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Abstract
Predicting the impact of climate change on species distribution at different spatial and temporal scales has emerged as one of 
the important areas of research in invasion ecology and conservation biology. We used MaxEnt (Maximum Entropy Algo-
rithm) to predict the distribution of a highly invasive species, namely Parthenium hysterophorus L. under four Representative 
Concentration Pathway scenarios (RCPs 2.6, 4.5, 6.0 and 8.5) in 2050 and 2070 at global (world), regional (India) and local 
(Jammu & Kashmir State) spatial scales. Model predictions indicated differences in the extent of expansion in the distribu-
tion of this species under different climate change scenarios with marginal increase in moderately suitable area at the global 
scale but mostly a declining trend was noticed in its suitable and highly suitable area in future. More or less similar trend 
was predicted for India where increase in moderately suitable area was evident but decline in suitable and highly suitable 
areas was observed. In respect of Jammu & Kashmir, moderately suitable as well suitable area showed increase mostly under 
RCP scenarios of 6.0 and 8.5 in 2050 as well as 2070. Further analysis revealed that current centroid of P. hysterophorus 
is in south of Jammu and Kashmir and is predicted to shift by an average of 20.48 km in the north-west direction by 2050 
and by 36.83 km by 2070. The future suitable area is likely to be around Hirapora Wildlife sanctuary in Kashmir. Pairwise 
comparison of the niche overlap and dynamics of P. hysterophorus between the native Americas and each of the regions 
(Africa, Asia, Australia and Oceania) where the species is introduced using Schoener’s D revealed variations in the niche 
overlap which was high between native Americas and Australia (0.70) and Africa (0.69), moderate between Americas and 
Asia (0.59) and low between Americas and Oceania (0.24). Exclusion of 25% of rare climatic conditions did not have any 
effect on the niche overlap index (D). Niche similarity test was not significant for any of the pairwise comparisons of native 
Americas and the continents in which the species is non-native indicating that the native niche is more similar to the exotic 
niche than any randomly sampled niche from the exotic range. But the niche equivalency tests showed that the environmental 
realized niche of P. hysterophorus in its invaded range was not totally equivalent to that in the native range indicating niche 
differentiation. The niche dynamic indices based on analogous and the entire climatic space in the native and introduced 
regions revealed a very high niche stability. A very limited niche expansion was noticed only in Asia and niche unfilling was 
evident in Oceania. Like niche overlap index (D), niche expansion and niche stability were not affected by the exclusion of 
25% of rare climatic conditions but marginal change was noticed in niche unfilling in the Oceania. The above predictions 
have implications for formulation of policies at local, regional and global level for the management of this invasive species.

Keywords  Centroid shift · Habitat suitability · MaxEnt modelling · Niche conservatism and range expansion and 
contraction

Introduction

Among the plethora of impacts of climate change on flora 
and fauna, change in the distributional range of the species 
has been well reported (Gomes et al. 2018; Lamsal et al. 
2018; Adhikari et al. 2019; Ahmad et al. 2019; Shrestha and 
Shrestha 2019). While some species may show poleward 
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shift in their distribution, in others upward altitudinal shift 
in response to climate change has been reported (Pauchard 
et al. 2016). Of particular interest in this context are the 
alien (non-native/exotic) species whose fortunes may also 
change with the change in the climate (Bradley et al. 2010). 
Predicting future distribution of species over relevant spa-
tio-temporal scales under various climate change scenarios 
is of particular significance in the management of invasive 
alien species (Porfirio et al. 2014; Fletcher et al. 2016; Chai 
et al. 2016). Consequently, in the last two decades several 
modelling tools (Elith et al. 2010; Fourcade et al. 2014; Thu-
iller et al. 2016; Di Cola et al. 2017) have been developed 
for predicting future distribution of species on the basis of 
current correlation between climatic variables and species 
occurrence records, assuming niche conservatism, no disper-
sal limitation or biotic interactions (Ramirez-Albores et al. 
2016). Such models have become popular in predicting the 
distribution of invasive species (Bradley et al. 2010; Tingley 
et al. 2014; Kramer et al. 2017; Barbet-Massin et al. 2018), 
especially under changing climate conditions (Bellard et al. 
2018; Ahmad et al. 2019). Changes in species distributions 
are likely to affect structural organization and functional 
integrity of communities and ecosystems with unforeseeable 
ecological and economic impacts and costs (Hughes 2000).

Understanding of niche dynamics in the native and intro-
duced regions using the COUE framework of Centroid 
shift, Overlap, Unfilling, and Expansion (Broennimann 
et al. 2012; Petitpierre et al. 2012) has received lot of atten-
tion in the recent past. Results of such studies have been 
variable (Thuiller et al. 2005) with some species showing 
niche conservatism (Liu et al. 2020) and others exhibiting 
niche shift (Atwater et al. 2018). Based on 86 studies dealing 
with 434 invasive species, Liu et al. (2020) concluded that 
most invasive species largely conserve their climatic niche 
and niche conservatism not only allows for transfer of niche 
models to new ranges but also provides for use of ecological 
niche modelling in understanding the response of species to 
climate change.

Climate change that is driven by anthropogenic green-
house gas emissions on account of increase in human popu-
lation, economic activity, changes in life style, energy use, 
land use changes and other related activities is widespread 
and well reported (IPCC 2014). Representative concen-
tration pathways (RCPs) of greenhouse gases including a 
stringent mitigation scenario (RCP 2.6), two intermediate 
scenarios (RCP 4.5 and RCP 6.0) and one scenario with very 
high GHG emissions (RCP 8.5) have been used for making 
future projections. Relative to 1986–2005, the increase in 
global mean surface temperature by the end of the twenty-
first century (2081–2100) is likely to be 0.3–1.7 °C under 
RCP 2.6, 1.1–2.6 °C under RCP 4.5, 1.4–3.1 °C under RCP 
6.0 and 2.6–4.8 °C under RCP 8.5 (IPCC 2014).

Over the last few decades, indicators of climate change 
in the form of increasing temperature, shrinking of glaciers 
and erratic precipitation pattern are easily discernible in 
the Himalaya (Shrestha et al. 2012; Bahuguna et al. 2014) 
including Kashmir Himalaya (Rashid et al. 2015; Zaz et al. 
2018). Since Himalaya is a biodiversity hotspot, the impact 
of such changes may be more damaging on the native bio-
diversity (Rashid et al. 2013; Malik et al. 2015). It is very 
likely that new species alien to the region may gain foothold 
due to changing climatic conditions and P. hysterophorus is 
one species that is making inroads into previously uninvaded 
areas in Kashmir Himalaya.

Parthenium hysterophorus is an annual short-lived her-
baceous species that belongs to family Asteraceae (com-
monly known as feverfew, carrot grass, congress grass and 
parthenium weed). Though native to the tropics and subtrop-
ics of Central and South America (Dhileepan and Wilmot 
Senaratne 2009; Adkins and Shabbir 2014), P. hysteropho-
rus has invaded vast areas in a number of countries across 
five continents. Accidental or unchecked trade and transport 
across the borders is believed to be the primary reason for its 
global spread (Adkins and Shabbir 2014; Bajwa et al. 2016), 
in addition to its vigorous growth, high seed production and 
effective adaptive and dispersal mechanisms (Bajwa et al. 
2016). In fact, it is one of the world’s top ten noxious weeds 
(Callaway and Ridenour 2004). In Asia, P. hysterophorus 
is believed to be unintentionally introduced with cereal and 
grass seed shipment from America during the 1950s (Rao 
1956; Bhowmik and Sarkar 2005). However, in India it has 
been first reported in 1810 in Arunachal Pradesh (Gnanavel 
2013) and there is mention of this weed in a book namely 
“Hortus Bengalensis” by Roxburgh as early as 1814. Subse-
quently, it became invasive in most of the Indian states but 
there are very few reports of occurrence of P. hysterophorus 
in Kashmir Himalaya (Yaqoob et al. 1988).

To predict the distribution of P. hysterophorus at global, 
regional (India) and local (Jammu & Kashmir) spatial scales 
under various RCP scenarios in future (2050 and 2070), we 
used Maximum Entropy Algorithm (MaxEnt), a widely 
used machine-learning software (Bradley 2009; Kumar and 
Stohlgren 2009; Elith et al. 2010; Lamsal et al. 2018), for 
its easy implementation and use of presence-only data as 
absence data is rarely available or reliable (Phillips et al. 
2006). To improve the model performance, the usually 
spatially biased presence records (Lake et al. 2020) were 
corrected for sampling and latitudinal biases. We selected 
occurrence records only within the specified habitat range 
using a particular tool in SDM Toolbox. Though several 
studies that have modelled the distribution of P. hysteropho-
rus at global level (Kriticos et al. 2015; Mainali et al. 2015) 
and in India (Ahmad et al. 2019) are available, the present 
study was aimed to uncover and compare the differences 
in the distribution of this species at different spatial scales 
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under various climate change scenarios in two time periods 
of 2050 and 2070. Also in the present study, unlike previous 
studies, pairwise comparison in the extent of overlap in the 
niche of P. hysterophorus between the native and introduced 
regions was undertaken following the ordination technique 
(PCA-env) using Schoener’s D (Broennimann et al. 2012; 
Datta et al. 2019). Niche dynamics was further analysed 
using several indices (stable, unfilling and expansion) which 
were statistically tested using niche equivalency and niche 
similarity tests. Since we suspected that P. hysterophorus 
may move to previously uninvaded areas in Jammu & Kash-
mir, the rate and direction of core distributional shift in P. 
hysterophorus was figured out which has implications for 
deploying rapid response measures for the management of 
this species in Kashmir Himalaya.

Materials and methods

Species occurrence data

The occurrence data of P. hysterophorus with georeferenced 
geographic coordinates were collected from its native and 
alien ranges. A total of 7185 records were compiled which 
were obtained from different sources, such as Global Biodi-
versity Information Facility (GBIF) (http://​data.​gbif.​org/), 
an open access database for distribution of species across 
the globe and for India, CABI (Centre for Agriculture and 
Biosciences International) (http://​www.​cabi.​org/​isc/​datas​
heet/​45573), Indian Biodiversity Portal, published records 
on P. hysterophorus in journals, books, reports and other 
published literature, herbarium records of Botanical Sur-
vey of India, JeevSampada, Kashmir University Herbarium 
(KASH) and field survey records of authors.

Since being important for better predictive modelling, 
the occurrence records were thoroughly cleaned for spa-
tial errors using Diva GIS (Hijmans et al. 2001) which was 
accessed in July 2019 and only georeferenced localities were 
included. Data without or with obviously erroneous coordi-
nates (e.g. 0.0) were discarded. The selected records were 
first converted to decimal degrees as it is the best system for 
the digital notation of geographic coordinates and then con-
verted into an MS excel format with species name, latitude, 
longitude, altitude, location and data source. The duplicate 
records were then removed. The file containing remaining 
occurrence points was converted to a CSV format containing 
only Species ID, Longitude and Latitude.

Correction of sampling bias

The input data i.e. the presence records are usually spatially 
biased towards more easily accessed and better surveyed 
areas (Phillips et al. 2009; Kramer-Schadt et al. 2013) and 

eventually can translate into environmental bias due to 
greater representation of certain features of these better 
surveyed regions (Kramer-Schadt et al. 2013). As most of 
our data were derived from opportunistic observations and 
herbaria, the potential effect of sampling bias in our data 
was acknowledged and taken into account. Firstly, to reduce 
the bias due to spatially auto-correlated occurrence records 
plus spatial clusters of localities, the Graduated Filtering 
method (Brown 2014) was used. This method addresses 
the problem by spatially filtering the data to a single point 
within the specified (here 10 km) Euclidian Distance (Boria 
et al. 2014) and thus rarefied the occurrence points to 1674. 
After extracting values from raster at the location of pres-
ence points using QGIS, the null values were removed, 
reducing the data set to 1644 points. Furthermore, the bias 
correction features available in MaxEnt, allows the users 
to include bias files for background selection. These files, 
besides controlling the selection of background points, also 
facilitate to control density of background sampling. Back-
ground points when compared to presence occurrence points 
aid in differentiating the environmental conditions suitable 
for the potential occurrence of a species (Brown 2014). 
We used the Correcting Latitudinal Background Selection 
Bias Tool in the SDM Toolbox (Cao et al. 2016) to address 
the issue of biasing the selection of background points (or 
pseudoabsence points) towards the poles. The level of bias 
depends on the breadth of latitudes the analysis covers 
(Brown 2014). It provides solution in three steps: (a) Crea-
tion of a BiasFile for Coordinate Data (BFCD) in MaxEnt 
(downloadable from http://​sdmto​olbox.​org/​techn​ical-​info). 
This file accounts for pseudoabsence sampling biases, (b) 
Background Selection: Sample by Buffered MCP (buffer dis-
tance was taken as 10 km). It limits selection of background 
points to only feasible areas of dispersal; (c) Clip BFCD by 
Background Selection Bias File. It merges the two bias files. 
The resultant bias file was used for background selection in 
MaxEnt.

Environmental data

To model potential global distribution of P. hysteropho-
rus, a total of 19 grid-based bioclimatic variables (Table 1) 
for the current and future time periods were obtained at a 
spatial resolution of 30 arc-seconds which corresponds to 
a pixel size of approximately (~ 1 sq.km) from Worldclim 
version 1.4 (www.​world​clim.​org/; Hijmans et al. 2005). We 
used lowest available grain size of bioclimatic variables to 
increase model accuracy and transferability (Manzoor et al. 
2018). Since it is widely accepted that most climatic vari-
ables are highly correlated with each other, it is essential 
to perform multi-collinearity analysis in habitat suitability 
modelling as correlated environmental variables negatively 
affect model performance (Pearson et al. 2007). Though 

http://data.gbif.org/
http://www.cabi.org/isc/datasheet/45573
http://www.cabi.org/isc/datasheet/45573
http://sdmtoolbox.org/technical-info
http://www.worldclim.org/
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MaxEnt has been found to cope well with collinearity (Elith 
et al. 2011), Pearson correlation analysis was used to omit 
highest correlative predictors (Dormann et al. 2013). A com-
monly used  threshold of Pearson’s correlation coefficient 
(r > 0.7)  was  used (Dormann et al. 2013). All the 19 bio-
climatic raster layers were tested for collinearity by calcu-
lating pairwise correlations between them and highly cor-
related variables (Pearson’s correlation coefficient r > 0.75) 
were omitted (Syfert et al. 2013; Cao et al. 2016; Wei et al. 
2017). Discarding highly correlated variables reduces auto-
correlation of input environmental data and minimizes the 
impact of multicollinearity and overfitting of the model. 
Finally, only nine variables (Bio 1, Bio 2, Bio 3, Bio 4, Bio 
5, Bio 12, Bio 14, Bio 15 and Bio 19) were used (Table 1) to 
generate the niche model under current and future climatic 
conditions. The datasets of selected nine bioclimatic vari-
ables were converted into ASCII format in ArcGIS 10.3 as 
required in MaxEnt.

Owing to the fact that P. hysterophorus is widespread in 
all the continents except Europe and Antarctica (Mainali 
et al. 2015), we studied its future distribution at three spatial 
scales under four future greenhouse gas concentration tra-
jectories, commonly known as RCPs (Representative Con-
centration Pathways: RCP 2.6, RCP 4.5, RCP 6.0 and RCP 
8.5) which were used by IPCC (Intergovernmental Panel on 

Climate Change) in its Fifth Assessment Report (AR5). We 
selected a GCM i.e. Global Circulation Model, HadGEM2-
AO (Hadley Global Environment Model 2–Atmosphere-
Ocean). This model is designed to run for the major sce-
narios as recommended by IPCC (2014) and has been used 
by a number of workers for species distribution modelling 
(Ahmad et al. 2019; Banerjee et al. 2019). The datasets 
were downloaded for two time periods: 2050 (average for 
2041–2060) and 2070 (average for 2061–2080) from the 
WorldClim website (http://​www.​world​clim.​org). In order 
to maintain consistency, we selected the same independent 
predictors (Bio 1, Bio 2, Bio 3, Bio 4, Bio 5, Bio 12, Bio 14, 
Bio 15 and Bio 19) as were used for mapping current distri-
bution of P. hysterophorus. However, all the 19 bioclimatic 
variables were used for niche dynamic analysis (Table 1).

Modelling approach

To model the current and future distribution of P. hystero-
phorus under different climate change scenarios, we used 
MaxEnt (Maximum Entropy Niche Modelling software, 
version 3.4.1), a machine-learning method that employs the 
principle of maximum entropy to approximate the unknown 
probability distribution of a target species based on pres-
ence-only data (Phillips et al. 2006). We preferred it owing 
to its easy use, higher predictive accuracy, functionality to 
use presence only data and relatively better performance 
than other methods (Reside et al. 2019; Chen et al. 2020), 
and popularity (Merow et al. 2013). Also MaxEnt has suc-
cessfully outperformed classical presence-only models like 
DOMAIN, ENFA, BIOCLIM (Hirzel et  al. 2002; Elith 
et al. 2006; Ward 2007) and is believed to be most reliable 
amongst available machine learning methods (Guisan et al. 
2007; Elith and Graham 2009; Fourcade et al. 2014). We 
ran MaxEnt mostly with default settings but the random test 
percentage was kept equal to 25% and the maximum number 
of iterations that permit the algorithm to get close to conver-
gence was set to 5000 instead of default 500 allowing the 
model to have sufficient time for convergence. MaxEnt has 
an ability to run a model multiple times and finally averages 
the results from all models created. Thus, model validation 
was done using sub-sampling option with 10 replications 
and the default “logistic” format was used which is a contin-
uous map with an estimated probability of species’ presence 
ranging from 0 to 1. To further improve model performance, 
we used the bias file obtained using Correcting Latitudinal 
Background Selection Bias Tool in the SDMtoolbox (Brown 
2014) instead of using default randomly selected background 
points. Further, to calculate significant contribution of each 
predictor to the model, Jackknife procedure was used. This 
configuration has been effectively used in a wide range of 
niche modelling studies (Phillips and Dudík 2008; Yang et al 
2013; Yi et al. 2016; Esfanjani et al. 2018).

Table 1   List of 19 bioclimatic variables from the WorldClim data-
base (Hijmans et  al. 2005) used for constructing the multivariate 
niche space for Parthenium hysterophorus 

The climatic variables retained after correlation analysis for model-
ling distribution of P. hysterophorus under current and future climate 
scenarios are in bold

The term Variable

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4 Temperature Seasonality
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter

http://www.worldclim.org
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Model evaluation

The main outputs of MaxEnt included ROC curve, response 
curves, Jackknife tests of variable importance and probabil-
ity maps. The capacity of the model to differentiate between 
presence and absence states was determined by using the 
Area Under the Curve (AUC) of the Receiver Operating 
Characteristics (ROC) plot test statistics. The strength and 
accuracy of the model is commonly determined by AUC 
values ranging between 0 and 1 whereby AUC values of 
0.5–0.7 are considered low, 0.7–0.8 is ‘acceptable predic-
tion’, 0.8–0.9 is ‘excellent’ and > 0.9 is ‘outstanding predic-
tion’ (Pittman and Brown 2011). MaxEnt output is continu-
ous data with values ranging from 0 (representing lowest) to 
1 (representing highest) probability of potential distribution. 
In addition, the Boyce Index commonly used for presence 
only models was calculated using ‘Ecospat’ package in R 
(version 3.5.3) for model evaluation. This index is consid-
ered to be adequate especially in case of MaxEnt as it uses 
background data instead of true absences (Di Cola et al. 
2017). The Boyce index, a threshold independent metric, 
measures Spearman’s Rank correlation coefficient which 
ranges from -1 to 1. While negative values signify false or 
erroneous predictions, values close to zero imply no better 
than random results and positive values close to 1 indicate 
good or correct model predictions (Boyce et al. 2002).

For area change analysis, we imported our MaxEnt output 
data and reclassified it into five categories of habitat suit-
ability, namely unsuitable (0–0.2), less suitable (0.2–0.4), 
moderately suitable (0.4–0.6), suitable (0.6–0.8) and highly 
suitable (0.8–1.0). The suitable area predicted for P. hys-
terophorus under present and future climate scenarios was 
calculated by multiplying the number of presence grid cell to 
their spatial resolution. Data for India and Jammu & Kash-
mir were extracted from world data file using ‘Extract by 
Mask’ in Spatial Analyst tools of ArcGIS. Further, the data 
were given proper projection for geometrical analysis. All 
GIS operations were performed in ArcGIS 10.3 (ESRI).

Core distributional shifts

To further examine the trend of suitable area change in 
Jammu & Kashmir, we calculated and compared the cen-
troids of current and future suitable areas by using the 
python-based GIS toolkit available in the SDMtoolbox 
V2.4. The SDMs (current and future) were converted to 
binary maps [presence (1) and absences (0)] using MaxEnt 
produced threshold. MaxEnt software generated 10 percen-
tile training presence threshold with a value of 0.404. The 
models were reclassified 0 (absence) values < 0.404 and 1 
(presence) > 0.404. The core distributional shifts of the P. 
hysterophorus were summarised using the binary maps. In 
this analysis, the species distribution was reduced to a single 

central point known as centroid and a vector file was cre-
ated depicting the direction of shift in species ranges over 
time. The centroid was calculated by averaging the latitude 
and longitude of all MaxEnt predicted suitable/presence 
input pixels. The distance in centroid shift was calculated 
using distance measure tools in GIS software and the aver-
age annual shift in the distance of P. hysterophorus was 
estimated.

Niche dynamics

Niche dynamics of P. hysterophorus was studied using 
the analytical framework proposed by Broennimann et al. 
(2012) and modified by Datta et al. (2019). Climatic data 
related to all the 19 bioclimatic variables (Table 1) of all 
the occurrence points of P. hysterophorus in both native 
(Americas) and introduced regions (Africa, Asia, Australia 
and Oceania) were pooled to calibrate a principal compo-
nent analysis on the entire environmental space of the spe-
cies (PCA-env). The first two components of the PCA-env 
were taken to define the “global PCA space” which was 
subsequently divided into 100 × 100 bins of equal size with 
each bin representing a unique set of climatic conditions. 
Gaussian Kernel density function was used for smoothing 
the density of occurrences and density of environmental grid 
cells in each bin of the global PCA space. In the native as 
well as each of the introduced continents, 10,000 random 
background points were generated separately to account for 
the available (background) environments using Research 
tools function in QGIS software. Bias due to geographic 
differences in the range size of P. hysterophorus was also 
corrected as suggested by Datta et al. (2019). This allowed 
us to compare and visualize niche dynamic analysis between 
the native and each of the introduced regions in the same 
‘global PCA’ space.

Schoener’s D, a measure of the degree of niche overlap, 
was calculated as a bootstrapped estimate with 95% con-
fidence interval using 100 resampling iterations of uncor-
rected occurrence density of P. hysterophorus as proposed 
by Datta et al. (2019). Schoener’s D ranges between 0 and 
1 with value of 1 indicating complete overlap and no niche 
shift, and 0 indicating no overlap. The effect of the exclu-
sion of 25% of rare climatic conditions on the niche overlap 
index (D) was also investigated. Single-tailed niche simi-
larity and equivalency tests were carried out following the 
methodology described by Broennimann et al. (2012) using 
uncorrected occurrence densities (Datta et al. 2019). The 
null hypothesis for the niche similarity test assumes that the 
observed niche overlap is due to similarity in the climatic 
conditions of the two ranges for which the niche overlap is 
compared. Using an iterative process with 100 iterations, 
the niche in an exotic range was randomly shifted within 
the available environmental space while keeping the niche 
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constant in the native range. Since niche overlap index 
was calculated for each iteration, a simulated distribution 
of niche overlap values was obtained. When the observed 
niche overlap is significantly lower than the simulated niche 
overlap values (P < 0.05), niche shift is indicated. For the 
equivalency test, the null hypothesis posits that niche overlap 
between the two ranges that are compared remains consist-
ent even if the occurrence data in the two ranges are pooled 
and reallocated randomly between the ranges. A randomi-
zation procedure with 100 permutations was used wherein 
the species occurrences of the two ranges were pooled and 
then randomly reallocated between the two ranges and the 
simulated overlap index was calculated for each such itera-
tion. The observed value of niche overlap when significantly 
lower (P < 0.05) than the simulated niche overlap value indi-
cates niche shift. Niche unfilling, niche expansion and niche 
stability for both analogous and entire climatic space were 
also calculated using Ecospat package (Di Cola et al. 2017) 
implemented in R (version 3.5.3) to provide a more com-
plete depiction of niche dynamics. The effect of progressive 
exclusion of rare climatic conditions (up to 25 percentile) on 
various niche dynamic indices was also studied.

Results

Current distribution

Current occurrence of Parthenium hysterophorus is pre-
sented in Fig. 1. It is apparent that in addition to its native 
regions of Central and South America, Parthenium is quite 
common in Indian sub-continent, South-eastern Asia, tropi-
cal/subtropical Australia, Southern and Eastern Africa, 
Madagascar and many Oceanic islands with warm climates.

Model performance and variable importance

Maxent was run with a dataset of 1644 occurrence points of 
P. hysterophorus using only the current climatic data. In this 
run, 25% of the occurrence records were withheld for model 
substantiation and average of ten replications was used to 
estimate the performance of the model on the basis of AUC 
(area under cover) of the ROC (receiver operating character-
istic). Model calibration with a mean training AUC of 0.873 
and a test AUC of 0.871 (Table 2) indicated high accuracy of 
our model in discriminating suitable and unsuitable habitats 
(Fig. 2). In order to identify contributions of each of the bio-
climatic variables employed for modelling habitat suitability, 
we used percent contribution and Jackknife procedure. Out 
of the nine bioclimatic predictors’ used for the present study, 
Isothermality (bio 3) and Annual Mean Temperature (bio 1) 
were seen to be the best predicting variables contributing 
together about 56.8% to the predictive model, followed by 
Annual Precipitation (bio 12) and Temperature Seasonality 
(bio 4) contributing a total of 31.1% to the predictive model. 
However, Maximum Temperature of Warmest Month (bio 5) 
was the least contributing variable with percent contribution 
of 0.3% (Table 3). 

The Maxent internal jackknife test which is yet another 
method of testing the importance of each predictor showed 
that the predictor with highest gain when used in isolation 
was bio 4, which, therefore, appears to contain the most 
useful information by itself. The explanatory variable that 
decreases the gain the most when it is omitted is bio 12, 

Fig. 1   Current distribution of P. hysterophorus in its native and non-
native ranges

Table   2   Area under curve (AUC) values for Current Scenario for 
training and testing shown in the table are averages of the ten repli-
cated runs

Climate scenario Training Test AUC​
SD

Current 0.873 0.871 0.004

Table 3   Contribution of various variables to the MaxEnt Model

Variable Percent contribution

bio_3 30.5
bio_1 26.3
bio_12 22.3
bio_4 8.8
bio_19 8.3
bio_15 1.6
bio_14 1.2
bio_2 0.7
bio_5 0.3
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which, therefore, appears to have the most information that 
is not present in the other bioclimatic predictors (Fig. 3). 
The results were also validated on the basis of the analysis 
of omission/commission and predicted area was utilized 
to determine whether presence data occurred in suitable 
or unsuitable habitat in relation to the given threshold 
by MaxEnt. The omission/commission analysis (Fig. 4) 
showed the omission on test samples (green line) are in 
harmony with the predicted omission rate (black line) from 
the MaxEnt distribution indicating suitable habitat exists 
above the threshold. The omission rate and predicted area 

as a function of the cumulative threshold for P. hystero-
phorus Area Under Curve (AUC) of the Receiver Operat-
ing Characteristic (ROC) curve (Fig. 4) is a parameter that 
was used to evaluate the predictive ability of the generated 
model. It is apparent that MaxEnt showed better discrimi-
nation of suitable and unsuitable areas of the species in the 
analysis of AUC. Moreover, positive Boyce Index (Spear-
man rank correlation coefficient = 0.986) validated that our 
results were consistent with the significant model. 

Fig. 2   Receiver operating 
characteristic (ROC) curve 
for P. hysterophorus (Current 
scenario)

Fig. 3   Jackknife of regularized training gain {Dark blue bars indi-
cate how well a model performs using only that feature compared to 
the maximal model (red bar), and light blue bars indicate how well 
a model performs excluding that feature. Thus, important variables 

can either have (1) large dark blue bars, indicating strong (but perhaps 
non-unique) contribution to presences; (2) short light blue bars, indi-
cating no other variable contains equivalent information; or (3) both, 
indicating the variable is independently predictive}
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Predicted change in suitable habitat area

A slight increase in habitat suitability from 15.67% under 
current scenario to 16.02% under RCP 8.5 was predicted in 
2050 and to 16.19% under RCP 8.5 in 2070 (Tables 4 and 
5). In India, however, a reverse trend was seen i.e., reduc-
tion in suitable area in both the future climate scenarios as 
compared to present scenario. The approximate suitable 
area under current scenario is believed to be 65.92% and 
decline to 52.19% was observed under RCP 8.5 in 2070. 
Though shrinkage of suitable areas is predicted in India, 
interestingly in Jammu & Kashmir, expansion of suitable 
area of P. hysterophorus was observed under 2050 climate 
scenario followed by slight increase of the same by the year 
2070 (Fig. 5, 6, 7, 8, and 9). In Jammu & Kashmir, the cur-
rent estimated potential suitable area for P. hysterophorus 
is approximately 8.91% which is predicted to increase up to 

11.15% under RCP 8.5 in 2050 and 12.16% under RCP 8.5 
in 2070 (Tables 4 and 5).      

Categorization of suitable area into moderately suitable, 
suitable and highly suitable revealed that of the total area 
suitable for P. hysterophorus under current climate condi-
tions (2,11,42,336 sq km, approx. 15.67% of total global 
land cover excluding Antarctica) 1,07,61,810 sq. km were 
moderately suitable, 85,53,960 sq. km were suitable and 
18,26,566 sq km. were highly suitable. Globally, the regions 
predicted suitable for P. hysterophorus include Indian sub-
continent, Eastern parts of Africa, parts of South and North 
America and Australia and South-eastern parts of Asia 
including China. Under the current scenario, about 65.92% 
of India seems favourable for P. hysterophorus. The climatic 
simulations in the present study predicted decrease in suit-
able area for P. hysterophorus in India (Fig. 8) with Eastern 
Ghats, Western Ghats, Central India and a significant por-
tion of Himalaya remaining suitable for P. hysterophorus 

Fig. 4   MaxEnt testing and 
training omission analysis and 
predicted area for P. hystero-
phorus 

Table 4   Suitable area (sq. km) for occurrence of P. hysterophorus at present (current) and in future (2050) (Percent suitable area is given in 
parenthesis)

Habitat Suitability Region Current 2050

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Moderately suitable (0.4–0.6) World 1,07,61,810 (7.98) 1,18,00,620 (8.75) 1,14,69,970 (8.50) 1,11,84,550 (8.29) 1,19,33,680 (8.84)
India 12,90,620 (39.26) 14,46,123 (43.99) 12,65,067 (38.48) 14,55,462 (44.28) 15,07,002 (45.84)
J and K 16,058 (7.23) 14,877 (6.69) 19,185 (8.63) 16,088 (7.24) 20,976 (9.44)

Suitable (0.6–0.8) World 85,53,960 (6.34) 82,22,856 (6.09) 82,75,526 (6.13) 90,05,337 (6.67) 82,79,046 (6.14)
India 8,31,108 (25.28) 6,46,243 (19.66) 4,10,739 (12.49) 7,45,638 (22.68) 5,27,858 (16.06)
J and K 3,738 (1.68) 746(0.34) 253 (0.11) 2,868 (1.29) 3,808 (1.71)

Highly suitable (0.8–1.00) World 18,26,566 (1.35) 14,98,899 (1.11) 13,86,404 (1.03) 15,19,537 (1.13) 14,05,262 (1.04)
India 45,191 (1.37) 23,640 (0.72) 47,263 (1.44) 26,237 (0.80) 19,312 (0.59)
J and K 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
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while as moderately suitable areas in future would include, 
Karnataka, Tamil Nadu, Telangana, Maharashtra, Madhya 
Pradesh, Andhra Pradesh, Chhattisgarh, West Bengal, Uttar 
Pradesh, Uttrakhand, Himachal Pradesh, Punjab, Haryana 
and Delhi. Although our model does not predict highly suit-
able areas in Jammu & Kashmir, but all districts of Jammu 
and Kashmir are predicted to offer moderate as well as suit-
able habitats for this weed.

Core distributional shifts

The current centroid of P. hysterophorus is in south of 
Jammu and Kashmir within the geographic coordinates of 
74.50 E longitude and 33.39 N latitude. The centroid of P. 
hysterophorus is predicted to shift by an average of 20.48 
km in the north-west direction by 2050 and by 36.83 km 
in 2070. The future centroids (2050 and 2070) are mostly 
located around areas surrounding the Hirapora Wildlife 
Sanctuary (Table 6; Fig. 10) which is situated about 70 km 
south of Srinagar, in Shopian district of Jammu & Kashmir. 

This sanctuary has recently been placed in the eco-sensitive 
list of the Union Ministry of Environment, Forests and Cli-
mate Change. It is an abode to many rare and threatened 
plants and animals. Further, the estimated change in centroid 
was at an average of 0.68 km/year by 2050 and shift was 
noticed at an average of 0.73 km/year by 2070 (see Fig. 10). 

Niche dynamics

The  PCA-env  based on all the 19 bioclimatic variables  
revealed that the axis 1 retained about 48.3% variation 
while as axis 2 retained about 32.5% variation (Fig. 11). 
Furthermore, niche overlap (Schoener’s D) between the 
native and introduced regions varied across all pairwise 
comparisons. The niche overlap was very low for Oce-
ania (D = 0.24), moderate for Asia (D = 0.59) and high 
for Africa (D = 0.69) and Australia (D = 0.70) (Fig. 12; 
Table 7). Except Oceania, the observed values for equiva-
lency test were significantly lower than the random niche 
overlap indicating non-equivalency of the climatic niches 

Table 5   Suitable area (sq. km) for occurrence of P. hysterophorus at present (current) and in future (2070). (Percent suitable area is given in 
parenthesis)

Habitat suitability Region Current                                                    2070

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Moderately suitable (0.4–0.6) World 1,07,61,810 (7.98) 1,20,87,820 (8.96) 1,31,02,81 0 (9.71) 1,22,11,980 (9.05) 1,30,19,880 (9.65)
India 12,90,620 (39.26) 14,35,417 (43.67) 15,47,259 (47.07) 16,19,380 (49.26) 13,64,137 (41.50)
J and K 16,058 (7.23) 8,989 (4.04) 13,251 (5.96) 22,764 (10.24) 21,497 (9.67)

Suitable (0.6–0.8) World 85,53,960 (6.34) 77,35,181 (5.73) 72,33,978 (5.36) 83,82,878 (6.21) 77,57,021 (5.75)
India 8,31,108 (25.28) 6,28,149 (19.11) 4,06,431 (12.36) 3,84,972 (11.71) 3,47,085 (10.56)
J and K 3,738 (1.68) 0 (0) 16 (0.01) 1,016 (0.46) 5,527 (2.49)

Highly suitable (0.8–1.00) World 18,26,566 (1.35) 13,97,661 (1.04) 11,19,378 (0.83) 16,99,478 (1.26) 10,66,101 (0.79)
India 45,191 (1.37) 36,716 (1.12) 30,083 (0.92) 20,090 (0.61) 4,432 (0.13)
J and K 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Fig. 5   Modelled current distribution of P. hysterophorus in the world, India and Jammu & Kashmir
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(Table 7). As is evident from the data (Table 7), the niche 
similarity test did not yield any significant result. Perusal 
of the data related to niche dynamic indices (Table 8) 
revealed very low niche expansion but considerable sta-
bility irrespective of whether the niche dynamic indi-
ces were computed using analogous or entire climates 
between native and non-native regions. Niche unfilling 

was usually low except Oceania (Table 8). Even in the 
case of Oceania, niche unfilling was more (0.748) when 
computed on the basis of entire climate as against a value 
of 0.370 when calculated using the analogous climate. 
Perusal of data in Table 9 reveals that exclusion of 25% 
of rare climatic conditions did not alter the niche overlap 
index (D). It is more or less true for other niche dynamic 

Fig. 6   Modelled global distribution of P. hysterophorus under various RCP scenarios in 2050

Fig. 7   Modelled global distribution of P. hysterophorus under various RCP scenarios in 2070
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Fig. 8   Modelled distribution of P. hysterophorus in India under various RCP scenarios in 2050 and 2070

Fig. 9   Modelled distribution of P. hysterophorus in Jammu & Kashmir under various RCP scenarios in 2050 and 2070
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indices where progressive exclusion of rare climatic 
conditions did not affect niche dynamic indices with 
the exception of niche unfilling in the Oceania which 
decreased from 0.37 to 0.186 with the exclusion of rare 
climatic conditions (Table 10).     

Discussion

It is a well known fact that P. hysterophorus is one of the 
widespread invasive alien species and is known to occur 
in about 50 tropical and sub-tropical countries across the 
world (Cowie et al. 2020) which indicates that it is not only 
able to overcome various environmental constraints but also 
adapts to a wide range of environmental conditions (Kohli 
et al. 2006; Cowie et al. 2018). Among the climatic vari-
ables, isothermality (bio 3), annual mean temperature (bio 
1), annual precipitation (bio 12) and temperature seasonal-
ity (bio 4) were the best predictors of the distribution of 
P. hysterophorus. Importance of temperature and precipita-
tion in predicting the distribution of P. hysterophorus has 
also been reported by Ahmad et al. (2019). In fact, climatic 
variables, particularly temperature, rainfall and their inter-
action (seasonality), in conjunction with the species’ ecol-
ogy, physiology and adaptability often predict the potential 
distribution of a species (Sakai et al. 2001). The importance 
of isothermality, the quotient of the difference between the 
daily and annual temperature ranges, in predicting the dis-
tribution is quite obvious because P. hysterophorus grows in 
different regions across the world where significant variation 
in daily and seasonal temperatures exist. Aguirre-Gutierrez 

et al. (2015) also reported similar relationship between iso-
thermality and widespread distribution of Mexican white 
pines. The role of temperature in predicting the distribution 
of P. hysterophorus is because of favourable influence of 
spring and summer season temperature on the germination 
of its seeds and seedling growth in the areas of its occur-
rence (Friedman and Rubin 2015) but availability of water 
in soil, determined by the amount and frequency of pre-
cipitation, may decline with increase in temperature under 
the warming climate. Though this situation may apparently 
limit the growth and distribution of a species (McConnachie 
et al. 2010) but P. hysterophorus being a C3-C4 intermedi-
ate species (McConnachie et al. 2010) is known to tide over 
water stress through drought resistant seeds and persistence 
of young plants as rosettes (Annapurna and Singh 2003). 
Interestingly, decreasing soil moisture is reported to promote 
early flowering and seed set in adult plants of P. hysteropho-
rus (Bajwa et al. 2017) which clearly establishes the role of 
temperature, rainfall and their interaction in the distribution 
of this species. Such a conclusion draws support from many 
other studies that have also emphasized the importance of 
temperature and precipitation in the geographic distribution 
of invasive species (Thuiller et al. 2007; Bradley et al. 2010; 
Priyanka and Joshi 2013; Li et al. 2019; Yan et al. 2019).

Since models built solely on the basis of occurrence 
data from native range are known to be poor predictors of 
invasive ranges (Broennimann and Guisan 2008), presence 
data from both native and non-native ranges was used in the 
present study because it improves model prediction (Main-
ali et al. 2015; Bocsi et al. 2016). AUC values averaging 
0.871 for the current distribution also indicated a reliable 

Table 6   Centroid shift of P. 
hysterophorus under various 
RCP scenarios between current 
and future (2050 and 2070)

S.I. Scenario Centroid change Centroid change in 
distance (km)

Distance/Year

Longitude (E) Latitude (N)

1 RCP 2.6—2050 74.332 33.433 30.52 1.02
2 RCP 4.5—2050 74.509 33.335 13.50 0.45
3 RCP 6.0—2050 74.589 33.368 17.78 0.59
4 RCP 8.5—2050 74.556 33.395 20.12 0.67
5 RCP 2.6—2070 74.128 33.411 43.11 0.86
6 RCP 4.5—2070 74.577 33.321 12.88 0.26
7 RCP 6.0—2070 74.414 33.578 41.62 0.83
8 RCP 8.5—2070 74.498 33.633 49.73 0.99
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Fig. 10   Predicted distributional centroid shift in P. hysterophorus under various RCP scenarios in Jammu & Kashmir. (Black colour arrow) rep-
resents centroid shift from current to future)
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performance of the predictive model with good ability to 
differentiate between presence and absence areas for the tar-
get species (Barik and Adhikari 2011). The highly positive 
value for Boyce index (Spearman’s Rank Correlation Coef-
ficient = 0.986) further validated the predictive ability of the 
model. However, uncertainty associated with the accuracy 
of the model predictions when transferred in space and time 
remains a major concern and we acknowledge the fact that 
the predictions from SDM’s are confounded by sampling 
biases, traits of the target species and omission of the impor-
tant predictors, such as biotic interactions, population pres-
sure, habitat structure (Yates et al. 2018).

The present study predicted a modest expansion in the 
distribution range of P. hysterophorus on a global scale 
under future climate scenarios, especially under RCP sce-
nario 8.5 in 2070 but decrease in the suitable area for P. 
hysterophorus was predicted at the regional scale (India). In 
contrast, increase in the suitable area was predicted at a local 
scale (Jammu and Kashmir). Variation in the spatial distri-
bution under different spatial scales has also been reported 
by Nielsen et al. (2008). These results bring out the need 
for predictive modelling of species distribution at different 
spatial scales which is not the usual practice.

The results obtained during the present study are consist-
ent with numerous studies that have also predicted change 
in the range expansion of invasive species at the global level 
due to climate change (Walther et al. 2009; Barbet-Mas-
sin et al. 2013; Bellard et al. 2013; Adhikari et al. 2019). 
Decrease in the suitable area of P. hysterophorus at the 
regional level has also been reported by Bezeng et al. (2017) 
for South Africa, Ahmad et al. (2019) for India and Lamsal 
et al. (2018) for the Himalayan region. Increase in the suit-
able area at the local level (Jammu & Kashmir) unlike India, 
for P. hysterophorus, was further studied to predict the trend 
in the suitable habitat area changes by comparing the cen-
troids of present and future models (Brown 2014). The cen-
troids shift at an average of 0.68 km/year around 2050 and 
0.73 km/year by 2070 is quite significant and the centroids 
were found to be shifting within and towards surrounding 
areas of the Hirapora Wildlife Sanctuary which is a cause of 
concern keeping in view the spreading nature of the species.

Present study also revealed that P. hysterophorus shows 
moderate to high niche overlap (Schoener’s D) between 
the native Americas and the introduced continents except 
Oceania. Further analysis (Table  11) pointed out that 
higher niche overlap between Americas and Asia is due to 
similarity in their climatic conditions but same does not 
hold true for higher overlap between native Americas and 
introduced regions of Africa and Australia. Thus, it clearly 
brings out that niche overlap is not always a manifesta-
tion of climatic overlap between the native and introduced 
regions. Such inferences are consistent with the study of 
Datta et al. (2019). Furthermore, insignificant similarity 
test though points towards a more similar climatic niche 
between native and introduced regions but the equiva-
lency test revealed that native niche is not equivalent to 
any of the climatic niches of this species in the introduced 
regions except Oceania. Such an observation is consistent 
with the results of Aguirre-Gutierrez et al. (2015). Thus, 
it can be inferred from these results that P. hysterophorus 
will continue to invade the areas with climate similar but 
not necessarily equivalent to the climate prevailing in the 
native Americas.

Niche dynamic analysis revealed high degree of niche sta-
bility between the native and introduced regions irrespective 
of whether analogous or entire climates were considered. 
It indicates that the species occupies more or less similar 
climates though not equivalent in the native and introduced 

Fig. 11   PCA plot based on 19 bioclimatic variables used to determine 
niche overlap dynamics of P. hysterophorus 
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Fig. 12   Multivariate climatic 
niche space of P. hysterophorus 
in native region of Americas 
(a) and pairwise compari-
son of niche dynamics in the 
introduced regions of Africa 
(b), Asia (c), Australia (d) and 
Oceania (e). Unfilled, stable and 
expanded niches are represented 
by green, blue and red shades, 
respectively. The grey shading 
shows the smoothed occurrence 
density in the native niche space 
(a) and in the introduced niche 
space (b–e). The bold lines 
mark the available environment 
in each range (green native, red 
introduced). Histograms show 
the observed niche overlap 
(d) between the native and 
introduced regions (bars with a 
diamond) and simulated niche 
overlap (grey bars). P values for 
similarity and equivalency tests 
are also given
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Fig. 12   (continued)

Table 7   Niche overlap 
(Schoener’s D) and 95% 
confidence intervals of P. 
hysterophorus between the 
native and non-native ranges

Native vs Non-native continents Niche overlap 
metric (D)

95% Confidence 
interval

Equivalency test 
(P-value)

Similarity 
test (P-value)

Native Americas–Africa 0.69 0.70 0.67 0.009 0.92
Native Americas–Asia 0.59 0.59 0.58 0.009 0.96
Native Americas–Australia 0.70 0.70 0.67 0.009 1
Native Americas–Oceania 0.24 0.23 0.21 0.62 0.99
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regions. Low unfilling indicates reduced climatic space that 
could be colonized by this species in future except Oceania 
where less residence time or constraints to dispersal could 
not have allowed the species to occupy all the available cli-
matic niches. Low expansion values also reflect that P. hys-
terophorus is not showing any niche shift in the introduced 
regions. The observation of high niche stability and little 
niche expansion and low unfilling is consistent with many 
previous studies on various invasive species (Petitpierre 
et al. 2012; Callen and Miller 2015).

Table 8   Niche dynamic indices calculated for Parthenium hysterophorus between analogous and entire available climates of native and non-
native ranges

Climate/Combination Expansion Stability Unfilling

Analogous climate
 Native Americas–Africa 0.018 0.98 0.073
 Native Americas–Asia 0.024 0.975 0.005
 Native Americas–Australia 0.0002 0.99 0.10
 Native Americas–Oceania 0 1 0.370

Entire climate
Native Americas–Africa 0.018 0.981 0.077
Native Americas–Asia 0.163 0.836 0.006
Native Americas–Australia 0.004 0.995 0.121
Native Americas–Oceania 0 1 0.748

Table 9   Effect of excluding 25% of rare climatic conditions on niche 
overlap

D is the value of the overlap index (Schoener’s D) calculated on the 
entire available climate, while D´ is the value of the niche overlap 
index calculated excluding 25% of the rare climatic conditions

Combinations Overlap index (D) Overlap 
Index (D´)

Native Americas–Africa 0.690 0.690
Native Americas–Asia 0.591 0.591
Native Americas–Australia 0.70 0.70
Native Americas–Oceania 0.240 0.240

Table 10   Effect of progressively 
excluding rare climatic 
conditions (up to 25 percentile) 
on different components of 
niche dynamics indices

Climatic condition Niche dynamic index Native 
Americas–
Africa

Native 
Americas–
Asia

Native Ameri-
cas–Australia

Native 
Americas–
Oceania

Analogous climate Expansion 0.018 0.024 0.0002 0
Stability 0.981 0.975 0.99 1
Unfilling 0.073 0.005 0.10 0.37

95th Percentile Expansion 0.018 0.022 0.0002 0
Stability 0.981 0.977 0.99 1
Unfilling 0.071 0.004 0.096 0.316

90th Percentile Expansion 0.018 0.021 0.0002 0
Stability 0.981 0.978 0.99 1
Unfilling 0.068 0.004 0.093 0.255

85th Percentile Expansion 0.017 0.020 0.0002 0
Stability 0.982 0.979 0.99 1
Unfilling 0.066 0.004 0.085 0.246

80th Percentile Expansion 0.017 0.018 0.0002 0
Stability 0.982 0.981 0.99 1
Unfilling 0.063 0.004 0.081 0.204

75th Percentile Expansion 0.016 0.018 0.0002 0
Stability 0.983 0.981 0.99 1
Unfilling 0.058 0.003 0.073 0.186
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Conclusions

Based on the detailed analysis, it can be safely concluded 
that the P. hysterophorus exhibits niche conservatism which 
may restrict its spread under climate change in the regions 
where it has already spread and occupied most of the cli-
matic niche space but may spread to new areas where it 
finds suitable climate niche. Thus, the present study pro-
vides a strong rationale for studying niche dynamics to bet-
ter predict the distribution of alien species under climate 
change as modelled distribution P. hysterophorus differed at 
different spatiotemporal scales under changing climate and 
more importantly in Jammu & Kashmir. Since the species is 
expected to spread to previously uninvaded areas in Kashmir 
with debilitating ecological and economic consequences, the 
study would serve the purpose of raising the concern with 
land managers about the impending threat from invasive 
alien species.
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