operator D̃x is used. Although these 
two approaches are different, the differences between them are of high order in space, so 
that in practice, as long as the spatial errors are smaller than the temporal errors, we see the 
correct order of accuracy in time, as shown in [5].

1.3 � Motivation for the New Base Conditions for SSP Analysis

In [5] we considered explicit multistage two-derivative methods and developed sufficient condi-
tions for a type of strong stability preservation for these methods. We showed that explicit SSP-
SD methods within this class can break this well known order barrier for explicit Runge-Kutta 
methods. In that work we considered two-derivative methods that preserve the strong stability 
property satisfied by a function F under a convex functional ‖ ⋅ ‖ , provided that the conditions:

and

(9)

y(i) = un + Δt

i−1∑
j=1

aijF(y
(j)) + Δt2

i−1∑
j=1

âijḞ(y
(j)), i = 2,… , s,

un+1 = un + Δt

s∑
j=1

bjF(y
(j)) + Δt2

i−1∑
j=1

b̂jḞ(y
(j)),

A =

⎛
⎜⎜⎜⎝

0 0 ⋯ 0

a21 0 ⋯ 0

⋮ ⋮ ⋮

as1 as2 ⋯ 0

⎞
⎟⎟⎟⎠
, Â =

⎛
⎜⎜⎜⎝

0 0 ⋯ 0

â21 0 ⋯ 0

⋮ ⋮ ⋮

âs1 âs2 ⋯ 0

⎞
⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎝

b1
b2
⋮

bs

⎞
⎟⎟⎟⎠
, b̂ =

⎛
⎜⎜⎜⎝

b̂1
b̂2
⋮

b̂s

⎞
⎟⎟⎟⎠
.

(10)F(u) = −Dx(f (u)),

(11)

Ḟ(u) = utt ≈ Utt = −f (U)xt = −
(
f (U)t

)
x
= −

(
f �(U)Ut

)
x
≈ −D̃x

(
f �(u)ut

)
= F̃(u),

(12)������������ ��������� ∶ ‖un + ΔtF(un)‖ ≤ ‖un‖ for Δt ≤ ΔtFE,

(13)������ ���������� ��������� ∶ ‖un + Δt2F̃(un)‖ ≤ ‖un‖ for Δt ≤ K̃ΔtFE,
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where K̃ is a scaling factor that compares the stability condition of the second-derivative 
term to that of the forward Euler term. While the forward Euler condition is characteristic 
of all SSP methods (and has been justified by the observation that it is the circle contractiv-
ity condition in [11]), the second-derivative condition was chosen over the Taylor series 
condition:

because it is more general. If the forward Euler (12) and second-derivative (13) conditions 
are both satisfied, then the Taylor series condition (14) will be satisfied as well. Thus, a 
spatial discretization that satisfies (12) and (13) will also satisfy (14), so that the SSP-SD 
concept in [5] allows for the most general time discretizations. Furthermore, some methods 
of interest and importance in the literature cannot be written using a Taylor series decom-
position, most notably the unique two-stage fourth-order method1

which appears commonly in the literature on this subject [9, 29, 36]. For these reasons, it 
made sense to first consider the SSP-SD property which relies on the pair of base condi-
tions (12) and (13).

However, as we will see in the example below, there are spatial discretizations for which 
the second-derivative condition (13) is not satisfied but the forward Euler condition (12) 
and the Taylor series condition (14) are both satisfied. In such cases, the SSP-SD methods 
derived in [5] may not preserve the desired strong stability properties. The existence of 
such spatial discretizations is the main motivation for the current work, in which we 
re-examine the strong stability properties of the explicit two-derivative multistage method 
(9) using the base conditions (12) and (14). Methods that preserve the strong stability prop-
erties of (12) and (14) are called, herein, SSP-TS methods. The SSP-TS approach increases 
our flexibility in the choice of spatial discretization over the SSP-SD approach. Of course, 
this enhanced flexibility in the choice of spatial discretization is expected to result in limi-
tations on the time discretization (e.g., the two-stage fourth-order method is SSP-SD but 
not SSP-TS).

To illustrate the need for time discretizations that preserve the strong stability properties 
of spatial discretizations that satisfy (12) and (14), but not (13), consider the one-way wave 
equation

(here f (U) = U ) where F is defined by the first-order upwind method

(14)

������ ������ ��������� ∶
����u

n + ΔtF(un) +
1

2
Δt2F̃(un)

���� ≤ ‖un‖ for Δt ≤ KΔtFE,

(15a)y(1) = un +
1

2
ΔtF(un) +

1

8
Δt2Ḟ(un),

(15b)un+1 = un + ΔtF(un) +
1

6
Δt2Ḟ(un) +

1

3
Δt2Ḟ(y(1)),

Ut = Ux,

(16)F(un)j ∶=
1

Δx

(
un
j+1

− un
j

)
≈ Ux(xj).

1  Note that here we use Ḟ to indicate that these methods are designed for the exact time derivative of F. 
However, in practice we use the approximation F̃ as explained above.
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When solving the PDE, we compute the operator F̃ by simply applying the differentiation 
operator twice (note that f �(U) = 1)

We note that when computed this way, the spatial discretization F coupled with the forward 
Euler satisfies the total variation diminishing (TVD) condition:

while the Taylor series term using F and F̃ satisfies the TVD

In other words, these spatial discretizations satisfy the conditions (12) and (14) with K = 1 , 
in the total variation semi-norm. However, (13) is not satisfied, so the methods derived in 
[5] cannot be used. Our goal in the current work is to develop time discretizations that will 
preserve the desired strong stability properties (e.g., the total variation diminishing prop-
erty) when using spatial discretizations such as the upwind approximation (17) that satisfy 
(12) and (14) but not (13).

Remark 1  This simple first-order motivating example is chosen because these spatial discre-
tizations are provably TVD and allow us to see clearly why the Taylor series base condition 
(14) is needed. In practice, we use higher order spatial discretizations such as WENO that 
do not have a theoretical guarantee of TVD, but perform well in practice. Such methods are 
considered in Examples 2 and 4 in the numerical tests, and provide us with similar results.

In this work we develop explicit two-derivative multistage SSP-TS methods of the form (9) 
that preserve the convex functional properties of forward Euler and Taylor series terms. When 
the spatial discretizations F and F̃ that satisfy (12) and (14) are coupled with such a time-
stepping method, the strong stability condition

will be preserved, perhaps under a different time-step condition

If a method can be decomposed in such a way, with TS > 0 we say that it is SSP-TS. In the 
next section, we define an optimization problem that will allow us to find SSP-TS methods 
of the form (9) with the largest possible SSP coefficient TS.

2 � SSP Explicit Two‑Derivative Runge‑Kutta Methods

We consider the system of ODEs

resulting from a semi-discretization of the hyperbolic conservation law (1) such that F sat-
isfies the forward Euler (first derivative) condition (12)

(17)Ḟ ≈ F̃ ∶=
1

Δx2

(
un
j+2

− 2un
j+1

+ un
j

)
.

(18)‖un + ΔtF(un)‖TV ≤ ‖un‖TV for Δt ≤ Δx,

(19)
����u

n + ΔtF(un) +
1

2
Δt2F̃(un)

����TV ≤ ‖un‖TV for Δt ≤ Δx.

‖un+1‖ ≤ ‖un‖

(20)Δt ≤ TSΔtFE.

(21)ut = F(u)

������������ ��������� ∶ ‖un + ΔtF(un)‖ ≤ ‖un‖ for Δt ≤ ΔtFE,
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for the desired stability property indicated by the convex functional ‖ ⋅ ‖.
The methods we are interested in also require an appropriate approximation to the second 

derivative in time

We assume in this work that F and F̃ satisfy an additional condition of the form (14)

in the same convex functional ‖ ⋅ ‖ , where K is a scaling factor that compares the stability 
condition of the Taylor series term to that of the forward Euler term.

We wish to show that given conditions (12) and (14), the multi-derivative method (9) 
satisfies the desired monotonicity condition under a given time step. This is easier if we 
re-write the method (9) in an equivalent matrix-vector form

where � =
(
y(1), y(2),… , y(s), un+1

)T,

and � is a vector of ones. As in prior SSP work, all the coefficients in S and Ŝ must be non-
negative (see Lemma 3).

We can now easily establish sufficient conditions for an explicit method of the form 
(22) to be SSP:

Theorem  1  Given spatial discretizations F and F̃ that satisfy (12) and (14), an explicit 
two-derivative multistage method of the form (22) preserves the strong stability property 
‖un+1‖ ≤ ‖un‖ under the time-step restriction Δt ≤ rΔtFE if it satisfies the conditions

for some r > 0 . In the above conditions, the inequalities are understood component-wise.

Proof  We begin with the method

and add the terms rS� and 2r̂(r̂ − r)Ŝ� to both sides to obtain the canonical Shu-Osher form 
of an explicit two-derivative multistage method:

F̃ ≈ Ḟ = utt.

������ ������ ��������� ∶
����u

n + ΔtF(un) +
1

2
Δt2F̃(un)

���� ≤ ‖un‖ for Δt ≤ KΔtFE,

(22)� = �un + ΔtSF(�) + Δt2ŜF̃(�),

S =

[
A �

bT 0

]
and Ŝ =

[
Â �

b̂T 0

]

(23a)
(
I + rS +

2r2

K2
(1 − K)Ŝ

)−1

� ≥ 0,

(23b)r

(
I + rS +

2r2

K2
(1 − K)Ŝ

)−1(
S −

2r

K
Ŝ
)
≥ 0,

(23c)2r2

K2

(
I + rS +

2r2

K2
(1 − K)Ŝ

)−1

Ŝ ≥ 0

� = �un + ΔtSF(�) + Δt2ŜF̃(�),
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where

If the elements of P, Q, and R� are all non-negative, and if (R + P + Q)� = � , then � is a 
convex combination of strongly stable terms

and so is also strongly stable under the time-step restrictions Δt ≤ rΔtFE and Δt ≤ Kr̂ΔtFE . 
In such cases, the optimal time step is given by the minimum of the two. In the cases we 
encounter here, this minimum occurs when these two values are set equal, so we require 
r = Kr̂ . Conditions (23a)–(23c) now ensure that P ≥ 0 , Q ≥ 0 , and R� ≥ 0 component-
wise for r̂ = r

K
 , and so the method preserves the strong stability condition ‖un+1‖ ≤ ‖un‖ 

under the time-step restriction Δt ≤ rΔtFE . Note that if this fact holds for a given value of 
r > 0 then it also holds for all smaller positive values.

Definition 1  A method that satisfies the conditions in Theorem 1 for values r ∈ (0, rmax] is 
called a Strong Stability Preserving Taylor Series (SSP-TS) method with an associated SSP 
coefficient

Remark 2  Theorem 1 gives us the conditions for the method (22) to be SSP-TS for any 
time step Δt ≤ TSΔtFE . We note, however, that while the corresponding conditions for 
Runge-Kutta methods have been shown to be necessary as well as sufficient, for the multi-
derivative methods we only show that these conditions are sufficient. This is a consequence 
of the fact that we define this notion of SSP based on the conditions (12) and (14), but if 
a spatial discretization also satisfies a different condition (for example, (13)) many other 
methods of the form (22) also give strong stability preserving results. Notable among these 
is the two-derivative two-stage fourth-order method (15) which is SSP-SD but not SSP-
TS. This means that solutions of (15) can be shown to satisfy the strong stability prop-
erty ‖un+1‖ ≤ ‖un‖ for positive time steps, for the appropriate spatial discretizations, even 
though the conditions in Theorem 1 are not satisfied.

This result allows us to formulate the search for optimal SSP-TS methods as an opti-
mization problem, as in [5, 13, 23, 25].

Find the coefficient matrices S and Ŝ

(
I + rS + 2r̂(r̂ − r)Ŝ

)
� = un� + r(S − 2r̂Ŝ)

(
� +

Δt

r
F(�)

)

+ 2r̂2Ŝ

(
� +

Δt

r̂
F(�) +

Δt2

2r̂2
F̃(�)

)
,

� = R(�un) + P
(
� +

Δt

r
F(�)

)
+ Q

(
� +

Δt

r̂
F(�) +

Δt2

2r̂2
F̃(�)

)
,

R =
(
I + rS + 2r̂(r̂ − r)Ŝ

)−1
, P = rR

(
S − 2r̂Ŝ

)
, Q = 2r̂2RŜ.

‖�‖ ≤ R‖�un‖ + P
����� +

Δt

r
F(�)

���� + Q
����� +

Δt

r̂
F(�) +

Δt2

2r̂2
F̃(�)

����,

TS = rmax.
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that maximize the value of TS = max r

such that the relevant order conditions (summarized in Appendix 1)
and the SSP conditions (23a)–(23c) are all satisfied.

However, before we present the optimal methods in Sect. 3, we present the theoretical 
results on the allowable order of multistage multi-derivative SSP-TS methods.

2.1 � SSP Results for Explicit Two‑Derivative Runge‑Kutta Methods

In this paper, we consider explicit SSP-TS two-derivative multistage methods that can be 
decomposed into a convex combination of (12) and (14), and thus preserve their strong sta-
bility properties. In our previous work [5] we studied SSP-SD methods of the form (9) that 
can be written as convex combinations of (12) and (13). The following lemma explains the 
relationship between these two notions of strong stability.

Lemma 1  Any explicit method of the form (9) that can be written as a convex combination 
of the forward Euler formula (12) and the Taylor series formula (14) can also be written as 
a convex combination of the forward Euler formula (12) and the second-derivative formula 
(13).

Proof  We can easily see that any Taylor series step can be rewritten as a convex combina-
tion of the forward Euler formula (12) and the second-derivative formula (13):

for any 0 < 𝛼 < 1 . Clearly then, if a method can be decomposed into a convex combination 
of (12) and (14), and in turn (14) can be decomposed into a convex combination of (12) 
and (13), then the method itself can be written as a convex combination of (12) and (13).

This result recognizes that the SSP-TS methods we study in this paper are a subset of 
the SSP-SD methods in [5]. This allows us to use results about SSP-SD methods when 
studying the properties of SSP-TS methods.

The following lemma establishes the Shu-Osher form of an SSP-SD method of the form 
(9). This form allows us to directly observe the convex combination of steps of the form 
(12) and (13), and thus easily identify the SSP coefficient SD.

Lemma 2  If an explicit method of the form (9) written in the Shu-Osher form

has the properties that

un + ΔtF(un) +
1

2
Δt2F̃(un) = 𝛼

(
un +

Δt

𝛼
F(un)

)
+ (1 − 𝛼)

(
un +

1

2(1 − 𝛼)
Δt2F̃(un)

)
,

(24)

y(1) = un,

y(i) =

i−1∑
j=1

𝛼ijy
(j) + Δt𝛽ijF(y

(j)) + 𝛼̂ijy
(j) + Δt2𝛽ijF̃(y

(j)), i = 2,… , s + 1,

un+1 = y(s+1)
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	 (i)	 all the coefficients are non-negative,
	 (ii)	 �ij = 0 whenever �ij = 0,

	 (iii)	 𝛽ij = 0 whenever 𝛼̂ij = 0,

then this method preserves the strong stability properties of (12) and (13) (i.e., is SSP-SD) 
for Δt ≤ SDΔtFE with

Proof  For each stage we have

assuming only that for each one of these Δt �ij
�ij

≤ ΔtFE and Δt 𝛽ij
𝛼̂ij

≤ K̃ΔtFE . The result imme-
diately follows from the fact that for each i we have 

∑i−1

j=1

�
𝛼ij + 𝛼̂ij

�
= 1 for consistency.

When a method is written in the block Butcher form (22), we can decompose it into a 
canonical Shu-Osher form,

This allows us to define an SSP-SD method directly from the Butcher coefficients.

Definition 2  Given spatial discretizations F and F̃ that satisfy (12) and (13), an 
explicit two-derivative multistage method of the form (22) is called a Strong Stabil-
ity Preserving Second Derivative (SSP-SD) method with and associated SSP coefficient 
SD = min{rmax, K̃r̂max} if it satisfies the conditions 

for all r = (0, rmax] and r̂ = (0, r̂max] . In the above conditions, the inequalities are under-
stood component-wise.

SD = min
ij

{
𝛼ij

𝛽ij
, K̃

𝛼̂ij

𝛽ij

}
.

‖y(i)‖ =

������

i−1�
j=1

𝛼ijy
(j) + Δt𝛽ijF(y

(j)) + 𝛼̂ijy
(j) + Δt2𝛽ijF̃(y

(j))

������
≤

i−1�
j=1

𝛼ij

�����
y(j) + Δt

𝛽ij

𝛼ij
F(y(j))

�����
+

i−1�
j=1

𝛼̂ij

������
y(j) + Δt2

𝛽ij

𝛼̂ij
F̃(y(j))

������
≤

i−1�
j=1

�
𝛼ij + 𝛼̂ij

�‖un‖

Y = (I + rS + r̂Ŝ)−1eun + (I + rS + r̂Ŝ)−1S

(
Y +

Δt

r
F(Y)

)
+ (I + rS + r̂Ŝ)−1Ŝ

(
Y +

Δt2

r̂
F̃(Y)

)
.

(25a)(I + rS + r̂Ŝ)−1e ≥ 0,

(25b)(I + rS + r̂Ŝ)−1rS ≥ 0,

(25c)(I + rS + r̂Ŝ)−1r̂Ŝ ≥ 0
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The relationship between the coefficients in (9) and (24) allows us to conclude that the 
matrices S and Ŝ must contain only non-negative coefficients.

Lemma 3  If an explicit method of the form (9) can be converted to the Shu-Osher form (24) 
with all non-negative coefficients 𝛼ij, 𝛽ij, 𝛼̂ij, 𝛽ij, for all i, j, then the coefficients aij, bj, âij, b̂j 
must be all non-negative as well.

Proof  The transformation between (9) and (24) is given by a21 = �21 and â21 = 𝛽21 and, 
recursively, 

Clearly then,

and

From there we proceed recursively: given that all �ij ≥ 0 and �ij ≥ 0 for all i,  j, and that 
akj ≥ 0 and âkj ≥ 0 for all 1 ≤ j < k ≤ i − 1 , then by the formulae (26a) and (26b) we have 
aij ≥ 0 and âij ≥ 0.

Now given �ij ≥ 0 and �ij ≥ 0 for all i,  j and akj ≥ 0 and âkj ≥ 0 for all 1 ≤ j < k ≤ s , 
the formulae (26c) and (26d) give the result bj ≥ 0 and b̂i ≥ 0 . Thus, all the coefficients 
aij, âij, bj, b̂j must be all non-negative.

We wish to study only those methods for which the Butcher form (9) is unique. To 
do so, we follow Higueras [18] in extending the reducibility definition of Dahlquist and 
Jeltsch [19]. Other notions of reducibility exist, but for our purposes it is sufficient to 
define irreducibility as follows:

Definition 3  A two-derivative multistage method of the form (9) is DJ-reducible if there 
exist sets T1 and T2 such that T1 ≠ ∅ , T1 ∩ T2 = ∅ , T1 ∪ T2 = [1, 2,… , s] , and

(26a)aij = 𝛽ij +

i−1∑
k=j+1

(𝛼ik + 𝛼̂ik)akj,

(26b)âij = 𝛽ij +

i−1∑
k=j+1

(𝛼ik + 𝛼̂ik)âkj,

(26c)bj = 𝛽s+1,j +

s∑
k=j+1

(𝛼s+1,k + 𝛼̂s+1,k)akj,

(26d)b̂j = 𝛽s+1,j +

s∑
k=j+1

(𝛼s+1,k + 𝛼̂s+1,k)âkj.

�21 ≥ 0 ⟹ a21 ≥ 0

𝛽21 ≥ 0 ⟹ â21 ≥ 0.
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We say a method is irreducible if it is not DJ-reducible.

Lemma 4  An irreducible explicit SSP-SD method of the form (22) must satisfy the (compo-
nent-wise) condition

Proof  An SSP-SD method in the block form (22), must satisfy conditions (25a)–(25c) for 
0 < r ≤ rmax and 0 < r̂ ≤ r̂max . The non-negativity of (25b) and (25c) requires their sum to 
be non-negative as well,

Note that these matrices commute, so we have

Recalling the definition of the matrix S, we have

Now, we can expand the inverse as

Because the positivity must hold for arbitrarily small r << 1 and r̂ << 1 we can stop our 
expansion after the linear term, and require

which is

Now we are ready to address the proof. Assume that j = J is the largest value for which we 
have bJ = b̂J = 0,

Clearly, then we have

bj = b̂j = 0, j ∈ T1,

aij = âij = 0, i ∈ T1, j ∈ T2.

b + b̂ > 0.

(I + rS + r̂Ŝ)−1(rS + r̂Ŝ) ≥ 0.

(rS + r̂Ŝ)(I + rS + r̂Ŝ)−1 ≥ 0.

es+1(rS + r̂Ŝ)(I + rS + r̂Ŝ)−1 ≥ 0,

([(rb + r̂b̂), 0])(I + rS + r̂Ŝ)−1 ≥ 0.

([(rb + r̂b̂), 0])(I − (rS + r̂Ŝ) + (rS + r̂Ŝ)2 − (rS + r̂Ŝ)3 +⋯) ≥ 0.

([(rb + r̂b̂), 0])(I − (rS + r̂Ŝ)) ≥ 0,

(rb + r̂b̂)(I − (rA + r̂Â)) ≥ 0 ⟹ (rb + r̂b̂) ≥ (rb + r̂b̂)(rA + r̂Â).

0 = (rb + r̂b̂)eJ ≥ (rb + r̂b̂)(rA + r̂Â)eJ ≥ 0.
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Since the method is explicit, the matrices A and Â are lower triangular (i.e., aiJ = âiJ = 0 
for i ≤ J ), so this condition becomes

By the assumption above, we have (bi + b̂i) > 0 for i > J , and r > 0, r̂ > 0 . Clearly, then, 
for (27) to hold we must require

which, together with bJ = b̂J = 0 , makes the method DJ-reducible. Thus we have a 
contradiction.

We note that this same result, in the context of additive Runge-Kutta methods, is due to 
Higueras [18].

2.2 � Order Barriers

Explicit SSP Runge-Kutta methods with  > 0 are known to have an order barrier of four, 
while the implicit methods have a barrier of six [13]. This follows from the fact that the 
order p of irreducible methods with non-negative coefficients depends on the stage order q 
such that

For explicit Runge-Kutta methods the first stage is a forward Euler step, so q = 1 and thus 
p ≤ 4 , whereas for implicit Runge-Kutta methods the first stage is at most of order two, so 
that q = 2 and thus p ≤ 6.

For two-derivative multistage SSP-TS methods, we find that similar results hold. A stage 
order of q = 2 is possible for explicit two-derivative methods (unlike explicit Runge-Kutta 
methods) because the first stage can be second order, i.e., a Taylor series method. However, 
since the first stage can be no greater than second order we have a bound on the stage order 
q ≤ 2 , which results in an order barrier of p ≤ 6 for these methods. In the following results 
we establish these order barriers.

Lemma 5  Given an irreducible SSP-TS method of the form (9), if bj = 0, then the corre-
sponding b̂j = 0.

Proof  In any SSP-TS method the appearance of a second-derivative term F̃ can only 
happen as part of a Taylor series term. This tells us that F̃ must be accompanied by the 

r
∑
i

(rbi + r̂b̂i)AiJ + r̂
∑
i

(rbi + r̂b̂i)ÂiJ = 0.

(27)r

s∑
i=J+1

(rbi + r̂b̂i)AiJ + r̂

s∑
i=J+1

(rbi + r̂b̂i)ÂiJ = 0.

AiJ = ÂiJ = 0 for i > J,

q ≥

⌊
p − 1

2

⌋
.
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corresponding F, meaning that whenever we have a non-zero âij or b̂j term, the correspond-
ing aij or bj term must be non-zero.

Lemma 6  Any irreducible explicit SSP-TS method of the form (9) must satisfy the (compo-
nent-wise) condition

Proof  Any irreducible method (9) that can be written as a convex combination of (12) and 
(14) can also be written as a convex combination of (12) and (13), according to Lemma 1. 
Applying Lemma 4 we obtain the condition b + b̂ > 0 , component-wise. Now, Lemma 5 
tells us that if any component bj = 0 then its corresponding b̂j = 0 , so that bj + b̂j > 0 for 
each j implies that bj > 0 for each j.

Theorem 2  Any irreducible explicit SSP-TS method of the form (9) with order p ≥ 5 must 
satisfy the stage order q = 2 condition

where the term c2 is a component-wise squaring.

Proof  A method of order p ≥ 5 must satisfy the 17 order conditions presented in the 
Appendix 1. Three of those necessary conditions are2 

 From this, we find that the following linear combination of these equations gives

(once again, the squaring here is component-wise). Given the strict component-wise posi-
tivity of the vector b according to Lemma 6 and the non-negativity of �2

2
 , this condition 

becomes �2 = �.

Theorem  3  Any irreducible explicit SSP-TS method of the form (9) cannot have order 
p = 7.

b > 0.

(28)𝜏2 = Ac + ĉ −
1

2
c2 = �,

(29a)bTc4 + 4b̂Tc3 =
1

5
,

(29b)bT
(
c2 ⊙ Ac

)
+ bT

(
c2 ⊙ ĉ

)
+ b̂Tc3 + 2b̂T(c⊙ Ac) + 2b̂T(c⊙ ĉ) =

1

10
,

(29c)bT(Ac⊙ Ac) + 2bT(ĉ⊙ Ac) + bTĉ2 + 2b̂T(c⊙ Ac) + 2b̂T(c⊙ ĉ) =
1

20
.

1

4
(29a) − (29b) + (29c) = bT

(
Ac + ĉ −

1

2
c2
)2

= bT𝜏2
2
= 0

2  In this work we use ⊙ to denote component-wise multiplication.
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Proof  This proof is similar to the proof of Theorem  2. The complete list of additional 
order conditions for seventh order is lengthy and beyond the scope of this work. However, 
only three of these conditions are needed for this proof. These are 

Combining these three equations we have

From this we see that any seventh order method of the form (9) which admits a decomposi-
tion of a convex combination of (12) and (14), must satisfy the stage order q = 3 condition

However, as noted above, the first stage of the explicit two-derivative multistage method 
(9) has the form

which can be at most of second order. This means that the stage order of explicit two-
derivative multistage methods can be at most q = 2 , and so the �3 = 0 condition cannot be 
satisfied. Thus, the result of the theorem follows.

Note that the order barriers do not hold for SSP-SD methods, because SSP-SD methods 
do not require that all components of the vector b must be strictly positive.

3 � Optimized SSP Taylor Series Methods

In Sect. 2 we formulated the search for optimal SSP two-derivative methods as:

Find the coefficient matrices S and Ŝ that maximize the value of TS = max r

such that the relevant order conditions and the SSP conditions (23a)–(23b) are all 
satisfied.

To accomplish this, we develop and use a matlab optimization code [14] (similar to 
Ketcheson’s code [26]) for finding optimal two-derivative multistage methods that pre-
serve the SSP properties (12) and (14). The SSP coefficients of the optimized SSP explicit 

(30a)bTc6 + 6b̂c5 =
1

7
,

(30b)bT
(
Ac2 ⊙ c3

)
+ 2bT

(
Âc⊙ c3

)
+ b̂Tc5 + 3b̂T

(
Ac2 ⊙ c2

)
+ 6b̂T

(
Âc⊙ c2

)
=

1

21
,

(30c)

bT
(
Ac2 ⊙ Ac2

)
+ 4bT

(
Âc⊙ Ac2

)
+ 4bT

(
Âc⊙ Âc

)
+ 4b̂T

(
Âc⊙ c2

)
+ 2b̂T

(
Ac2 ⊙ c2

)
=

1

63
.

1

9
(30a) −

2

3
(30b) + (30c) = bT

(
Ac2 + Âc −

c3

3

)2

= 0.

𝜏3 =

(
Ac2 + Âc −

c3

3

)
= �.

un + a21ΔtF(u
n) + â21Δt

2F̃(un),



37Communications on Applied Mathematics and Computation (2019) 1:21–59	

1 3

multistage two-derivative methods of order up to p = 6 (for different values of K) are pre-
sented in this section.

We considered three types of methods:

•	 (M1) Methods that have the general form (9) with no simplifications.
•	 (M2) Methods that are constrained to satisfy the stage order two ( q = 2 ) requirement (28), 

•	 (M3) Methods that satisfy the stage order two ( q = 2 ) (28) requirement and require 
only Ḟ(un) , so they have only one second-derivative evaluation. This is equivalent to 
requiring that all values in Â and b̂ , except those on the first column of the matrix and 
the first element of the vector, be zero.

We refer to the methods by type, number of stages, order of accuracy, and value of K. For 
example, an SSP-TS method of type (M1) with s = 5 and p = 4 , optimized for the value of 
K = 1.5 would be referred to as SSP-TS M1(5,4,1.5) or as SSP-TS M1(5,4,1.5). For compari-
son, we refer to methods from [5] that are SSP in the sense that they preserve the properties 
of the spatial discretization coupled with (12) and (13) as SSP-SD MDRK(s, p, K) methods.

3.1 � Fourth‑Order Methods

Using the optimization approach described above, we find fourth-order methods with 
s = 3, 4, 5 stages for a range of K = 0.1,… , 2.0 . In Fig. 1 we show the SSP coefficients of 
methods of SSP-TS methods of type (M1) and (M2) with s = 3, 4, 5 (in blue, red, green) 
plotted against the value of K. The open stars indicate methods of type (M1) while the filled 

𝜏2 = Ac + ĉ −
1

2
c2 = 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 1   The SSP-TS coefficient 
TS

 (on the y-axis) of fourth-order SSP-TS M1 and M2 methods with 
s = 3, 4, 5 stages plotted against the value of K (on the x-axis). The open stars indicate methods of type 
(M1) while the filled circles are methods of type (M2). Filled stars are (M1) markers overlaid with (M2) 
markers indicating close if not equal SSP coefficients
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circles are methods of type (M2). Filled stars are (M1) markers overlaid with (M2) markers 
indicating close if not equal SSP coefficients.

Three Stage Methods Three-stage SSP-TS methods with fourth-order accuracy exist, and 
all these have stage order two ( q = 2 ), so they are all of type (M2). Figure 1 shows the SSP 
coefficients of these methods in blue. The (M3) methods have an SSP coefficient

For the case where K ≥ 1 we obtain the following optimal (M3) scheme with an SSP coef-
ficient TS = 1:

When K ≤ 1 we have to modify the coefficients accordingly to obtain the maximal value 
of TS as defined above. Here we provide the non-zero coefficients for this family of 
M3(3,4,K) as a function of K:

In Table 1 we compare the SSP coefficient of three-stage fourth-order SSP-TS methods of 
type (M2) and (M3) for a selection of values of K. Clearly, the (M3) methods have a much 
smaller SSP coefficient than the (M2) methods. However, a better measure of efficiency is 
the effective SSP coefficient computed by normalizing for the number of function evalu-
ations required, which is 2s for the (M2) methods, and s + 1 for the (M3) methods. If we 
consider the effective SSP coefficient, we find that while the (M2) methods are more effi-
cient for the larger values of K, for smaller values of K the (M3) methods are more efficient.

Four Stage SSP-TS Methods While four-stage fourth-order explicit SSP Runge-Kutta 
methods do not exist, four-stage fourth-order SSP-TS explicit two-derivative Runge-
Kutta methods do. Four-stage fourth-order methods do not necessarily satisfy the stage 
order two ( q = 2 ) condition. These methods have a more nuanced behavior: for very 
small K < 0.2 , the optimized SSP methods have stage order q = 1 . For 0.2 < K < 1.6 
the optimized SSP methods have stage order q = 2 . Once K becomes larger again, for 

TS =

{ 2K

K+1
for K ≤ 1

1 for K ≥ 1.

y(1) = un,

y(2) = un + ΔtF(y(1)) +
1

2
Δt2Ḟ(y(1)),

y(3) = un +
1

27
Δt

(
14F(y(1)) + 4F(y(2))

)
+

2

27
Δt2Ḟ(y(1)),

un+1 = un +
1

48
Δt

(
17F(y(1)) + 4F(y(2)) + 27F(y(3))

)
+

1

24
Δt2Ḟ(y(1)).

a21 =
K+1

2
, b1 =

3K5−9K4−22K3+30K2+21K+11

3(K−3)2(K+1)3
, â21 =

(K+1)2

8
,

a31 =
(K+1)(−K3−2K2+14K+3)

2(K+2)3
, b2 =

2K

3(K+1)3
, â31 =

K(−K2+2K+3)2

8(K+2)3
,

a32 =
(K+1)(K−3)2

2(K+2)3
, b3 =

2(K+2)3

3(K−3)2(K+1)3
, b̂1 = −

−3K3+3K2+K+1

6(K−3)(K+1)2
.

Table 1   SSP-TS coefficients of 
three-stage fourth-order SSP-TS 
methods

K 0.1 0.2 0.5 1.0 1.5 2.0

(M2) TS 0.199 5 0.395 3 0.975 7 1.878 9 2.495 4 2.732 1
eff 0.033 3 0.065 9 0.162 6 0.313 1 0.415 9 0.455 3

(M3) TS 0.181 8 0.333 3 0.666 7 1.000 0 1.000 0 1.000 0
eff 0.045 4 0.083 3 0.166 7 0.250 0 0.250 0 0.250 0
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K ≥ 1.6 , the optimized SSP methods are once again of stage order q = 1 . However, the 
difference in the SSP coefficients is very small (so small it does not show on the graph) 
so the (M2) methods can be used without significant loss of efficiency.

As seen in Table 2, the methods with the special structure (M3) have smaller SSP coeffi-
cients. But when we look at the effective SSP-TS coefficient we notice that, once again, for 
smaller K they are more efficient. Table 2 shows that the (M3) methods are more efficient 
when K ≤ 1.5 , and remain competitive for larger values of K.

It is interesting to consider the limiting case, SSP-TS M2(4, 4,∞ ), in which the Tay-
lor series formula is unconditionally stable (i.e., K = ∞ ). This provides us with an upper 
bound of the SSP coefficient for this class of methods by ignoring any time-step constraint 
coming from condition (14). A four-stage fourth-order method that is optimal for K = ∞ is

This method has an SSP coefficient TS = 4 , with an effective SSP coefficient eff =
1

2
 . 

This method also has stage order q = 2 . This method is not intended to be useful in the 
SSP context but gives us an idea of the limiting behavior: i.e., what the best possible value 
of TS could be if the Taylor series condition had no constraint ( K = ∞) . We observe in 
Table 2 that the SSP coefficient of the M2(4,4,K) method is within 10% of this limiting TS 
for values of K = 2.

y(1) = un,

y(2) = un +
1

4
ΔtF(y(1)) +

1

32
Δt2Ḟ(y(1)),

y(3) = un +
1

4
Δt

(
F(y(1)) + F(y(2))

)
+

1

32
Δt2

(
Ḟ(y(1)) + Ḟ(y(2))

)
,

y(4) = un +
1

4
Δt

(
F(y(1)) + F(y(2)) + F(y(3))

)
+

1

32
Δt2

(
Ḟ(y(2)) + 2Ḟ(y(3))

)
,

un+1 = un +
1

4
Δt

(
F(y(1)) + F(y(2)) + F(y(3)) + F(y(4))

)
+

1

288
Δt2

(
5Ḟ(y(1)) + 12Ḟ(y(2)) + 3Ḟ(y(3)) + 16Ḟ(y(4))

)
.

Table 2   SSP-TS coefficients of four-stage fourth-order SSP-TS methods

K 0.1 0.2 0.3 0.5 1.0 1.5 1.6 1.8 2.0

(M1) TS 0.440 0 0.692 1 0.966 2 1.561 7 2.666 9 3.473 5 3.560 7 3.675 9 3.716 1
eff 0.055 0 0.086 5 0.120 8 0.195 2 0.333 4 0.434 2 0.445 1 0.459 5 0.464 5

(M2) TS 0.352 3 0.656 9 0.966 2 1.561 7 2.666 9 3.473 5 3.530 1 3.585 0 3.628 2
eff 0.044 0 0.082 1 0.120 8 0.195 2 0.333 4 0.434 2 0.441 3 0.448 1 0.453 5

(M3) TS 0.338 1 0.610 2 0.840 7 1.217 4 1.818 1 2.059 6 2.079 3 2.103 0 2.109 3
eff 0.067 6 0.122 0 0.168 1 0.243 5 0.363 6 0.411 9 0.415 9 0.420 6 0.421 9

Table 3   SSP-TS coefficients of five-stage fourth-order methods

K 0.1 0.2 0.3 0.5 0.6 0.7 1.0 1.5 2.0

(M1) TS 1.525 6 1.576 8 1.656 3 2.093 4 2.447 2 2.781 9 3.585 1 4.437 1 4.991 9
eff 0.152 6 0.157 7 0.165 6 0.209 3 0.244 7 0.278 2 0.358 5 0.443 7 0.499 2

(M2) TS 0.587 6 1.000 3 1.331 9 2.093 4 2.447 2 2.781 9 3.538 1 4.362 9 4.661 4
eff 0.058 8 0.100 0 0.133 2 0.209 3 0.244 7 0.278 2 0.353 8 0.436 3 0.466 1

(M3) TS 0.563 1 0.929 6 1.205 7 1.655 1 1.855 4 2.030 0 2.440 7 2.874 8 2.976 8
eff 0.093 9 0.154 9 0.200 9 0.275 8 0.309 2 0.338 3 0.406 8 0.479 1 0.496 1
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Five-Stage Methods The optimized five-stage fourth-order methods have stage order 
q = 2 for the values of 0.5 ≤ K ≤ 7 , and otherwise have stage order q = 1 . The SSP coeffi-
cients of these methods are shown in the green line in Fig. 1, and the SSP and effective SSP 
coefficients for all three types of methods are compared in Table 3. We observe that these 
methods have higher effective SSP coefficients than the corresponding four-stage methods.

3.2 � Fifth‑Order SSP‑TS Methods

While fifth-order explicit SSP Runge-Kutta methods do not exist, the addition of a sec-
ond derivative which satisfies the Taylor Series condition allows us to find explicit SSP-
TS methods of fifth order. For fifth order, we have the result (in Sect.  2.2 above) that all 
methods must satisfy the stage order q = 2 condition, so we consider only (M2) and (M3) 
methods. In Fig. 2 we show the SSP-TS coefficients of M2(s,5,K) methods for s = 4, 5, 6.

Four-Stage Methods Four-stage fifth-order methods exist, and their SSP-TS coefficients are 
shown in blue in Fig. 2. We were unable to find M3(4,5,K) methods, possibly due to the pau-
city of available coefficients for this form.

Five-Stage Methods The SSP coefficient of the five-stage M2 methods can be seen 
in red in Fig. 2. We observe that the SSP coefficient of the M2(5,5,K) methods plateaus 
with respect to K. As shown in Table 4, methods with the form (M3) have a significantly 
smaller SSP coefficient than that of (M2). However, the effective SSP coefficient is more 

Table 4   SSP-TS coefficients and effective SSP-TS coefficients of fifth-order methods

K 0.1 0.2 0.3 0.5 1.0 1.5 1.6 1.8 2.0

M2(5,5,K) TS 0.380 2 0.744 8 1.089 2 1.687 7 2.928 1 3.810 2 3.847 9 3.887 9 3.897 1
eff 0.038 0 0.074 5 0.108 9 0.168 8 0.292 8 0.381 0 0.384 8 0.388 8 0.389 7

M3(5,5,K) TS 0.329 8 0.597 7 0.818 6 1.062 5 1.062 5 1.062 5 1.062 5 1.062 5 1.062 5
eff 0.055 0 0.099 6 0.136 4 0.177 1 0.177 1 0.177 1 0.177 1 0.177 1 0.177 1

M2(6,5,K) TS 0.567 7 1.023 0 1.458 1 2.210 2 3.874 9 4.920 1 5.000 2 5.090 3 5.130 1
eff 0.047 3 0.085 2 0.121 5 0.184 2 0.322 9 0.410 0 0.416 7 0.424 2 0.427 5

M3(6,5,K) TS 0.539 8 0.937 0 1.259 2 1.691 4 1.820 8 1.820 8 1.820 8 1.820 8 1.820 8
eff 0.077 1 0.133 9 0.179 9 0.241 6 0.260 1 0.260 1 0.260 1 0.260 1 0.260 1

Fig. 2   SSP-TS coefficients 
TS

 
(on the y-axis) for M2(4,5,K) and 
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informative here, and we see that the (M3) methods are more efficient for small values of 
K ≤ 0.5 , but not for larger values.

Six-Stage Methods The SSP coefficient of the six-stage M2 methods can be seen in 
green in Fig. 2. In Table  4 we compare the SSP coefficients and effective SSP coefficients 
of (M2) and (M3) methods. As in the case above, the methods with the form (M3) have a 
significantly smaller SSP coefficient than that of (M2), and the SSP coefficient of the (M3) 
methods plateaus with respect to K. However, the effective SSP coefficient shows that the 
(M3) methods are more efficient for small values of K ≤ 0.7 , but not for larger values.

3.3 � Sixth‑Order SSP‑TS Methods

As shown in Sect. 2.2, the highest order of accuracy this class of methods can obtain is 
p = 6 , and these methods must satisfy (28). We find sixth-order methods with s = 5, 6, 7 
stages of type (M2). As to methods with the special structure M3, we are unable to find 
methods with s ≤ p , but we find M3(7,6,K) methods and M3(8,6,K) methods. In the first 
six rows of Table 5 we compare the SSP-TS and effective SSP-TS coefficients of the (M2) 
methods with s = 5, 6, 7 stages. In the last four rows of Table  5 we compare the SSP coef-
ficients and effective SSP coefficients for sixth-order methods with s = 7, 8 stages. Fig-
ure 3 shows the SSP-TS coefficients of the optimized (M3) methods for seven and eight 
stages, which clearly plateau with respect to K (as can be seen in the tables as well). For 

Table 5   SSP-TS coefficients and effective SSP-TS coefficients of sixth-order SSP-TS methods

K 0.1 0.2 0.3 0.5 1.0 1.5 2.0

M2(5,6,K) TS 0.144 1 0.228 0 0.278 0 0.324 2 0.350 0 0.353 6 0.355 5
eff 0.014 4 0.022 8 0.027 8 0.032 4 0.035 0 0.035 4 0.035 5

M2(6,6,K) TS 0.294 4 0.515 7 0.672 5 0.904 4 1.522 5 2.000 2 2.196 6
eff 0.024 5 0.043 0 0.056 0 0.075 4 0.126 9 0.166 7 0.183 1

M2(7,6,K) TS 0.398 1 0.715 8 0.973 4 1.421 7 2.037 6 2.564 8 2.779 4
eff 0.028 4 0.051 1 0.069 5 0.101 6 0.145 5 0.183 2 0.198 5

M3(7,6,K) TS 0.354 7 0.600 7 0.805 9 0.894 1 0.894 7 0.894 7 0.894 7
eff 0.044 3 0.075 1 0.100 7 0.111 8 0.111 8 0.111 8 0.111 8

M3(8,6,K) TS 0.549 5 0.975 4 1.288 2 1.643 5 1.736 9 1.736 9 1.736 9
eff 0.061 1 0.108 4 0.143 1 0.182 6 0.193 0 0.193 0 0.193 0

Fig. 3   SSP-TS coefficients 
TS

 
(on the y-axis) for M3(7,6,K) 
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the sixth-order methods, it is clear that M3(8,6,K) methods are most efficient for all values 
of K.

3.4 � Comparison with Existing Methods

First, we wish to compare the methods in this work to those in our prior work [5]. If a 
spatial discretization satisfies the forward Euler condition (12) and the second-derivative 
condition (13) it will also satisfy the Taylor series condition (14), with

In this case, it is preferable to use the SSP-SD MDRK methods in [5]. However, in the case 
that the second-derivative condition (13) is not satisfied for any value of K̃ > 0 , or if the 
Taylor series condition is independently satisfied with a larger K than would be established 
from the two conditions, i.e., K > K̃

�√
K̃2 + 2 − K̃

�
 , then it may be preferable to use one 

of the SSP-TS methods derived in this work.
Next, we wish to compare the methods in this work to those in [32], which was the 

first paper to consider an SSP property based on the forward Euler and Taylor series base 
conditions. The approach used in our work is somewhat similar to that in [32] where the 
authors consider building time integration schemes which can be composed as convex 
combinations of forward Euler and Taylor series time steps, where they aim to find meth-
ods which are optimized for the largest SSP coefficients. However, there are several differ-
ences between our approach and the one of [32], which results in the fact that in this paper 
we are able to find more methods, of higher order, and with better SSP coefficients. In 
addition, in the present work we find and prove an order barrier for SSP-TS methods.

The first difference between our approach and the approach in [32] is that we allow 
computations of Ḟ of the intermediate values, rather than only Ḟ(un) . Another way of say-
ing this is that we consider SSSP-TS methods that are not of type M3, while the methods 
considered in [32] are all of type M3. In some cases, when we restrict our search to M3 
methods and K = 1 , we find methods with the same SSP coefficient as in [32]. For exam-
ple, HBT34 matches our SSP-TS M3(3,4,1) method with an SSP coefficient of TS = 1 , 
HBT44 matches our SSP-TS M3(4,4,1) method with TS =

20

11
 , HBT54 matches our SSP-TS 

M3(5,4,1) method with TS = 2.441 , and HBT55 matches our SSP-TS M3(5,5,1) method 
with an SSP coefficient of TS = 1.062 . While methods of type M3 have their advantages, 
they are sometimes sub-optimal in terms of efficiency, as we point out in the tables.

The second difference between the SSP-TS methods in this paper and the methods in 
[32] is that in [32] only one method of order p > 4 is reported, while we have many fifth- 
and sixth-order methods of various types and stages, optimized for a variety of K values.

The most fundamental difference between our approach and the approach in [32] is 
that our methods are optimized for the relationship between the forward Euler restriction 
and the Taylor series restriction while the time-step restriction in the methods of [32] is 
defined as the most restrictive of the forward Euler and Taylor series time-step conditions. 
Respecting the minimum of the two cases will still satisfy the nonlinear stability prop-
erty, but this approach does not allow for a balance between the restrictions considered, 
which can lead to severely more restrictive conditions. In our approach we use the relation-
ship between the two time-step restrictions to select optimal methods. For this reason, the 
methods we find have larger allowable time steps in many cases. To understand this a little 
better consider the case where the forward Euler condition is ΔtFE ≤ Δx and the Taylor 

K = K̃
�√

K̃2 + 2 − K̃
�
.
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series condition is ΔtTS ≤
1

2
Δx . In the approach used in [32], the base time-step restric-

tion is then Δtmax = max{ΔtFE,ΔtTS} ≤
1

2
Δx . The HBT23 method in [32] is a third-order 

scheme with two stages which has an SSP coefficient of TS = 1 , so the allowable time step 
with this scheme will be the same Δt ≤ TSΔtmax ≤

1

2
Δx . On the other hand, using our 

optimal SSP-TS M2(2,3,0.5) scheme, which has an SSP coefficient TS = 0.75 , the allow-
able time step is Δt ≤ TSΔtFE ≤

3

4
Δx , a 50% increase. This is not only true when K < 1 : 

consider the case where ΔtFE ≤
1

2
Δx and ΔtTS ≤ Δx . Once again the HBT23 method in 

[32] will have a time-step restriction of Δt ≤ TSΔtmax ≤
1

2
Δx , while our M2(2,3,2) 

method has an SSP coefficient TS = 1.88 , so that the overall time-step restriction would 
be Δt ≤ 1.88

2
Δx = 0.94Δx , which is 88% larger. Even when the two base conditions are 

the same (i.e., K = 1 ) and we have ΔtFE ≤ Δx and ΔtTS ≤ Δx , the HBT23 method in [32] 
gives an allowable time step of TS = 1 while our SSP-TS M2(2,3,1) has an SSP coefficient 
TS = 1.5 , so that our method allows a time step that is 50% larger.3 These simple cases 
demonstrate that our methods, which are optimized for the value of K, will usually allow a 
larger SSP coefficient that the methods obtained in [32].

4 � Numerical Results

4.1 � Overview of Numerical Tests

We wish to test our methods on what are now considered standard benchmark tests in the 
SSP community. In this subsection we preview our results, which we then present in more 
detail throughout the remainder of the section.

First, in the tests in Sect. 4.3 we focus on how the strong stability properties of these meth-
ods are observed in practice, by considering the total variation of the numerical solution. We 
focus on two scalar PDEs: the linear advection equation and Burgers’ equation, using sim-
ple first-order spatial discretizations which are known to satisfy a total variation-diminishing 
property over time for the forward Euler and Taylor series building blocks. We want to ensure 
that our numerical approximation to these solutions observe similar properties as long as the 
predicted SSP time-step restriction, Δt ≤ TSΔtFE , is respected. These scalar one-dimen-
sional partial differential equations are chosen for their simplicity so we may understand the 
behavior of the numerical solution, but the discontinuous initial conditions may lead to insta-
bilities if standard time discretization techniques are employed. Our tests show that the meth-
ods we design here preserve these properties as expected by the theory.

In Example 2, we extend the results from Example 1 to the case where we use the higher 
order weighted essentially non-oscillatory (WENO) method, which is not probably TVD but 
gives results that have very small increases in total variation. We demonstrate that our methods 
out-perform other methods, such as the SSP-SD MDRK methods in [5], and that non-SSP 
methods that are standard in the literature do not preserve the TVD property for any time step.

In many of these examples we are concerned with the total variation-diminishing prop-
erty. To measure the sharpness of the SSP condition we compute the maximal observed 
rise in total variation over each step, defined by

(31)max
0≤n≤N−1

�‖un+1‖TV − ‖un‖TV
�
,

3  These efficiency measures do not account for the fact that the methods in [32] are of type SSP-TS M3 and 
so require fewer funding evaluations. Correcting for this, our methods are still 10%–40% more efficient.
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as well as the maximal observed rise in total variation over each stage, defined by

where y(s+1) corresponds to un+1 . The quantity of interest is the time step Δtobs , or the SSP 
coefficient obs

TS
=

Δtobs

ΔtFE
 at which this rise becomes significant, as defined by a maximal 

increase of 10−10.
It is important to notice that the SSP-TS methods we designed depend on the value of 

K in (14). However, in practice we often do not know the exact value of K. In Example 3 
we investigate what happens when we use spatial discretizations with a given value of K 
with time discretization methods designed for an incorrect value of K. We conclude that 
although in some cases a smaller step size is required, for methods of type M3 there is gen-
erally no adverse result from selecting the wrong value of K.

In Example 4 we investigate the increased flexibility in the choice of spatial discretiza-
tion that results from relying on the (12) and (14) base conditions. The only constraint 
in the choice of differentiation operators Dx and D̃x (described at the end of Sect. 1.2) is 
that the resulting building blocks must satisfy the monotonicity conditions (12) and (14) 
in the desired convex functional ‖ ⋅ ‖ . As noted above, this constraint is less restrictive than 
requiring that (12) and (13) are satisfied: any spatial discretizations for which (12) and (13) 
are satisfied will also satisfy (14). However, there are some spatial discretizations that sat-
isfy (12) and (14) that do not satisfy (13). In Example 4 we find that choosing spatial dis-
cretizations that satisfy (12) and (14) but not (13) allows for larger time steps before the 
rise in total variation. And finally, in Example 5, we demonstrate the positivity-preserving 
behavior of our methods when applied to a nonlinear system of equations.

4.2 � On the Numerical Implementation of the Second Derivative

In the following numerical test cases the spatial discretization is performed as follows: at 
each iteration we take the known value un and compute the flux f (un) = −un in the lin-
ear case and f (un) = 1

2
(un)2 for Burgers’ equation. Now to compute the spatial derivative 

f (un)x we use an operator Dx and compute

In the numerical examples below the differential operator Dx will represent, depending on 
the problem, a first-order upwind finite difference scheme and the fifth-order finite differ-
ence WENO method [20]. In our scalar test cases f �(u) does not change sign, so we avoid 
flux splitting.

Now we have the approximation to Ut at time tn , and wish to compute the approximation 
to Utt . For the linear advection problem, this is very straightforward as Utt = Uxx . To compute 
this, we take ux as computed before, and differentiate it again. For Burgers’ equation, we have 
Utt =

(
−UUt

)
x
 . We take the approximation to Ut that we obtained above, and we multiply it 

by un , then differentiate in space once again. In pseudocode, the calculation takes the form

Using these, we can now construct our two building blocks

(32)max
1≤j≤s

�‖y(j+1)‖TV − ‖y(j)‖TV
�
,

un
t
= −f (un)x → un

t
= Dx(−f (u

n)).

un
tt
= (−f �(un)un

t
)x → un

tt
= D̃x(−f

�(un)un
t
).

������������ un+1 = un + Δtun
t
,

������ ������ un+1 = un + Δtun
t
+

1

2
Δt2un

tt
.
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In choosing the spatial discretizarions Dx and D̃x it is important that these building blocks 
satisfy (12) and (14) in the desired convex functional ‖ ⋅ ‖.

4.3 � Example 1: TVD First‑Order Finite Difference Approximations

In this section we use first-order spatial discretizations, that are probably total variation 
diminishing (TVD), coupled with a variety of time-stepping methods. We look at the maxi-
mal rise in total variation.

Example 1a: Linear advection As a first test case, we consider a linear advection 
problem

on a domain x ∈ [−1, 1] , with step-function initial conditions

and periodic boundary conditions. This simple example is chosen as our experience has 
shown [13] that this problem often demonstrates the sharpness of the SSP time step.

For the spatial discretization we use a first-order forward difference for the first and second 
derivative:

These spatial discretizations satisfy

•	 Forward Euler condition un+1
j

= un
j
+

Δt

Δx

(
un
j+1

− un
j

)
 is TVD for Δt ≤ Δx , and

•	 Taylor series condition un+1
j

= un
j
+

Δt

Δx

(
un
j+1

− un
j

)
+

1

2

(
Δt

Δx

)2(
un
j+2

− 2un
j+1

+ un
j

)
 is 

TVD for Δt ≤ Δx.

So that ΔtFE = Δx and in this case we have K = 1 in (14). Note that the second-derivative 
discretization used above does not satisfy the second-derivative condition (13), so that most of 
the methods we devised in [5] do not guarantee strong stability preservation for this problem.

For all of our simulations for this example, we use a fixed grid of M = 601 points, for a 
grid size Δx = 1

600
 , and a time step Δt = �Δx where we vary � from � = 0.05 until beyond 

the point where the TVD property is violated. We step each method forward by N = 50 time-
steps and compare the performance of the various time-stepping methods constructed earlier 
in this work, for K = 1 . We define the observed SSP coefficient obs

TS
 as the multiple of ΔtFE for 

which the maximal rise in total variation exceeds 10−10.
We verify that the observed values of ΔtFE and K match the predicted values, and test this prob-

lem to see how well the observed SSP coefficient obs
TS

 matches the predicted SSP coefficient pred

TS
 

for the fourth-, fifth-, and sixth-order methods. The results are listed in the upper half of Table 6.
Example 1b: Burgers’ equation We repeat the example above with all the same param-

eters but for the problem

(33)Ut − Ux = 0,

(34)u0(x) =

{
1 if −

1

2
≤ x ≤

1

2
,

0 otherwise,

F(un)j ∶=
un
j+1

− un
j

Δx
≈ Ux(xj), and F̃(un)j ≈ F̃(un)j ∶=

un
j+2

− 2un
j+1

+ un
j

Δx2
≈ Uxx(xj).

(35)Ut +
(
1

2
U2

)
x
= 0
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on x ∈ (−1, 1) . Here we use the spatial derivatives

and

F(un)j ∶= −
f n
j
− f n

j−1

Δx
≈ −f (U)x(xj),

Table 6   Example 1: pred

TS
 and 

obs
TS

 for SSP-TS M2 and M3 
methods

Method 
pred

TS
obs
TS 

pred

eff
obs
eff

Linear advection
 FE 1.000 0 1.000 0 1.00 1.00
 TS 1.000 0 1.000 0 0.50 0.50
 M2(3,4,1) 1.878 8 1.878 8 0.31 0.31
 M3(3,4,1) 1.000 0 1.000 0 0.25 0.25
 M2(4,4,1) 2.666 8 2.666 8 0.33 0.33
 M3(4,4,1) 1.818 1 1.818 1 0.36 0.36
 M2(5,4,1) 3.538 1 3.629 1 0.35 0.36
 M3(5,4,1) 2.440 6 2.440 6 0.40 0.40
 M2(4,5,1) 2.186 4 2.223 9 0.27 0.27
 M2(5,5,1) 2.928 0 3.168 1 0.29 0.31
 M3(5,5,1) 1.062 5 1.571 0 0.17 0.26
 M2(6,5,1) 3.874 9 3.874 9 0.32 0.32
 M3(6,5,1) 1.820 7 1.956 2 0.26 0.27
 M2(5,6,1) 0.350 0 1.939 8 0.03 0.19
 M2(6,6,1) 1.522 5 2.354 8 0.12 0.19
 M2(7,6,1) 2.115 0 2.369 5 0.15 0.19
 M3(7,6,1) 0.894 6 1.320 7 0.11 0.16
 M3(8,6,1) 1.736 9 1.986 1 0.19 0.22

Burgers’
 FE 1.000 0 1.000 0 1.00 1.00
 TS 1.000 0 1.000 0 0.50 0.50
 M2(3,4,1) 1.878 8 1.878 8 0.31 0.31
 M3(3,4,1) 1.000 0 1.000 0 0.25 0.25
 M2(4,4,1) 2.666 8 2.666 8 0.33 0.33
 M3(4,4,1) 1.818 1 1.818 1 0.36 0.36
 M2(5,4,1) 3.538 1 3.610 2 0.35 0.36
 M3(5,4,1) 2.440 6 2.440 6 0.40 0.40
 M2(4,5,1) 2.186 4 2.213 0 0.27 0.27
 M2(5,5,1) 2.928 0 3.100 9 0.29 0.31
 M3(5,5,1) 1.062 5 1.543 6 0.17 0.25
 M2(6,5,1) 3.874 9 3.874 9 0.32 0.32
 M3(6,5,1) 1.820 7 2.000 3 0.26 0.28
 M2(5,6,1) 0.350 0 1.923 9 0.03 0.19
 M2(6,6,1) 1.522 5 2.287 5 0.12 0.19
 M2(7,6,1) 2.115 0 2.318 9 0.15 0.16
 M3(7,6,1) 0.894 6 1.289 3 0.11 0.16
 M3(8,6,1) 1.736 9 1.973 4 0.19 0.21
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Using Harten’s lemma we can easily show that these definitions of F and F̃ cause the Tay-
lor series condition to be satisfied for Δt ≤ Δx . The results are quite similar to those of the 
linear advection equation in Example 1a, as can be seen in the lower half of Table 6.

The results from these two studies show that the SSP-TS methods provide a reliable 
guarantee of the allowable time step for which the method preserves the strong stability 
condition in the desired norm. For methods of order p = 4 , we observe that the SSP coeffi-
cient is sharp: the predicted and observed values of the SSP coefficient are identical for all 
the fourth-order methods tested. For methods of higher order ( p = 5, 6 ) the observed SSP 
coefficient is often significantly higher than the minimal value guaranteed by the theory.

4.4 � Example 2: Weighted Essentially Non‑oscillatory (WENO) Approximations

In this section we re-consider the nonlinear Burgers’ equation (35)

on x ∈ (−1, 1) . We use the step function initial conditions (34), and periodic boundaries. 
We use M = 201 points in the spatial domain, so that Δx = 1

100
 , and we step forward for 

N = 50 time steps and measure the maximal rise in total variation for each case.
For the spatial discretization, we use the fifth-order finite difference WENO method 

[20] in space, as this is a high-order method that can handle shocks. We describe this 
method in Appendix 3. Recall that the motivation for the development of SSP multistage 
multi-derivative time-stepping is for use in conjunction with high-order methods for prob-
lems with shocks. Ideally, the specially designed spatial discretizations satisfy (12) and 
(14). Although the weighted essentially non-oscillatory (WENO) methods do not have a 

F̃(un)j ≈ F̃(un)j ∶= −
f �(un

j
)F(un)j − f �(un

j−1
)F(un)j−1

Δx
≈ (f �(U)f (U)x)x(xj).

Ut +

(
U2

2

)

x

= 0
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Fig. 4   Example 2: Comparison of the maximal rise in total variation (on the y-axis) as a function of � =
Δt

Δx
 

(on the x-axis) for a selection of time-stepping methods for evolving Burgers’ equation with WENO spatial 
discretizations. (a) Fifth-order methods. (b) Sixth-order methods
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theoretical guarantee of this type, in practice we observe that these methods do control the 
rise in total variation, as long as the step-size is below a certain threshold.

Below, we refer to the WENO method on a flux with f �(u) ≥ 0 as WENO+ defined in 
(41) and to the corresponding method on a flux with f �(u) ≤ 0 as WENO− defined in (42). 
Because f �(u) is strictly non-negative in this example, we do not need to use flux splitting, 
and use D = WENO+ . For the second derivative we have the freedom to use D̃x = WENO+ 
or D̃x = WENO− . In this example, we use D̃x = Dx = WENO+ . In Example 4 below we 
show that this is more efficient.

In Fig. 4(a), we compare the performance of our SSP-TS M3(7,5,1) and SSP-TS M2(4,5,1) 
methods, which both have eight function evaluations per time step, and our SSP-TS M3(5,5,1), 
which has six function evaluations per time step, to the SSP-SD MDRK(3,5,2) in [5] and 
non-SSP RK(6,5) Dormand-Prince method [8], which also have six function evaluations per 
time step. We note that we use the SSP-SD MDRK(3,5,2) (designed for K = 2 ) because this 
method performs best compared to other explicit two-derivative multistage methods designed 
for different values of K. Clearly, the non-SSP method is not safe to use on this example. The 
M3 methods are most efficient, allowing the largest time step per function evaluation before 
the total variation begins to rise.

This conclusion is also the case for the sixth-order methods. In Fig. 4(b), we compare our 
SSP-TS M3(9,6,1) and M2(5,6,1) methods, which both have ten function evaluations per time 
step, and our M3(7,6,1), which has eight function evaluations per time step, to the SSP-SD 
MDRK(4,6,1) and non-SSP RK(8,6) method given in Verner’s paper table [52], which also 
have eight function evaluations per time step. Clearly, the non-SSP method is not safe to use 
on this example. The M3 methods are most efficient, allowing the largest time step per func-
tion evaluation before the total variation begins to rise.

This example demonstrates the need for SSP methods: classical non-SSP methods do not 
control the rise in total variation. We also observe that the methods of type M3 are efficient, 
and may be the preferred choice of methods for use in practice.

4.5 � Example 3: Testing Methods Designed with Various Values of K

In general, the value of K is not exactly known for a given problem, so we cannot choose a method 
that is optimized for the correct K. We wish to investigate how methods with different values of K 
perform for a given problem. In this example, we re-consider the linear advection Eq. (33)

with step function initial conditions (34), and periodic boundary conditions on x ∈ (−1, 1) . 
We use the fifth-order WENO method with M = 201 points in the spatial domain, so that 
Δx =

1

100
 , and we step forward for N = 50 time steps and measure the maximal rise in total 

variation for each case. Using this example, we investigate how time-stepping methods 
optimized for different K values perform on the linear advection with finite difference spa-
tial approximation test case above, where it is known that K = 1 . We use a variety of fifth- 
and sixth-order methods, designed for 0.1 ≤ K ≤ 2 and give the value of � =

Δt

Δx
 for which 

the maximal rise in total variation becomes large, when applied to the linear advection 
problem.

In Fig. 5(a) we give the observed value (solid lines) of � for a number of SSP-TS meth-
ods, M2(4,5,K), M2(5,5,K), M2(6,5,K), M3(5,5,K), and M3(6,5,K), and the corresponding 
predicted value (dotted lines) that a method designed for K = 1 should give. In Fig. 5(b) 
we repeat this study with sixth-order methods M2(5,6,K), M2(6,6,K), M3(7,6,K), and 

Ut = Ux
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M3(8,6,K). We observe that while choosing the correct K value can be beneficial, and is 
certainly important theoretically, in practice using methods designed for different K values 
often makes little difference, particularly when the method is optimized for a value close 
to the correct K value. For the sixth-order methods in particular, the observed values of the 
SSP coefficient are all larger than the predicted SSP coefficient.

4.6 � Example 4: The Benefit of Different Base Conditions

In [5] we use the choice of Dx = WENO+ defined in (41), followed by D̃x = WENO− 
defined in (42), by analogy to the first-order finite difference for the linear advection case 
Ut = Ux , where we use a differentiation operator D+

x
 followed by the downwind differen-

tiation operator D−
x
 to produce a centered difference for the second derivative. In fact, this 

approach makes sense for these cases because it respects the properties of the flux for the 
second derivative and consequently satisfies the second-derivative condition (13). How-
ever, if we simply wish the Taylor series formulation to satisfy a TVD-like condition, we 
are free to use the same operator ( WENO+ or WENO− , as appropriate) twice, and indeed 
this gives a larger allowable Δt.

In Fig.  6 we show how using the repeated upwind discretization D = WENO− and 
D̃x = WENO− (solid lines) which satisfy the Taylor Series Condition (14) but not the 
second-derivative condition (13) to approximate the higher order derivative allows for a 
larger time step than the spatial discretizations (dashed lines) used in 9. We see that for 
the fifth-order methods the rise in total variation always occurs for larger � for the solid 
lines ( D̃x = Dx = WENO− ) than for the dashed lines ( Dx = WENO− and D̃x = WENO+ ), 
even for the method designed in [5] to be SSP for the second case but not the first case. For 
the sixth-order methods the results are almost the same, though the SSP-SD MDRK(4,6,1) 
method that is SSP for base conditions of the type in [5] performs identically in both cases. 
These results demonstrate that requiring that the spatial discretizations only satisfy (12) 
and (14) (but not necessarily (13)) results in methods with larger allowable time steps.
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Fig. 5   Example 3: The observed value of � =
Δt

Δx
 such that the method is TVD (y-axis) when methods 

designed for different K values (on the x-axis) are applied to the problem with K = 1 . For each method, the 
observed value(solid line) is higher than the predicted value (dashed line)
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4.7 � Example 5: Nonlinear Shallow Water Equations

As a final test case we consider the shallow water equations, where we are concerned with 
the preservation of positivity in the numerical solution. The shallow water equations [2] 
are a nonlinear system of hyperbolic conservation laws defined by

where h(x, t) denotes the water height at location x and time t, v(x, t) the water velocity, g is 
the gravitational constant, and U = (h, hv)T is the vector of unknown conserved variables. 
In our simulations, we set g = 1 . To discretize this problem, we use the standard Lax-Frie-
drichs splitting

and define the (conservative) approximation to the first derivative as

We discretize the spatial grid x ∈ (0, 1) with M = 201 points. To approximate the second 
derivative, we start with element-wise first derivative uj,t ∶= −

1

Δx

(
f̂j+1∕2 − f̂j−1∕2

)
 , and then 

approximate the second derivative (consistent with (11)) as

where f �(uj±1) is the Jacobian of the flux function evaluated at uj±1 . A simple first-order 
spatial discretization is chosen here because it enables us to show that positivity is pre-
served for forward Euler and Taylor series for �+

FE
= �+

TS
= �

Δt

Δx
≤ 1.

(
h

hv

)

t

+

(
hv

hv2 +
1

2
gh2

)

x

=

(
0

0

)
,

f̂j−1∕2 ∶=
1

2

(
f (uj) + f (uj−1)

)
−

𝛼

2

(
uj − uj−1

)
, 𝛼 = max

j

{
|vj ±

√
hj|

}
,

f (U(xj))x ≈
1

Δx

(
f̂j+1∕2 − f̂j−1∕2

)
.

uj,tt ∶= −
1

2Δx

(
f �(uj+1)uj+1,t − f �(uj−1)uj−1,t

)
,
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Fig. 6   Example 4: The maximal rise in total variation (on the y-axis) for values of � (on the x-axis). Simu-
lations using the repeated upwind discretization D

x
= WENO

− and D̃
x
= WENO

− (solid lines) are more 
efficient than those using D

x
= WENO

− and D̃
x
= WENO

+ (dashed lines). This demonstrates the enhanced 
allowable time step afforded by the SSP-TS methods
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In problems such as the shallow water equations, the non-negativity of the numerical 
solution is important as a height of h < 0 is not physically meaningful, and the system loses 
hyperbolicity when the height becomes negative. For a positivity-preserving test case, we 
consider a Riemann problem with zero initial velocity, but with a wet and a dry state [2, 53]:

In our numerical simulations, we focus on the impact of the numerical scheme on the posi-
tivity of the solver for the the water height h(x, t). This quantity is of interest from a numer-
ical perspective because if the height h(x, t) < 0 for any x or t, the code will crash due to 
square-root of height.

First, we investigate the behavior of the base methods in terms of the positivity-preserv-
ing time step. In other words, we want to get a numerical value for ΔtFE,K . To do so, we 
numerically study the positivity behavior of the forward Euler and Taylor series approach. 
To do this, we evolve the solution forward for more time steps with different values of 
� = �

Δt

Δx
 to identify the predicted positivity-preserving value �pred . Using the approach, we 

see that as we increase the number of steps the predicted value of the positivity preserving 
value, �pred

FE
→ 1 and �pred

TS
→ 1 , for both forward Euler and Taylor series. We are not able 

to numerically identify K̃ resulting from the second-derivative condition, which cannot be 
evolved forward as it does not approximate the solution to the ODE at all.

In Table  7 we compare the positivity-preserving time step of a variety of numerical 
time integrators. We consider the fifth-order SSP-TS methods M2(4,5,1), M3(5,5,1), and 
M3(6,5,1), and compare their performance to the SSP-SD MDRK(3,5,2) method in [5], 
and the non-SSP Dormand-Prince method. We also consider the sixth-order SSP-TS meth-
ods M2(5,6,1), M3(7,6,1), and M3(9,6,1), as well as the SSP-SD MDRK(4,6,1) from [5] 
and the non-SSPRK(8,6) method. Positivity of the water height is measured at each stage 
for a total of N = 60 time steps. We report the largest allowable value of � = �

Δt

Δx
 ( � is 

the maximal wavespeed for the domain) for which the solution remains positive. For each 
method, the predicted values �pred are obtained by multiplying the SSP coefficient TS of 
that method by �pred

FE
= �

pred

TS
= 1 . For the SSP-SD MDRK methods we do not make a pre-

diction as we are not able to identify K̃ resulting from the second-derivative condition.
In Table 7 we show that all of our SSP-TS methods preserve the positivity of the solu-

tion for values larger than those predicted by the theory 𝜆obs > 𝜆pred , and that even for the 
SSP MSRK methods there is a large region of values �obs for which the solution remains 
positive. However, the non-SSP methods permit no positive time step that retains positivity 
of the solution, highlighting the importance of SSP methods.

(h, v)T =

{
(10, 0)T, x ≤ 0.5,

(0, 0)T, x > 0.5.

Table 7   The predicted and observed values of � = �
Δt

Δx
 (where Δx = 1

200
 ) for which positivity of the height 

of the water is preserved in the shallow water equations in Example 5

Method �pred �obs Method �pred �obs

Forward Euler 1.000 00 1.010 58 Taylor series 1.000 00 1.025 98
Dormand Prince 0.000 00 0.000 00 nonSSPRK(8,6) 0.000 00 0.000 00
SSP-SD MDRK(3,5,2) – 1.031 76 SSP-SD MDRK(4,6,1) – 1.078 03
SSP-TS M2(4,5,1) 2.186 48 3.010 05 SSP-TS M2(5,6,1) 0.350 01 2.484 11
SSP-TS M3(5,5,1) 1.062 53 1.785 93 SSP-TS M3(7,6,1) 0.894 68 1.640 84
SSP-TS M3(6,5,1) 1.820 79 2.125 79 SSP-TS M3(9,6,1) 2.598 60 3.033 87
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5 � Conclusions

In [5] we introduced a formulation and base conditions to extend the SSP framework to mul-
tistage multi-derivative time-stepping methods, and the resulting SSP-SD methods. While the 
choice of base conditions we used in [5] gives us more flexibility in finding SSP time-stepping 
schemes, it limits the flexibility in the choice of the spatial discretization. In the current paper 
we introduce an alternative SSP formulation based on the conditions (12) and (14) and investi-
gate the resulting explicit two-derivative multistage SSP-TS time integrators. These base con-
ditions are relevant because some commonly used spatial discretizations may not satisfy the 
second-derivative condition (13) which we required in [5], but do satisfy the Taylor series con-
dition (14). This approach decreases the flexibility in our choice of time discretization because 
some time discretizations that can be decomposed into convex combinations of (12) and (13) 
cannot be decomposed into convex combinations of (12) and (14). However, it increases the 
flexibility in our choice of spatial discretizations, as we may now consider spatial methods that 
satisfy (12) and (14) but not (13). In the numerical tests we showed that this increased flexibil-
ity allowed for more efficient simulations in several cases.

In this paper, we proved that explicit SSP-TS methods have a maximum obtainable order 
of p = 6 . Next we formulated the proper optimization procedure to generate SSP-TS meth-
ods. Within this new class we were able to organize our schemes into three sub categories 
that reflect the different simplifications used in the optimization. We obtained methods up to 
and including order p = 6 thus breaking the SSP order barrier for explicit SSP Runge-Kutta 
methods. Our numerical tests show that the SSP-TS explicit two-derivative methods perform 
as expected, preserving the strong stability properties satisfied by the base conditions (12) and 
(14) under the predicted time-step conditions. Our simulations demonstrate the sharpness of 
the SSP-TS condition in some cases, and the need for SSP-TS time-stepping methods. Further-
more the numerical results indicate that the added freedom in the choice of spatial discretiza-
tion results in larger allowable time steps. The coefficients of the SSP-TS methods described in 
this work can be downloaded from [14].
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Appendix 1 Order Conditions

Any method of the form (9) must satisfy the order conditions for all p ≤ P to be of order P.
p = 1,

p = 2,

p = 3,

p = 4,

p = 5,

bTe = 1;

bTc + b̂Te =
1

2
;

bTc2 + 2b̂Tc =
1

3
,

bTAc + bTĉ + b̂Tc =
1

6
;

bTc3 + 3b̂Tc2 =
1

4
,

bT(c⊙ Ac) + bT(c⊙ ĉ) + b̂Tc2 + b̂TAc + b̂Tĉ =
1

8
,

bTAc2 + 2bTÂc + b̂Tc2 =
1

12
,

bTA2c + bTAĉ + bTÂc + b̂TAc + b̂Tĉ =
1

24
;

bTc4 + 4b̂Tc3 =
1

5
,

bT
(
c2 ⊙ Ac

)
+ bT

(
c2 ⊙ ĉ

)
+ b̂Tc3 + 2b̂T(c⊙ Ac) + 2b̂T(c⊙ ĉ) =

1

10
,

bT
(
c⊙ Ac2

)
+ 2bT

(
c⊙ Âc

)
+ b̂Tc3 + b̂TAc2 + 2b̂TÂc =

1

15
,

bT
(
c⊙ A2c

)
+ bT(c⊙ Aĉ) + bT

(
c⊙ Âc

)
+ b̂T(c⊙ Ac) + b̂T(c⊙ ĉ) + b̂TA2c + b̂TAĉ + b̂TÂc =

1

30
,

bT(Ac⊙ Ac) + 2bT(ĉ⊙ Ac) + bTĉ2 + 2b̂T(c⊙ Ac) + 2b̂T(c⊙ ĉ) =
1

20
,

bTAc3 + 3bTÂc2 + b̂Tc3 =
1

20
,

bTA(c⊙ Ac) + bTA(c⊙ ĉ) + bTÂc2 + bTÂAc + bTÂĉ + b̂T(c⊙ Ac) + b̂T(c⊙ ĉ) =
1

40
,

bTA2c2 + 2bTAÂc + bTÂc2 + b̂TAc2 + 2b̂TÂc =
1

60
,

bTA3c + bTA2ĉ + bTAÂc + bTÂAc + bTÂĉ + b̂TA2c + b̂TAĉ + b̂TÂc =
1

120
;
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p = 6,

bTc5 + 5b̂Tc4 =
1

6
,

bT
(
c3 ⊙ Ac

)
+ 3b̂T

(
c2 ⊙ Ac

)
+ b̂Tc4 + bT

(
c3 ⊙ ĉ

)
+ 3b̂T

(
c2 ⊙ ĉ

)
=

1

12
,

bT
(
c2 ⊙ Ac2

)
+ 2b̂T

(
c⊙ Ac2

)
+ 2bT

(
c2 ⊙ Âc

)
+ b̂Tc4 + 4b̂T

(
c⊙ Âc

)
=

1

18
,

bT
(
c⊙ Ac3

)
+ 3bT

(
c⊙ Âc2

)
+ b̂TAc3 + 3b̂TÂc2 + b̂Tc4 =

1

24
,

bTAc4 + 4bTÂc3 + b̂Tc4 =
1

30
,

bT
(
c2 ⊙ A2c

)
+ 2b̂T

(
c⊙ A2c

)
+ bT

(
c2 ⊙ Aĉ

)
+ bT

(
c2 ⊙ Âc

)
+ b̂T

(
c2 ⊙ Ac

)
+ 2b̂T(c⊙ Aĉ)

+ 2b̂T
(
c⊙ Âc

)
+ b̂T

(
c2 ⊙ ĉ

)
=

1

36
,

bT
(
c⊙ A2c2

)
+ b̂TA2c2 + b̂T

(
c⊙ Ac2

)
+ bT

(
c⊙ Âc2

)
+ 2bT

(
c⊙ AÂc

)
+ b̂TÂc2 + 2b̂TAÂc

+ 2b̂T
(
c⊙ Âc

)
=

1

72
,

bTA2c3 + b̂TAc3 + bTÂc3 + 3bTAÂc2 + 3b̂TÂc2 =
1

120
,

bT(c⊙ Ac⊙ Ac) + b̂T(Ac⊙ Ac) + bT
(
c⊙ ÂAc

)
+ bT(c⊙ A(c⊙ ĉ)) + b̂T

(
c2 ⊙ Ac

)
+ bT

(
c⊙ Âc2

)

+ b̂TÂAc + b̂TA(c⊙ ĉ) + bT
(
c⊙ Âĉ

)
+ b̂TÂc2 + b̂Tc2ĉ + b̂TÂĉ =

1

48
,

bTA
(
c2 ⊙ Ac

)
+ bTA

(
c2 ⊙ ĉ

)
+ b̂T

(
c2 ⊙ Ac

)
+ 2bT

(
Âc⊙ Ac

)
+ bTÂc3 + 2bT

(
Âc⊙ ĉ

)

+ b̂T
(
c2 ⊙ ĉ

)
=

1

60
,

bT
(
Ac⊙ Ac2

)
+ b̂T

(
c⊙ Ac2

)
+ bTÂAc2 + bTÂc3 + 2bT

(
Ac⊙ Âc

)
+ 2bTÂ2c + 2b̂T

(
c⊙ Âc

)
=

1

90
,

bT
(
c⊙ A3c

)
+ b̂TA3c + b̂T

(
c⊙ A2c

)
+ bT

(
c⊙ ÂAc

)
+ bT

(
c⊙ AÂc

)
+ bT

(
c⊙ A2ĉ

)
+ b̂TÂAc

+ b̂TAÂc + b̂TA2ĉ + bT
(
c⊙ Âĉ

)
+ b̂TCAĉ + b̂TCÂc + b̂TÂĉ =

1

144
,

bT
(
Ac⊙ A2c

)
+ bT(Ac⊙ Aĉ) + bT

(
Ac⊙ Âc

)
+ bT

(
Âc⊙ Ac

)
+ bTÂA2c + b̂T

(
c⊙ A2c

)

+ bT
(
Âc⊙ ĉ

)
+ bTÂAĉ + b̂T(c⊙ Aĉ) + bTÂ2c + b̂T

(
c⊙ Âc

)
=

1

180
,

bT(A2(c⊙ Ac) + bTA2(c⊙ ĉ) + bTAÂc2 + bTAÂAc + bTÂ(c⊙ Ac) + b̂TA(c⊙ Ac) + bTAÂĉ

+ bTÂ(c⊙ ĉ) + b̂TA(c⊙ ĉ) + b̂TÂc2 + b̂TÂAc + b̂TÂĉ =
1

240
,

bTA3c2 + b̂TA2c2 + bTÂAc2 + bTAÂc2 + 2bTA2Âc + b̂TÂc2 + 2b̂TAÂc + 2bTÂ2c =
1

360
,

bT(c⊙ Ac⊙ Ac) + b̂T(Ac⊙ Ac) + 2bT(c⊙ ĉ⊙ Ac) + 2b̂T
(
c2 ⊙ Ac

)
+ 2b̂T(ĉ⊙ Ac) + 2b̂T

(
c2 ⊙ ĉ

)

+ bT
(
c⊙ ĉ2

)
+ b̂Tĉ2 =

1

24
,
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Appendix 2 Coefficients of Selected Methods

All the time-stepping methods in this work can be downloaded as Matlab files from [14]. In 
this appendix we present selected methods.

SSP-TS M2(4,5,1) This method has TS = 2.186 48,

SSP-TS M3(8,6,1) This method has TS = 1.736 9,

bT
(
Ac⊙ A2c

)
+ bT

(
ĉ⊙ A2c

)
+ b̂T

(
c⊙ A2c

)
+ b̂T(Ac⊙ Ac) + bT

(
Ac⊙ Âc

)
+ bT(Ac⊙ Aĉ)

+ 2b̂T(ĉ⊙ Ac) + bT
(
ĉ⊙ Âc

)
+ bT(ĉ⊙ Aĉ) + b̂T

(
c⊙ Âc

)
+ b̂T(c⊙ Aĉ) + b̂Tĉ2 =

1

72
,

bT
(
Ac⊙ Ac2

)
+ bT

(
ĉ⊙ Ac2

)
+ b̂T

(
c⊙ Ac2

)
+ b̂T

(
Ac⊙ c2

)
+ 2bT

(
Ac⊙ Âc

)
+ b̂T

(
ĉ⊙ c2

)

+ 2bT
(
ĉ⊙ Âc

)
+ 2b̂T

(
c⊙ Âc

)
=

1

36
,

bTA(Ac⊙ Ac) + 2bTA(ĉ⊙ Ac) + 2bTÂ(c⊙ Ac) + b̂T(Ac⊙ Ac) + 2b̂T(ĉ⊙ Ac) + 2bTÂ(c⊙ ĉ)

+ bTAĉ2 + b̂Tĉ2 =
1

120
,

bTA4c + bTA3ĉ + bTA2Âc + bTAÂAc + bTÂA2c + b̂TA3c + bTAÂĉ + bTÂAĉ + b̂TA2ĉ

+ bTÂ2c + b̂TAÂc + b̂TÂAc + b̂TÂĉ =
1

720
.

a
21

= 4.280 141 748 183 123E − 01, â
21

= 9.159 806 692 270 039E − 02, b
1
= 3.456 442 194 983 256E − 01,

a
31

= 3.174 364 422 211 321E − 01, â
31

= 2.068 159 838 961 376E − 02, b
2
= 1.551 487 425 849 178E − 01,

a
32

= 1.032 647 478 325 804E − 01, â
32

= 2.361 437 143 530 821E − 02, b
3
= 3.458 932 447 335 502E − 01,

a
41

= 3.280 547 501 426 051E − 01, â
41

= 1.869 435 227 642 530E − 02, b
4
= 1.533 137 931 832 064E − 01,

a
42

= 9.334 228 125 655 676E − 02, â
42

= 2.134 532 206 271 365E − 02, b̂
1
= 3.226 836 941 745 746E − 02,

a
43

= 4.134 096 583 922 347E − 01, â
43

= 9.453 767 556 809 974E − 02, b̂
2
= 1.785 928 934 720 153E − 02,

b̂
3
= 7.490 191 551 289 183E − 02,

b̂
4
= 3.505 948 481 328 697E − 02.

a
21

= 3.498 630 949 258 150E − 01, a
65

= 3.779 563 241 192 044E − 01, â
21

= 6.120 209 259 553 491E − 02,

a
31

= 2.253 295 269 463 227E − 01, a
71

= 2.148 681 581 922 796E − 01, â
31

= 1.921 063 160 949 869E − 02,

a
32

= 1.807 161 013 759 724E − 01, a
72

= 1.533 420 472 452 636E − 01, â
41

= 4.358 605 297 856 505E − 03,

a
41

= 2.071 695 605 568 409E − 01, a
73

= 1.813 808 417 863 181E − 02, â
51

= 2.136 333 816 692 593E − 03,

a
42

= 4.100 178 308 548 576E − 02, a
74

= 7.994 387 176 143 736E − 02, â
61

= 1.402 456 855 983 780E − 03,

a
43

= 1.306 253 212 278 126E − 01, a
75

= 1.630 752 796 649 391E − 01, â
71

= 1.631 142 330 728 269E − 02,

a
51

= 1.667 117 585 911 237E − 01, a
76

= 2.484 093 806 816 690E − 01, â
81

= 1.548 804 492 637 956E − 02,

a
52

= 2.009 667 996 165 993E − 02, a
81

= 2.036 762 412 289 922E − 01, b
1

= 1.927 179 349 665 056E − 01,

a
53

= 6.402 490 521 280 881E − 02, a
82

= 1.456 707 401 767 411E − 01, b
2

= 7.457 643 792 836 192E − 02,

a
54

= 2.821 909 187 189 924E − 01, a
83

= 2.379 744 031 395 224E − 02, b
3

= 1.097 549 250 079 706E − 01,

a
61

= 1.493 141 923 275 556E − 01, a
84

= 1.048 777 345 557 326E − 01, b
4

= 1.166 274 027 628 658E − 01,

a
62

= 1.319 303 489 675 465E − 02, a
85

= 2.139 668 745 571 685E − 01, b
5

= 1.862 061 970 475 841E − 01,

a
63

= 4.203 095 914 776 495E − 02, a
86

= 6.560 681 670 556 633E − 02, b
6

= 1.088 089 628 270 683E − 01,

a
64

= 1.852 522 020 371 737E − 01, a
87

= 1.520 556 075 200 664E − 01, b
7

= 4.414 821 350 738 243E − 02,

b
8

= 1.671 599 259 522 612E − 01,

b̂
1

= 1.1565 185 169 801 32E − 02.
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Appendix 3: Fifth‑Order WENO Method of Jiang and Shu

To solve the PDE

we approximate the spatial derivative to obtain F(u) ≈ −f (u)x , and then use a time-step-
ping method to solve the resulting system of ODEs. In this section we describe the fifth-
order WENO scheme presented in [20].

First, we split the flux into the positive and negative parts

This can be accomplished in a variety of ways, e.g., the Lax-Friedrichs flux splitting

where m = max |f �(u)| . In this way we ensure that df
+

du
≥ 0 and df

−

du
≤ 0.

To calculate the numerical fluxes f̂ +
j+

1

2

 and f̂ −
j+

1

2

 , we begin by calculating the smoothness 

measurements to determine if a shock lies within the stencil. For our fifth-order scheme, these 
are

and

Next, we use the smoothness measurements to calculate the stencil weights

and

ut + f (u)x = 0,

f (u) = f +(u) + f −(u).

f +(u) =
1

2
(f (u) + mu), f −(u) =

1

2
(f (u) − mu),

IS+
0
=

13

12

(
f +
j−2

− 2f +
j−1

+ f +
j

)2

+
1

4

(
f +
j−2

− 4f +
j−1

+ 3f +
j

)2

,

IS+
1
=

13

12

(
f +
j−1

− 2f +
j
+ f +

j+1

)2

+
1

4

(
f +
j−1

− f +
j+1

)2

,

IS+
2
=

13

12

(
f +
j
− 2f +

j+1
+ f +

j+2

)2

+
1

4

(
3f +

j
− 4f +

j+1
+ f +

j+2

)2

,

IS−
0
=

13

12

(
f −
j+1

− 2f −
j+2

+ f −
j+3

)2

+
1

4

(
3f −

j+1
− 4f −

j+2
+ f −

j+3

)2

,

IS−
1
=

13

12

(
f −
j
− 2f −

j+1
+ f −

j+2

)2

+
1

4

(
f −
j
− f −

j+2

)2

,

IS−
2
=

13

12

(
f −
j−1

− 2f −
j
+ f −

j+1

)2

+
1

4

(
f −
j−1

− 4f −
j
+ 3f −

j+1

)2

.

�±
0
=

1

10

(
1

� + IS±
0

)2

, �±
1
=

6

10

(
1

� + IS±
1

)2

, �±
2
=

3

10

(
1

� + IS±
2

)2

,

�±
0
=

�±
0

�±
0
+ �±

1
+ �±

2

, �±
1
=

�±
1

�±
0
+ �±

1
+ �±

2

, �±
2
=

�±
2

�±
0
+ �±

1
+ �±

2

.
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Finally, the numerical fluxes are

and

Finally, we compute

and put it all together
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