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Abstract

This study considers multiple values-inflated bivariate integer-valued autoregressive
(MV-inflated BINAR) models. It develops the inferential procedures for parameter
estimation on this model, which apply to constructing a change point test and outlier
detection rule. We first introduce the MV-inflated BINAR model with one param-
eter exponential family and Poisson-Lindley innovations. Then, we propose a quasi-
maximum likelihood estimator (QMLE) and divergence-based estimator featuring
minimum density power divergence estimator (MDPDE) for robust estimation. To
evaluate the performance of these estimators, we conduct Monte Carlo simulations
and demonstrate the adequacy of MDPDE in zero—one inflated models. Real data
analysis is also carried out using the number of monthly earthquake cases in the
United States.

Keywords MV-inflated BINAR model - Zero-one inflated time series of counts -
Poisson-Lindley distribution - Divergence-based estimation - Minimum density
power divergence estimator

1 Introduction

In this study, we introduce a multiple values-inflated bivariate integer-valued autore-
gressive (MV-inflated BINAR) model and investigate the asymptotic behavior of
the quasi-maximum likelihood estimator (QMLE) and the divergence-based esti-
mator for robust estimation that includes minimum density power divergence esti-
mator (MDPDE). Time series of counts appear in diverse research fields related to
social, physical, medical, and engineering sciences. Some specific examples are a
weekly number of airline passengers, yearly deaths from lung diseases, and the vol-
ume of stocks transacted over a finite minute period. To model these kinds of time
series, McKenzie (1985) and Al-Osh and Alzaid (1987) coined the integer-valued
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autoregressive (INAR) models. As with the INAR models, the integer-valued gener-
alized autoregressive conditional heteroscedastic (INGARCH) model was also pro-
posed by Ferland et al. (2006) and Fokianos et al. (2009). For the past decades, these
two models have gained great popularity among researchers in the integer-valued
time series context. We refer to Weif3 (2018) for a general overview.

Overdispersion is a frequently-observed phenomenon in time series of counts,
and one of the reasons is zero inflation due to a high frequency of no incidences
as seen in the manufacturing process, epidemiology, and insurance. When this
phenomenon is not appropriately treated, it can cause a significant bias in infer-
ences. Thus, to circumvent this, zero-inflated models have been taken into account
on research problems, refer to Lambert (1992), Chen et al. (2019), and Jo and Lee
(2023). Subsequently, as a task of extension of the zero-inflated models, multiple
values-inflated INGARCH models have been developed to model time series of
counts with excessive zeros and other values, refer to Lee and Kim (2023), who con-
sidered INGARCH models whose conditional probability mass function is a multi-
ple values (MV)-inflated one parameter exponential family. In a similar spirit, here
we extend the zero-inflated INAR models to more general multiple values-inflated
BINAR models. Compared to the MV-inflated INGARCH model of Lee and Kim
(2023), its INAR counterpart has the merits to have a simpler model structure and
requires much less technically demanding conditions in deriving the asymptotic
properties of parameter estimators, which renders the MV-inflated BINAR models
to be more tractable and preferential in practical usages.

Historically, Poisson innovations have been utilized in modeling with an INAR
scheme by many researchers because of its simplicity in applications, refer to Pedeli
and Karlis (2013), Weill (2015), and Lu and Wang (2022). However, the Poisson
distribution is not always suitable for modeling as its mean and variance concur
with each other and this property is not occasionally acceptable in real situations.
Several alternatives to the Poisson innovations have been proposed in the literature,
for example, geometric innovations (Jazi et al. 2012), negative binomial innovations
(Pedeli and Karlis 2011), Poisson-weighted exponential innovations (Altun 2020),
and Poisson-Lindley innovations (Mohammadpour et al. 2018; Livio et al. 2018). In
particular, the Poisson-Lindley distribution belongs to the compound Poisson family
and has good properties like unimodality and infinite divisibility. Also, unlike the
Poisson distribution, the Poisson-Lindley distribution can capture well the overdis-
persion of datasets.

For parameter estimation for the proposed MV-inflated BINAR models, we con-
sider the quasi-maximum likelihood estimator (QMLE) and the Brégman diver-
gence-based estimator featuring minimum power density divergence estimator
(MDPDE), and substantiate their consistency and asymptotic normality under regu-
larity conditions. These estimators are applicable to identifying change points and
outliers in time series of counts, as seen in Lee and Jo (2023b), who used MDPDE
in handling those. Developing change point tests and outlier detection methods are
critical issues in time series analysis as ignoring those may lead to false conclusions.
A brief summary of those methods is provided for easy access to our empirical anal-
ysis. The change point tests based on the scores and residuals were established for
AR and GARCH models (Gombay (2008), Berkes et al. (2004), Lee (2020)), as well
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as for INAR and INGARCH models (Lee and Lee 2019; Lee and Jo 2023a). We
refer to Csorgd & Horvéth, (1997) and Lee et al. (2003) for an overview. For assess-
ing the performance of QMLE and MDPDE, we conduct Monte Carlo simulations
and confirm the functionality of MDPDE in the presence of outliers. Real data anal-
ysis is performed for illustration using the monthly earthquake datasets in the United
States, which validates our methods.

The remainder of this paper is organized as follows. Section 2 introduces the
bivariate multiple values-inflated INAR model. Section 3 establishes the asymptotic
results of QMLE and MDPDE for the proposed model. Sections 3.2 and 5 conduct
a simulation study and real data analysis to demonstrate the validity of our methods.
Finally, Sect. 6 provides the concluding remarks.

2 MV-inflated BINAR(1) model

Let {Y,} be a bivariate time series of counts following the bivariate INAR(1)
(BINAR(1)) model:

Y = (Ytl > — <0‘11 0’12>O<Yz—1,1 ) + <Zt1>
! Y, Ay Gy Y i Z,
_ <“11°Yt—1,1 tapoY, 1o+ 2, )
a0,y +apoY, 1, +2Z,

@2.1)

. Y . . .
wherein a;oY,_ ;= >, 7" w,_y y fori,j = 1,2, {w,;, } are mutually independent iid

Bernoulli random variables with success probability a; € [0, 1), and Z, = (Z,,, Z)"

are iid nonnegative integer-valued random vectors independent of all w,; with
E||Z]|* < co. Here, || - || denotes the L,-norm for vectors and matrices. We rewrite
(2.1) as

Y, =AoY,_, +Z, (2.2)
with

A= (0‘11 @2 > '
1 A
Darolles et al. (2019) and Lee and Jo (2023a) verified that the BINAR(1) process in
(2.1) has a unique strictly stationary and ergodic solution under certain conditions,
such as E||Z,|| < oo and

(I =a;)d = ay) — a5 > 0. (2.3)

Moreover, when (2.3) holds, Lee and Jo (2023a) showed that E||Z, ||” < oo for some
r > 2 if and only if ||Y;]|" < o0. Also, ¥, is shown to be adapted to all the random
variables comprising Y, s < ¢, which particularly indicates that Y, s < ¢, are inde-
pendent of all Z, s > .
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As an estimate of A, Lee and Jo (2023a) employed conditional least squares
estimator (CLSE), modified quasi-likelihood estimator (MQLE), and exponen-
tial family quasi-likelihood estimator (EQLE). However, instead of these estima-
tors, we consider the quasi-maximum likelihood estimator (QMLE) as QMLE is
in general more efficient than those, and the minimum density power divergence
estimator (MDPDE) in Lee and Jo (2023b) as MDPDE is robust against possi-
ble outliers and model misspecifications. Results on QMLE and MDPDE will be
appended to specify their consistency and asymptotic normality.

In what follows, {Y,} is a strictly stationary and ergodic process following
Model (2.1) with E||Z,||* < c0. Also, we assume that the support of Z, includes
(i, j) with i,j = 0, 1. We set the conditional mean equation as

X,(0) = E(Y,|Y,_,) = AY,_| + A, (2.4)

where A is the matrix in (2.3) and A = (4;, 4,)7 = EZ,. This equation enables prac-
titioners to construct the CLSE of A and A. However, CLSE is not so inefficient as
QMLE, and in the presence of multiple inflation parameters, it is not feasible to con-
struct, see Remark 1 below.

Modeling MV-inflated BINAR(1) time series merely requires a parametric
modeling procedure for the innovational distributions in (2.1). For this task, one
can consider Z,; whose underlying distribution belongs to the MV-inflated one-

parameter exponential family {fo, 10<¢; = Zﬁl Py < Ly; >0},
0; = (pj1s---» ppyg)" > ith pmf:

M; M,
Fon )= D 0l =j =D+ (1= p;)f,, ), y=0, 2.5)
j=1 j=1

where M; is a natural number and f,, is a discrete pmf with parameter y; > 0. The
number M; denotes the number of the inflated values; for example, it is one if {Y,} is
zero-inflated. For f, , one can employ one-parameter exponential family distribution
with pmf: ‘

Jy, ) = exp{ny — A(n)h;(y), y=0. (2.6)

wherein #; is the natural parameter, .4; and &; are known functions, both .4; and
B; := .A;. are strictly increasing, where y; = B,(#,) is the mean of the distribution.
Also, one can alternatively use the Poisson-Lindley distribution with pmf:

Wiy +2+y)

Tgys o V20 Q.7

Jo, ) =
Poisson-Lindley distribution merits to accommodate various types of distributions
due to its skewness and kurtosis features, well describing all under-, equi-, and over-
dispersion phenomena of time series, and is well known to have more desirable
properties over Poisson and negative binomial distributions. For the basic properties
of Poisson-Lindley INAR(1) models, we refer to Mohammadi et al. (2022).
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In what follows, we assume that {f } is either the one in (2.6) or (2.7). Further-
more, we assume that f, , in (2.5) sat1sfies the identifiability condition: f, , =f,

implicates y; = y/l./ and g; = oi. Provided ¢; = ijl py < 1, this condition is fulﬁlled
for frequently used distributions, for example, Poisson, negative binomial, and Pois-
son-Lindley distributions. Notice that the probability generating function (pgf) of
w2 2+y—s)
(L+y)(1+y—s)?

bility condition holds if the pgf 7z (s|y;) of fu/.- (s), s € (0, 1], is (M; + 1) times differ-

the last distribution with parameter y is . More generally, this identifia-

Mt (s|w;)
7™M (slyr)
implies y; = u/i', because this will ultimately lead to ¢p = q’); and so o; = o;.. See Prop-
osition 2.1 of Lee and Kim (2023).

Herein, we do not intend to model the joint distribution of Z,, only focusing on
its components’ marginal distributions as our inferential procedure will rely on a
quasi-likelihood method comprising the sum of the two marginal likelihoods, as
described below. This approach has been taken by Lee and Jo (2023a) and Lee et al.
(2023) and has proven to remarkably lessen the efforts invested for modeling and
inferences.

entiable and if g(s|y;) 1= satisfies that g(s|y;) = g(slu/[./) for all s € (0, 1]

3 Inference for MV-inflated BINAR(1) model

3.1 QMLE

We set 9 = (aTs 0T3 WT)T Wlth a = (a]17 (112, a21, a22)T3 0= (0{9 Og)T3
= (Pits -+ Pin, )T and w =y, y,)", and f,; denotes the condi-

tlonal pmf of Y, given Y,_; when 6 is a model parameter. We denote by

0o = (ag, pys y/()) = (0 10- 129> X310 A Op- W) the true parameter, which is
assumed to be an interior of a compact subset © of RMi*M2+6 \wherein

@2{93(1Saij§1—K1,K2Spij§l—K2,

kK3 ¢, <1 —kK3,k, <y; <ks foralli,j= 1,2}

for some constants 0 < x; < 1,i=1,...,4,and x5 > 1.
The conditional pmf of ¥,;,i = 1, 2, is then expressed as
Jo. 1Y,
= P(Y, = y|Y,_,

(3.8)
ZJ( 1,15 Yim1 2 @it @igs W g, = s

j=0

where J(m,n,py,py,k) = P(B,(m, py) + By(n,py) = k), k>0, and B (m,p,) and
B,(n, p,) two independent binomial random variables with success probabilities p,
and p, (B;(0,p;) = 0).
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Note that the model identifiability holds for Model (2.1), due to the following. We
rewrite (2.1) as ¥, = AoY,_; + Z,(0,w), which becomes Y, = AjoY,_; + Z, (04, )
when 6 equals 6,. Note that if both 6 and 6, generate the same {Y,}, we get
JoiOY—1) = fo, i O|Y,_y) for all y >0, i=1,2, so that X,(6) = X,(6,) holds true,
namely, AY,_; + A = A,Y,_, + A, owing to (2.4). This implicates A = Ajand A = 4,
as Y, can take values of (i, j) with i,j = 0, 1 owing to our assumption. This in turn
implies Z (o, l//)iZl(OO, y,), which leads to o = ¢, and y =y, due to the model
identifiability of f, . , so that we finally have 6 = 6.

QMLE is defined by

n

A 1
0, = argmax — Z.(0),
%e@) n ; !

where

2 2
£,0) 1= Y £,(0) = Y logfy (Y,|Y,_)).
i=1 i=1

In Section 7, we verify the consistency and asymptotic normality of QMLE, as this
verification was not explicitly addressed in the precedent studies even for the univar-
iate cases. The following theorem states the consistency and asymptotic normality
of QMLE under the regular conditions.

Theorem 1 Suppose that (2.3) holds, 6, is an interior of a compact parameter space

0, and Z, satisfies E||Z,||* < co and has a pmf of the form in (2.5) with Jy, in (2.6)
with E|log h(Y,;)| < o0, i = 1,2, or in (2.7). Then, én — 6y a.s. as n = oo. Moreo-

ver, if
2
T = _E<a f,(t%))’ K, = E(aft(oo) aft(90)>’

00007 00 00T

and [, is non-singular, then, as n — oo,

Vi@, — B)—=N(O, T3 Ko T3,

3.2 Divergence-based robust estimation

As QMLE is sensitive to outliers, we consider a robust estimator based on density
power divergence (DPD), as DPD scheme is well known to supply an excellent esti-
mating method in practice. Herein, we consider the DPD scheme within the Breg-
man divergence paradigm, aiming at providing a more general theory. Brégman
divergence is defined for two densities (or probability mass functions) g and % as
follows:
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D¢h@=/{wwm—mﬂm—mm—gmdwwn@, (3.9)

where ¢ : R — R is a strictly convex function, named the divergence generator,
as this divergence family accommodates Kullback—Leibler divergence, Brégman-
exponential divergence (BED), proposed by Mukherjee et al. (2019), and DPD,
which respectively correspond to @(y) = ylogy — v, 2(e® —ay — 1)/a%, a € R, and
('*7 —y)/y, y > 0. The consistency and asymptotic normality of the estimators
based on those divergences are commonly obtainable within the general framework
of Bregman divergences.

LetG = {g, : 0 € ®"} be a family of densities, where ®* is a compact parameter
space in an Euclidean space, and assume that G satisfies the identifiability condition,
namely, 0 = ' if and only if g, = g, for any 6 and 6" € ®*. Given an iid random
sample Y, ..., Y, following density g, € G, the minimum Brégman divergence esti-
mator éf for true parameter 6, is attained as the minimizer of the objective function:

—Zuw ‘/W@me)wmwM)¢%Ww

(3.10)
Notice that /,(6) has the property that

EL(0) — EL;(6,) = D(gg,.8¢) > 0 for all 6 # 6, (3.11)

which ensures the strong convergence of éf to 6, if E(supgee- |£;(0)]) < 0.

The aforementioned scheme can be directly applied to the BINAR(1) models.
For Bréegman divergence with generator ¢,, where 7 belongs to a space NcCR™,
m > 1, similarly to (3.10), we define the minimum Brégman divergence estimator as
follows:

0 , = argmin — Z (0), 3.12
min 3 612

where £,, = ¥'>_ £, ,(6) with

is(0) = Z {go GoiO1Y oo, 01 Y 2 — @, (fo,i OY, 1))} @, (fez(Y| _1)-

y=0

Particularly, the minimum power density divergence estimator (MDPDE), with
divergence generator @, (y) = O =) /7,y > 0, is given as

éyyn = argmin argmin — z Z,,0),

0c0 N 13

where £, = Y £,,,(8) with
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1

ua® = 270 = (1 )i
y=0

MDPDE is well known to be a competent robust estimator, controlling the degree of
robustness with the tuning parameter y. When y = 0, it becomes QMLE, and when
y = 1, itis an L, estimator.

By virtue of (3.11) and the model identifiability of BINAR(1) models, provided

E(suplZ,,(0)]) < o,
(9€g| 2isO1) (.13)

we can readily see that émn in (3.12) is strongly consistent to 6, as (3.13) implicates
that almost surely,

n

1
sup 2 2 i) - E(6,,(60)| = o(1),

due to the uniform strong law of large numbers for stationary and ergodic processes.
Moreover, if the following additionally holds,
> < oo, (3.14)

2
< o0, E| sup
0O

which lead to the following theorem, the proof of which is similar to that of Theo-
rem 1 and is omitted for brevity. Particularly, it can be shown that MDPDE satisfies
the conditions in (3.13) and (3.14), refer to Lee and Jo (2023Db).

a7, ,(6y)
00

62&”(9)

E 7
00007

Theorem 2 Suppose that (2.3) holds, 6, is an interior of a compact parameter space
O, and Z, has a pmf of the form either in (2.5) with f,, in (2.6) or (2.7) and satisfies

E||Z,||* < co. In addition, if (3.13) and (3.14) are satisfied, as n — o, 0
a.s., and

nn 90

N d
V@, — 0)—NO. T K, T,

where

7 =K 025’”’2‘(00) C a7, (0y) o7, (6y)
g 06007 |7 T a0 o007 ’
and jn is assumed to be non-singular.
Remark 1 Using a convex combination of the ¢-functions of BED and DPD with

tuning parameter a and y, respectively, Singh et al. (2021) proposed the exponential
power divergence (EPD) family with ¢ in (3.9) of the form:

@ Springer



Journal of the Korean Statistical Society (2024) 53:815-843 823

e? —ay Y-y

-1
0,0) = b———+(1-1)

(3.15)

with 7= (a,b,7)T, a€ R, be[0,1], and y > 0. Kim and Lee (2024) recently
applied this to INGARCH(1,1) models. From (3.15), the minimum exponen-
tial power divergence estimator (MEPDE) is obtained as the minimizer of
£,(0) =37 ¢,;,6) with

[s9)

100 = X [ {0 et 01¥,) = D+ 1+ (1= D017,

y=0

1-—
~ D ettt — 1) - Tb(u Y, — 1),

Any Brégman divergence estimators satisfying (3.13) and (3.14), including MDPDE
and MEPDE, can be harnessed potentially for robust estimation. In our study,
though, we employ MDPDE as its performance excels in general and compares well
with others as reported in the simulation study of Kim and Lee (2024), while it has
much simpler algorithms in computing.

Remark 2 The optimal choice of y in MDPDE can be a crucial issue. A larger y
is recommended when the portion of outliers is large or the robustness takes prec-
edence over efficiency. Hong and Kim (2001), Warwick (2005), and Warwick and
Jones (2005), Fujisawa and Eguchi (2006), Toma and Broniatowski (2011), and
Durio and Isaia (2011) developed a procedure for choosing an optimal y. One can
instead use Pearson’s correlation as a criterion to choose an optimal y by comparing
the correlations of Y,; and ¥,, obtained from MDPDE. Lee and Na (2005) conserva-
tively proposed to use a small y, say, 0.1 to 0.3, in practice, considering the presence
of a possible structural change in the dataset.

Though Theorems 1 and 2 hold for general MV-inflated models, in our empiri-
cal studies of Sections 4 and 5, we focus on the Poisson-Lindley zero—one inflated
BINAR(1) models with the innovational distribution in (3.16) because this kind
of time series of counts with zero—one inflation frequently occurs in real situa-
tions. If fw,- is Poisson-Lindley in (2.7), we can write

Wiy +24+Y)

Jow ) = il =0)+ pply = D)+ (1 = piy = pi2) (1 +y)+3

, ¥y20,

(3.16)

which composes the pmf in (3.8). Note that the corresponding mean value of (3.16)
is as follows:

+2

B, = D WopyO) = Py + pp————.
(2% ygo (2% il lei(1+Wi)
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As How, = M/ does not necessarily guarantee the coincidence of (g;,y;) and

(o:., u/l./), Mohammadi et al. (2022) proposed to use a two-step CLSE using the condi-
tional variance formula of ¥,. However, such a method is not directly applicable to
more general multiple inflation cases and requires more laborious efforts. This
inconvenience also supports the use of QMLE.

Remark 3 The result of Theorems 1 and 2 can be applied to the change point test.
The change point test is critical in the analysis of time series of counts, as the previ-
ous studies frequently reveal its existence in practical applications. For performing a
test, we set up the hypotheses:

H, : 6, does not change over Yi,...,Y, vs. H, : not H,,
and then perform a test using the score vector-based test statistic:
k A T k 5
~ ~ 1 ot t(e n) ~—1 ot t(9 n)
T i=max 7.(k) = max - » —7) K —— ) 317
. max 7 (k) ma_x ; 50 o Z 50 (3.17)

t=1
where éy,n is MDPDE and

o 97, (0,,) ¢, (0, ,)
00 07T’

K =

y.n

S =

t=1

which is consistent to K, in (3.15) under H,. Then, provided K, is nonsingular,
under the conditions in Theorem 2, we can check that under H,,, (3.13) and (3.14)
hold true, and

100 120
1 1

80

Number of WA

40

20
|

2000 2005 2010 2015 2020

Date

Fig. 1 Monthly time series of WA
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0<s<1
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Fig.4 CCF of WA and NE

where B (s) denotes a d-dimensional Brownian bridge. For the proof, we refer to
Lee and Jo (2023b). The critical value of the test can be obtained through a Monte
Carlo simulation, using the result in (3.18). For example, for d = 10, ¢ = 4.435 is
used as the critical value at the significance level 0.05. The location of the change
point at the rejection of the null hypothesis is estimated as the point k that maxi-
mizes 7, (k) in (3.17).

Remark 4 In practice, detecting outliers is important in modeling and inference
because outliers can hamper their correct behaviors. Since Fox (1972), there have
been many studies on this subject in time series analysis, refer to Chang et al.
(1988) and Tsay et al. (2000). Lee and Jo (2023b) described the procedure for cor-
recting the innovational outliers (IO) and additional outliers (AO) in bivariate ran-
dom coefficient INAR(1) (BRCINAR(1)) models. Below we describe the AO case
that will be used in our empirical study of Section 5. We reexpress Model (2.1) as
Y, =AY, ; + u+e¢, where y = EZ, and {¢,} forms a martingale difference sequence.
To express the AO-contamination of {Y,} with magnitude @ at time =, we write
Y;“ =Y+ a)étm, with 5,(7) = I(t = 7), which is an actual observation. Then, using
et =Y"—A,Y4 —j, where A, and i, are MDPDEs of A and y obtained from
observations Yf‘, ey Y;;‘, we obtain the estimates of w and 7 as follows:

n
A A . 1 A A —1)2
(®,,%,) = argmin argmin - Z |6 — e + 4,08 |I".
w,T =1
Subsequently, to test the existence of AO at time 7,, we use the chi-square statistic

®T2-1@,, where
n n
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n-T,+1 n-t,+1

S = 1 Z (L +ATA )&} —ATet et —ATed ', +ATA)™,
n [=1 n n

and I, is a 2 X 2 identity matrix. In case an outlier is detected, the corrected Y, is
obtained by subtracting W, from Y;“ att =7,

Remark 5 In the analysis of count time series models, forecasting is a noteworthy
topic to consider. To perform the forecasting through our model, one can employ the
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Table 1 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(@y1,a12, 51, A, P11 P12s Po1s P2os Wi W) = (0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1), and no outliers exist

y statistics estimators
ap ap ay) Gy A 2% P21 hn v %)
0(QMLE) Mean 0.50 030 020 0.59 020 031 030 021 098 0.96

Variance x 10> 0.28 0.26 0.15 020 033 052 071 025 122 1.18
MSE x 107 046 045 026 033 059 092 119 046 3324 64.60
0.1 Mean 053 034 022 062 021 025 032 0.18 1.04 1.06
Variance x 10> 0.31 022 0.13 0.18 031 040 0.61 024 123 1.46
MSE x 107 056 054 027 034 062 093 120 049 3740 70.07
0.2 Mean 053 034 022 062 021 026 032 0.18 1.06 1.07
Variance x 10> 0.33 024 0.13 020 030 042 062 024 2.03 1.75
MSE x 107 0.61 056 027 037 061 093 122 049 4183 74.14
0.3 Mean 053 034 022 063 021 026 032 019 1.06 1.07
Variance x 10> 0.35 025 0.14 021 030 044 062 025 265 223
MSE x 107 0.65 057 027 039 060 093 123 048 4534 74.69
0.5 Mean 053 034 022 063 021 027 032 019 1.14 1.18
Variance x 10> 0.40 028 0.15 025 030 046 062 026 283 232
MSE x 10? 073 060 028 046 066 096 121 050 5258 77.96
1 Mean 053 033 021 062 021 028 031 020 1.23 1.40
Variance x 10> 0.52 034 0.18 0.37 030 054 067 027 297 260
MSE x 107 094 068 033 064 0.67 100 131 050 5850 86.27

conditional mean equation in (2.4). First, the target parameters 0 are estimated using
MDPDE or QMLE from the training data Y, ..., Y,. Then, the observed values and
the estimated parameters are input into the conditional mean equation in (2.4) and
(2.5), and the obtained values are rounded to complete the prediction. To perform
multi-step ahead forecasting, the predicted values obtained through the one step pre-
diction procedure are recursively utilized for the subsequent forecasting as follows:
fori=1,2,

Mi Mi
Vo= lan ¥, + a0+ G- Do+ =) ﬁg)gi], t>n+1,
j=1 J=1

where [x] denotes the greatest integer not exceeding x, and &,-j, ﬁij, and f; are estima-
tors like MDPDE or QMLE based on Yy, ..., Y,, and Y,_, ; are obtained predicted
values with initial values Y,; =Y,,. Specifically, 4, is the corresponding estimate
of u, = Z;io ¥y, (), which equals y; in the cases of the one-parameter exponential
families. This method is referred to in Jung and Tremayne (2006), and the actual
analysis for this forecasting method is referenced in Lee et al. (2023).
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Table 2 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(@y1,a12, 515, A0, P11 P12s Po1s P2os Wi W) = (0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3,2,2), and no outliers exist

y statistics estimators
ap ap ay) Gy A 2% P21 hn v %)
0(QMLE) Mean 039 020 029 049 0.10 0.11 021 031 1.93 2.12

Variance x 10> 0.29 0.13 027 0.17 0.02 005 0.11 038 458 657
MSE x 107 053 024 049 029 010 011 040 082 2640 32.09
0.1 Mean 041 019 032 051 011 008 0.19 025 1.85 1.87
Variance x 10> 0.32  0.15 025 0.17 0.06 005 028 035 464 749
MSE x 107 055 027 050 030 0.14 0.13 053 0.84 2662 3224
0.2 Mean 042 019 032 051 011 008 020 026 1.75 1.77
Variance x 10> 0.30 0.14 032 0.18 0.06 005 029 040 7.68 7.84
MSE x 107 053 024 0.60 033 0.14 0.12 057 0.87 27.13 33.46
0.3 Mean 042 019 032 052 0.11 008 021 026 1.64 1.60
Variance x 10> 0.33  0.17 028 0.18 0.06 028 044 0.50 8.46 10.11
MSE x 107 058 030 0.64 032 0.14 013 054 092 29.01 36.07
0.5 Mean 041 020 032 052 0.1 009 021 027 151 1.52
Variance x 10> 037 0.17 029 023 0.06 0.06 028 052 1235 16.26
MSE x 10? 0.65 030 0.65 044 0.15 0.14 055 1.02 3079 36381
1 Mean 041 020 032 053 010 009 0.19 029 144 1.40
Variance x 10> 0.43 0.18 0.37 031 0.08 0.07 032 055 1515 2023
MSE x 107 075 033 0.70 061 0.16 0.15 063 1.02 31.68 37.56

4 Simulation study

In this section, we evaluate the performance of QMLE and MDPDE for the zero—one
inflated BINAR(1) model (namely, M, = M, = 2) with Poison-Lindley innovations.
In this experiment, we use the samples of size n = 200 and the parameter settings as
follows:

(aII’ Aa1p,021,029, P115 P125 P215 P22 W1 l[/z) =(0.5, 03, 02, 06, 02, 03, 03, 02, 1, 1),
0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3, 2, 2).

The repetition number for calculating empirical sizes and powers in each simulation
is 1000. We compare the performance of MDPDE (y = 0.1,0.2,0.3,0.5, 1) with that
of QMLE (y = 0). For this, we examine the estimators’ sample mean, variance, and
mean squared error (MSE). In Tables 1, 2, 3, 4, 5 and 6, the bold figures represent
minimal MSEs for each parameter setting. To generate Z,, we first generate
U, = (®(V,),®(V,)), where V, = (V,;, V,,)T are iid bivariate normal random varia-
bles with EV,=0, Var(Vy) =1, i=1,2, and Corr(V,,V,)=p, then
Z,=(F y_,ll Uy, F y‘/zl (Up))T, where F, , denotes the Poisson-Lindley distribution func-
tion with parameter y. Here, we take account of p = —0.5,0,0.5.
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Table 3 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(ay1,a12, 51, A, P11 P12s Po1s P2as Wi W) = (0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1), and outliers exist

y statistics estimators
ap ap ay) Gy A 2% P21 hn v %)
0(QMLE) Mean 0.52 030 020 0.63 020 031 029 021 0.88 0.88

Variance x 10> 0.18 021 0.15 0.12 031 060 060 030 249 228
MSE x 107 034 034 025 025 059 1.12 111 057 4525 8755
0.1 Mean 052 031 020 062 0.5 029 022 019 085 0.84
Variance x 10> 0.16 0.18 0.12 0.11 008 06 0.18 028 146 1.27
MSE x 107 032 032 024 023 040 1.13 089 0.54 4631 90.09
0.2 Mean 051 033 022 059 015 031 022 021 095 094
Variance x 10> 0.16 0.18 0.12 0.12 0.08 059 021 029 2.02 1.75
MSE x 107 029 038 025 019 041 1.13 092 056 4231 83.04
0.3 Mean 054 033 022 064 0.5 032 023 021 1.07 1.05
Variance x 10> 0.17 0.19 0.13 0.12 0.11 059 027 029 219 207
MSE x 107 043 041 028 035 044 1.19 097 057 3793 76.64
0.5 Mean 056 032 021 066 0.17 035 026 022 1.06 1.06
Variance x 10> 022 025 0.16 0.18 023 041 053 023 170 1.68
MSE x 10? 0.69 048 030 066 056 106 121 052 3088 6587

1 Mean 060 029 0.8 072 023 032 033 024 1.30 1.29
Variance x 10> 0.24 029 0.17 024 027 0.18 060 0.09 287 292
MSE x 107 142 050 034 176 062 092 131 043 47.15 90.64

We first report the simulation result in the case of p = 0. Tables 1 and 2 show the
results when the data is not contaminated by outliers, which shows that QMLE has
the minimal MSE for all cases and the MSEs of MDPDE with small y look similar
to those of QMLE. As y increases, the MSE of MDPDE also increases, which con-
firms that MDPDE with a large y has a loss of efficiency as observed in Kim and
Lee (2020).

Next, to evaluate the robustness of the estimators against outliers, we generate the
contaminated data Y, as follows (cf. Fried et al. 2015; Kim and Lee 2020; Lee and
Jo 2023b):

Yo =Y, +PY,, 4.19)

where Y, are generated from (2.1) with the Poisson-Lindley innovation Z,, P, are iid
Bernoulli random variables with success probability p = 0.05, and Y, are iid Pois-
son Lindley random variables with y = 0.5. Tables 3 and 4 exhibit that MDPDE
produces smaller MSEs than QMLE, which supports the superiority of MDPDE
over QMLE when outliers contaminate the data.

Tables 5 and 6 exhibit the MSEs of MDPDE and QMLE when a significant out-
lier exists. Herein, the big outlier is generated from a Poisson-Lindley distribution
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Table 4 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(ay1,a12, 51, A0, P11 P12s Po1s P2as Wi W) = (0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3,2,2), and outliers exist

y statistics estimators
ap ap ay) Gy A 2% P21 hn v %)
0(QMLE) Mean 038 0.18 029 048 0.11 0.09 020 0.25 1.50 1.50

Variance x 10> 0.24 0.15 026 021 007 007 029 049 535 443
MSE x 107 048 027 052 038 015 015 056 0.89 3485 36.12
0.1 Mean 042 021 034 052 011 009 020 028 142 1.41
Variance x 10> 0.25 0.13 021 0.16 0.06 001 024 009 1.19 092
MSE x 107 045 025 046 035 0.14 009 049 077 3459 3559
0.2 Mean 042 021 031 054 0.11 007 0.19 022 145 1.42
Variance x 10> 0.23 0.15 021 0.17 006 002 027 0.14 234 1.43
MSE x 107 042 028 044 043 0.3 0.10 051 078 3357 35.05
0.3 Mean 042 021 033 054 0.11 007 020 023 1.50 1.46
Variance x 10> 0.27 0.15 024 0.18 0.05 003 028 023 488 397
MSE x 107 052 027 053 047 012 0.11 054 0.83 3330 34.74
0.5 Mean 042 021 033 055 0.11 008 021 025 1.60 1.62
Variance x 10> 0.27 0.17 025 023 0.05 0.05 027 037 870 12.62
MSE x 10? 052 033 052 059 013 013 054 091 2936 3642
1 Mean 043 020 033 055 0.11 008 020 027 186 2.06
Variance x 10> 038 0.18 0.31 032 0.07 0.06 031 053 16.82 21.15
MSE x 107 073 033 0.64 082 0.15 014 061 104 3150 38.61

with w = 0.1 and its location is generated from a uniform distribution over [, ey

with n = 200. The result shows that the MDPDE has smaller MSEs than QMLE for
all cases, confirming the validity of MDPDE as well.

Tables 7, 8, 9 and Tables 10, 11, 12 respectively portray the results on the cases
of p = 0.5 and —0.5, showing a pattern similar to Tables 1, 2, 3, 4, 5 and 6. Thus far,
we have conducted experiments to assess the performance of MDPDE in the pres-
ence of additive outliers and a big single outlier. Overall, our findings consolidate
the excellent performance of MDPDE against outliers.

Finally, Tables 13, 14, 15, 16 display the empirical sizes and powers of the
change point tests in Remark 3. The empirical sizes and powers are calculated as
the ratios of the rejection numbers of the null hypothesis out of 1000 repetitions. In
particular, to assess the empirical power, we assume that the change point occurs
at [n/2]. Tables 13 and 14 present that there is no significant distortion in the size
of the CUSUM test, regardless of the presence of outliers generated from (4.19),
but still y = 0.1,0.2 produce more stable results by a slight margin in the presence
of outliers. Tables 15 and 16 present that all the tests produce very high powers.
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Table 5 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(@1,a12, 51,0, P11 P12s P21s P22 W1 W) = (0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2,1,1), and a big outlier
exists

y statistics estimators
ap ap, ay ay, A P12 P2 hn 1 ¥,
0(QMLE) Mean 0.52 029 0.19 059 025 037 037 025 0.71 0.70

Variance x 10> 021 021 0.13 0.12 011 061 018 0.06 095 142
MSE x 107 042 036 028 021 040 1.16 139 056 5243 108.90
0.1 Mean 049 030 021 061 0.15 031 022 020 080 0.86
Variance x 10> 020 0.19 0.14 0.11 0.09 059 0.14 029 093 1.38
MSE x 107 033 031 026 020 041 1.15 085 037 4854 98.33
0.2 Mean 053 031 021 063 0.14 031 022 020 095 097
Variance x 10> 022 021 0.13 0.11 005 059 013 029 1.84 1.76
MSE x 107 047 036 024 025 039 086 086 036 4198 91.48
0.3 Mean 055 031 021 0.63 0.14 033 022 021 107 1.08
Variance x 10> 023 024 0.14 0.13 007 056 0.14 028 196 1.90
MSE x 107 058 042 026 031 040 1.17 086 0.56 37.14 85.11
0.5 Mean 056 030 020 0.66 0.16 035 023 022 125 1.24
Variance x10> 026 028 0.13 0.17 0.18 037 034 023 0.78 0.83
MSE x 107 079 049 022 056 050 1.05 1.04 054 3067 7581

0.1 Mean 0.60 028 0.17 0.71 020 037 031 024 129 129
Variance x 10> 0.28 0.32 0.16 025 033 016 070 0.10 052 0.64
MSE x 107 1.47 059 035 1.62 0.67 091 076 043 2991 7296

Our findings in this specific parameter setting demonstrate the effectiveness of the
change point tests.

5 Real data analysis

In this section, we illustrate a real data example using the number of monthly
earthquake cases (magnitude more than 3) in the United States from January 2000
to December 2019. Time series data can be obtained from the earthquake catalog
in the USGS earthquake hazards program (http://usgs.gov). This earthquake data
has been intensively studied by researchers on the topics including earthquake
forecasting, hazard assessment to seismicity analysis, and identifying temporal
and spatial patterns in earthquake datasets, refer to Thomas (1994), Gersten-
berger et al. (2005), and Goebel et al. (2017) for a general background. Among
the earthquake datasets, we select the bivariate time series of the monthly number
of earthquake cases in Washington (WA) and Nevada (NE), with 240 observa-
tions. The sample mean and variance are 2.99 and 87.48 for WA and 2.15 and
11.75 for NE. Also, the zero and one portions are 0.33 and 0.26 for WA and 0.27
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Table 6 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(@y1,a12, 51,0, P11 P12s P21s P22 W1 W) = (0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3,2,2), and a big outlier
exists

y statistics estimators
ap ap, ay ay, A P12 P2 P 1 1%
0(QMLE) Mean 0.37 0.18 028 048 0.12 0.11 024 034 144 1.40

Variance x 10> 029 0.13 027 0.17 006 005 027 038 7.58 8.67
MSE x 107 053 024 049 030 0.15 0.13 0550 0.84 31.68 36.63
0.1 Mean 041 0.19 032 051 011 0.08 0.19 027 151 1.52
Variance x 10> 0.32  0.15 025 0.17 006 005 028 035 4.64 749
MSE x 107 055 027 048 029 0.14 0.13 053 082 30.79 36.07
0.2 Mean 041 0.19 032 051 011 0.08 020 026 158 1.55
Variance x 10> 0.30 0.14 032 0.18 006 005 029 040 7.68 7.84
MSE x 107 052 023 060 033 013 012 057 087 29.01 32.09
0.3 Mean 041 0.19 032 052 011 0.08 021 026 164 1.60
Variance x 10> 0.33 0.17 028 0.18 006 006 028 044 846 10.11
MSE x 107 058 030 054 032 0.14 0.13 054 092 2640 3224
0.5 Mean 041 020 032 052 011 0.09 021 027 175 1.77
Variance x10> 037 0.17 029 023 006 0.06 028 052 1235 16.26
MSE x 107 0.65 030 055 044 0.15 0.14 055 1.02  27.13 33.46
1 Mean 041 020 032 053 010 0.09 0.19 029 193 212
Variance x 10> 043 0.18 037 031 0.08 007 032 055 1515 2023
MSE x 107 075 033 0.70 0.61 0.16 0.15 0.63 1.02  26.62 37.56

and 0.27 for NE, indicating a high frequency of zero and one observations in both
time series. Figures 1 and 2 plot the monthly time series of WA and NE, particu-
larly showing a possibility of outliers in each series. The autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF) of the time series, and the
cross-correlation function (CCF) are displayed in Figs. 3 and 4, respectively.

To analyze this bivariate time series data, we fit a 0,1-inflated BINAR(1) model
with Poisson-Lindley innovations and choose an optimal y among {0.1,0.2...,1}
for MDPDE using the criterion of Hong and Kim (2001), who proposed to select
y that minimizes the trace of the estimated asymptotic variance of 9yyn(cf. Lee
et al. (2023)). The criterion chooses y = 0.2 and we obtain MDPDEs with this
choice as:

&ll,n = 0.33, &12,}1 = 0.09, &21’}1 = 0.11, &22,}1 = 0.18,
Piin =029, 5,5, =040, 5, , =0.14, py,, = 042,41, , = 0.57, 1, = 0.85.

The test ’74:[ with y = 0.2 in (3.17) detects one change point at # = 60, indicated by the
red vertical lines in Figs. 1 and 2. However, this result is unreliable as the outliers
exist before and after the change point.
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Table 7 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(@y1,a12, 51,0, P11 P12s Pa1s P2os Wi W) = (0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2,1, 1), ¢ = 0.5, and no out-
liers exist

y statistics estimators
ap ap ay Gy A P P2 P2 14} v,
0(QMLE) Mean 049 030 020 059 019 030 028 020 1.00 1.03
Variance x 102 0.22 023 0.15 0.15 030 060 058 030 278 269
MSE x 102 023 023 015 015 030 057 056 028 277 278
0.1 Mean 0.51 030 020 0.61 023 028 032 018 0.78 0.76
Variance x 102 0.24 025 0.15 0.15 020 055 048 0.27 207 1.60
MSE x 102 025 025 0.15 0.17 030 058 056 028 687 7.01
0.2 Mean 0.51 030 020 0.61 023 028 032 019 080 0.78

Variance x 10> 0.25 025 0.15 0.16 020 056 050 028 2.68 1.86
MSE x 107 026 026 0.5 0.17 030 059 058 029 637 645
0.3 Mean 051 030 020 061 023 028 032 019 083 081
Variance x 10> 0.26 026 0.15 0.16 020 058 053 029 3.19 226
MSE x 107 028 027 0.5 0.18 030 060 059 029 585 583

0.5 Mean 051 030 020 061 022 028 031 019 090 0.87
Variance x 10> 0.29 028 0.16 0.18 023 0.60 059 030 4.31 3.11
MSE x 107 031 029 0.6 020 030 061 062 030 516 4.67
1 Mean 051 030 020 061 021 029 030 019 103 0.99
Variance x 10> 0.35 032 0.18 023 028 0.65 0.67 031 462 4.05
MSE x 107 039 033 018 025 031 065 067 031 473 4.05

To identify and correct the outliers, we use the method described in Remark 4.
As a result, three AO’s are identified at + = 58, 100 and 136, specified by the red
points in Figs. 1 and 2. After the correction of these three outliers, MDPDEs with
y = 0.2 are obtained as

iy, =033, = 0.11,dy,, = 0.12, &y, , = 0.16,
ﬁll,n = 0.39, ﬁlz’n = 0.13, ﬁ21’n = 0.23, ﬁzz’n = 0.12, li’l,n = 0.33, li/z’n = 0.48.

which significantly differ from what we have obtained previously. In particular, p
and y’s estimators appear to experience a dramatic change compared to the others.
This result implies that the outliers significantly influences on the estimation of the
zero—one inflation and Poisson-Lindley parameters. Unlike before, 7Z with y = 0.2
is revealed to detect a change point at r = 91 after the correction of outliers, as seen
in Figs. 5 and 6, which looks more reasonable compared to the previously obtained
change point of r = 60. This result reaffirms that outliers can severely impact both
the parameter estimation and change point test and decrease their accuracies.

MDPDEs with y = 0.2 obtained from the two subseries before and after the
change point are as follows:
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Table 8 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(@y1,a12, 51,0, P11 P12s Pa1s P2as Wi W) = (0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1), ¢ = 0.5, and outliers

exist
y statistics estimators
ap ap ay Gy A P P hxn W 173
0(QMLE) Mean 049 029 020 059 0.19 030 029 020 0.88 0.88
Variance x 102 0.19 022 0.13 0.14 030 061 060 0.28 256 238
MSE x 102 025 026 0.16 0.18 030 0.61 060 029 492 473
0.1 Mean 0.51 031 021 061 021 025 031 0.17 072 0.71
Variance x 102 0.20 024 0.14 0.13 025 036 049 0.20 0.66 030
MSE x 102 024 025 0.15 015 028 0.60 051 028 830 847
0.2 Mean 0.51 031 020 061 022 025 031 0.17 074 0.73
Variance x 102 021 023 0.15 0.15 024 037 049 022 1.19 074
MSE x 102 024 025 0.15 019 030 060 052 028 761 770
0.3 Mean 0.52 031 020 0.62 022 025 032 0.18 076 0.75
Variance x 102 0.22 024 0.15 0.16 024 044 051 024 175 1.10
MSE x 102 026 026 015 021 030 062 055 028 7.12 7.24
0.5 Mean 0.52 031 020 062 022 026 031 0.18 0.82 0.80
Variance x 102 025 026 0.16 0.19 024 054 0.55 027 3.09 2.11
MSE x 102 0.30 027 0.16 025 030 065 059 029 6.14 6.10
1 Mean 0.52 031 020 0.62 021 027 030 0.18 097 0.94
Variance x 102 0.33 032 0.17 025 029 0.64 0.65 030 475 3.61
MSE x 102 040 033 0.17 034 031 069 0.65 031 479 394
&ll,n = 0.39, &12,}1 = 0.26, &21,}1 = 0.14, &22’}1 = 0.23,
Prin =0.14,p5, = 0.14, py; , = 0.16, py, = 0.15, 8, = 0.30,,,, = 0.42.
and
OA(“,,, = 0.21, &12,,, = 0.15, 5{21,,, = 0.16, 5{22’,, = 0.21,
Prin=024,p1,, =022, 4y, = 0.13, py,, = 0.28,,, = 0.23,3,,, = 0.18.

The MDPDEs before and after the change point exhibit a significant difference, par-
ticularly in @y ,, @15 ,» P11 > Pro» @nd Y, .. Detecting the change point in the model
is crucial due to the significant difference in MDPDESs before and after the change
point, and this is also discussed in Lee and Jo (2023b). All our findings strongly
confirm the functionality of our proposed methods in real applications.
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Table 9 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model when
(@y1, @125 Ap15 Aaps P11s Pr2s P21s Pas W1 W) = (0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1), ¢ =0.5, and a big
outlier exists

y statistics estimators
ap ap ay Gy A P P2 P2 14} v,
0(QMLE) Mean 049 029 0.19 059 023 036 036 024 076 0.70
Variance x 102 0.21 022 0.14 0.14 0.18 030 020 0.07 059 0.51
MSE x 102 026 023 0.16 0.14 031 069 0.66 032 621 8.95
0.1 Mean 0.51 030 020 0.60 022 029 034 019 071 0.72
Variance x 102 0.26 025 0.15 0.12 022 049 040 0.27 048 0.74
MSE x 102 027 025 0.16 013 029 049 057 027 863 8.20
0.2 Mean 0.51 030 020 0.61 022 029 033 019 075 0.77

Variance x 10> 0.23 022 0.15 0.14 022 054 042 029 151 207
MSE x 107 025 022 0.5 016 028 055 054 029 754 692
0.3 Mean 051 030 020 061 022 029 033 019 080 0.82
Variance x 10> 0.24 022 0.14 0.14 023 057 047 030 246 272
MSE x 107 026 023 015 0.17 029 058 057 030 6.19 593

0.5 Mean 051 030 020 062 022 028 032 019 08 0.89
Variance x 10> 024 023 0.15 0.16 026 0.60 053 030 356 3.34
MSE x 107 027 023 0.5 021 031 0.61 059 030 457 434
1 Mean 052 030 020 062 020 029 030 0.19 105 1.03
Variance x 10> 0.32 028 0.17 020 030 0.66 065 030 3.82 3.74
MSE x 107 037 028 0.17 026 031 0.66 065 031 410 3.88

6 Concluding remarks

In this study, we introduced an MV-inflated BINAR(1) model and substantiated
the strong consistency and asymptotic normality of QMLE and MDPDE under
regularity conditions. Moreover, the change point test and outlier detection
method based on MDPDE were outlined for a practical application. To evalu-
ate the performance of MDPDE in the presence of outliers, we conducted Monte
Carlo simulations and real data analysis using the number of monthly earth-
quake cases in the United States. All the acquired results affirmed the validity
of our proposed methods. While we focused on stationary time series models
here, as mentioned by a referee, one can also consider an extension of our meth-
ods to time series of counts with more complicated characteristics, for example,
time series with a (stochastic) trend or periodicity (seasonality). As this prob-
lem extends beyond the scope of our current study, it is deferred as a subject for
future research projects.
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Table 10 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model
when (a1, a5, 051,25, p115 P125 P21 P22 W1 Wo) = (0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3,2,2), ¢ = —0.5, and
no outliers exist

y statistics estimators
ay, ap Ay ay P P Pn Py W %)
O(QMLE) Mean 0.39 020 030 049 0.10 0.10 0.19 030 2.05 2.09
Variance x 102 0.28 0.16 025 021 008 007 032 051 994 14.73
MSE x 102 028 016 025 021 0.08 007 031 051 1028 14.56
0.1 Mean 0.39 0.19 030 049 0.09 010 0.19 030 2.03 204
Variance x 10> 0.29 0.16 0.26 0.21 0.08 007 032 052 1051 1524
MSE x 102 029 0.16 026 022 0.08 007 032 052 1064 1542
0.2 Mean 039 0.19 030 049 0.09 010 0.19 030 2.04 2.04
Variance x 102 0.30 0.16 0.26 0.22 0.08 0.07 031 053 1088 14.94
MSE x 102 030 0.16 026 0.22 008 0.07 031 053 11.02 15.10
0.3 Mean 0.39 0.19 030 049 0.09 010 0.10 030 2.03 204
Variance x 102 0.31 0.16 0.26 0.22 0.08 007 031 054 1131 1517
MSE x 102 031 0.16 026 023 0.08 007 031 054 1145 1533
0.5 Mean 0.39 0.19 030 049 0.09 010 0.19 030 2.03 2.03
Variance X102 0.33 0.17 0.27 024 0.08 0.07 032 0.56 1239 16.29
MSE x 102 0.33 0.17 027 024 008 0.07 032 056 12.53 1642
1 Mean 0.39 0.19 030 049 0.10 0.10 0.19 029 203 2.02
Variance X102 040 0.18 0.31 0.29 0.08 0.07 032 0.60 15.19 20.44
MSE x 102 040 0.18 031 029 0.08 007 032 060 1530 2044
Proof

Proof of Theorem 1 From (3.8), one can see that

2
S Yoy +Yio0) ), Hog(l -

2
0<-£(0)<—- ZJ(Yz—Lh Y12

i=1

2
1 @2,0) + Y [logf, . (¥,
i=1

a;) +log(l —

2
al+ Y logf, , (Y,
i=1

due to the fact: J(m,n,p;,p,,0) = (1 —p,;)"(1 — p,)" for any m,n > 0. Then, pro-
vided f, is the one in (2.6), satisfying E|log i(Y,))| < o0, i = 1,2, which holds par-
tlcularly true for the zero-inflated Poisson innovation case, we have

E(sup £,0)]) < o0
I=C]
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Table 11 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model
when (a1, a5, 051,25, p115 P125 P21 P22 W1 Wo) = (0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3,2,2), ¢ = —0.5, and
outliers exist

y statistics estimators
ap ap ay, %) Ai P 2 P 17 1%
0(QMLE) Mean 038 0.19 029 049 0.11 0.10 020 028 1.58 1.50

Variance x 10> 024 0.15 021 0.18 0.07 0.07 029 049 640 5.12
MSE x 107 026 0.16 024 0.19 0.08 007 031 055 2368 29.79
0.1 Mean 038 0.19 029 049 0.11 010 020 028 1.62 1.49
Variance x 10> 023 0.14 025 0.19 0.06 0.07 029 052 727 446
MSE x 107 025 015 025 019 0.08 007 030 054 2138 29.99
0.2 Mean 038 0.19 029 049 0.10 009 020 028 1.67 1.53
Variance x 10> 025 0.15 0.22 020 0.07 0.07 029 052 826 693
MSE x 107 026 0.15 022 020 008 007 030 053 19.04 2830
0.3 Mean 039 019 029 049 0.10 009 020 029 171 1.57
Variance x 10>  0.26 0.15 0.23 020 0.08 0.08 029 0.54 986 849
MSE x 107 026 0.16 023 020 008 008 030 054 17.69 26.56
0.5 Mean 039 0.19 029 049 0.10 0.10 020 029 1.78 1.65
Variance x 10> 0.27 0.16 024 021 0.08 0.08 030 0.55 12.05 12.02
MSE x 107 028 0.16 024 022 008 008 030 055 1678 23.80
1 Mean 039 0.19 029 049 0.10 010 0.19 029 1.84 1.76
Variance x 10> 0.31 0.17 029 0.26 008 0.08 031 058 1556 18.75
MSE x 107 032 017 029 026 0.08 008 032 058 18.00 24.02

This can be shown to hold for the Poisson-Lindley case as well. Then, using the
continuity of Z,(6) in 6 and the uniform strong law of large numbers for stationary
ergodic processes, we can get

Z,;(0) — EZ.(0)] = o(1
sup |- Z,,() {(0)| = o(D) as.,

which implies the strong convergence of 8, to 6, as EZ,(6) < EZ,(0,) for all 6 # 6,
due to the Kullback-Leibler divergence property and the model identifiability dis-
cussed earlier.

Moreover, using simple algebras, we can easily check that

dlogfy (Y,1Y,_1) 0 log f, (Y, 1Y,
P sup | ) <o, sup | ) < o

which results in
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Table 12 Sample mean, variance, and MSE of estimators for the zero—one inflated BINAR(1) model
when (a;,a,,, 051,23, p115 P125 P21 Pa2s W1 Wo) = (0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3,2,2), ¢ = —0.5, and
a big outlier exists

y statistics estimators
ap ap ay, %) Ai P 2 P 17 1%
0(QMLE) Mean 038 0.18 028 048 0.12 0.11 024 034 1.53 1.40

Variance x 10> 0.27 0.13 025 0.17 0.01 0.06 0.14 0.29 10.89 10.78
MSE x 107 031 0.16 027 0.19 0.08 007 031 054 2396 3190
0.1 Mean 039 020 029 049 0.11 0.10 020 031 1.88 1.94
Variance x 10> 0.27 0.14 0.27 0.8 0.06 0.07 030 0.55 9.29 17.50
MSE x 107 027 0.14 027 0.18 0.08 007 031 057 1050 17.69
0.2 Mean 039 020 030 049 0.10 009 020 030 2.02 1.99
Variance x 10> 025 0.13 0.26 0.18 0.08 0.07 032 0.53 994 16.24
MSE x 107 025 013 026 0.18 007 007 032 054 995 1618
0.3 Mean 039 020 030 049 0.10 009 020 030 2.04 1.99
Variance x 10> 025 0.13 025 0.18 0.08 0.08 031 0.54 9.92 16.61
MSE x 107 025 013 025 018 008 008 031 054 10.09 1655
0.5 Mean 039 020 030 049 0.10 009 0.19 030 2.04 1.99
Variance x 10> 0.27 0.14 027 021 008 0.08 031 055 10.64 18.17
MSE x 107 027 0.14 027 021 008 008 031 055 10.83 18.09
1 Mean 039 020 030 049 0.10 009 020 030 204 2.00
Variance x 10> 0.33 0.16 0.31 029 0.08 0.08 031 059 14.16 22.23
MSE x 107 033 0.16 031 029 0.08 008 031 059 1428 22.14

Table 13 Empirical sizes for the zero—one inflated BINAR(1) model when no ouliers exist

(a11>a19, g1 A, P15 P12> P21 P22s W1 W) size

y=0 0.1 0.2 0.3 0.5 1
(0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1) 0.52 0.51 0.54 0.48 0.50 0.51
(0.5,0.3,0.2,0.6,0.1,0.2,0.2,0.2,2,2) 0.51 0.52 0.47 0.49 0.48 0.50
(0.4,02,03,0.5,0.1,0.1,0.2,03, 1, 1) 0.48 0.55 0.54 0.56 0.55 0.54
(0.4,02,0.3,0.5,0.2,0.1,0.2,0.2,2,2) 0.52 0.45 0.48 0.47 0.48 0.56

Table 14 Empirical sizes for the zero—one inflated BINAR(1) model when ouliers exist

(@1, @12, Gr15, A5 P11 P125 P215 P22s W1 W2) size

y=0 0.1 0.2 0.3 0.5 1
(0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1) 0.51 0.48 0.48 0.53 0.55 0.54
(0.5,0.3,0.2,0.6,0.1,0.2,0.2,0.2,2, 2) 0.52 0.50 0.52 0.48 0.46 0.48
0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3, 1, 1) 0.54 0.50 0.51 0.47 0.46 0.51
0.4,0.2,0.3,0.5,0.2,0.1,0.2,0.2,2,2) 0.53 0.51 0.50 0.53 0.52 0.50
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Table 15 Empirical powers for the zero—one inflated BINAR(1) model when no ouliers exist

(a11,a12, G915 G325 P115 P125 P215 P22s W1s W) power

= (@),,d),, 0}, dy, P\ Py 0> Py W1 W) y=0 0.1 0.2 0.3 0.5 1
(0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1) 0.89 0.88 0.89 0.85 0.84 0.91
- (0.4,0.2,0.2,0.6,0.2,0.3,0.2,0.3,1, 1)

(0.5,0.3,0.2,0.6,0.1,0.2,0.2,0.2, 2, 2) 0.93 0.92 0.94 0.95 0.95 0.93
- (0.5,0.3,0.2,0.5,0.1,0.1,0.1,0.1,2, 1)

0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3, 1, 1) 0.99 0.98 0.97 0.97 0.95 0.99
- (0.5,0.3,0.2,0.6,0.2,0.2,0.2,0.2,1, 1)

0.4,0.2,0.3,0.5,0.2,0.1,0.2,0.2, 2, 2) 0.99 0.99 0.99 0.99 0.99 0.99

- (0.4,0.2,0.2,0.5,0.1,0.2,0.3,0.1, 1, 1)

Table 16 Empirical powers for the zero—one inflated BINAR(1) model when ouliers exist

(11,125 G315 a0, P11 Pr2s P215 P> Wi W) power

= (A}, 8,0 a5 @ P Py Py Py WS W) r=0 0.1 0.2 0.3 0.5 1
(0.5,0.3,0.2,0.6,0.2,0.3,0.3,0.2, 1, 1) 0.97 0.99 0.99 0.98 0.98 0.99
- (0.4,0.2,0.2,0.6,0.2,0.3,0.2,0.3,1, 1)

(0.5,0.3,0.2,0.6,0.1,0.2,0.2,0.2, 2, 2) 0.98 0.99 0.98 0.98 0.99 0.99
- (0.5,0.3,0.2,0.5,0.1,0.1,0.1,0.1,2, 1)

0.4,0.2,0.3,0.5,0.1,0.1,0.2,0.3, 1, 1) 0.99 0.98 0.98 0.97 0.98 0.99
- (0.5,0.3,0.2,0.6,0.2,0.2,0.2,0.2,1, 1)

0.4,0.2,0.3,0.5,0.2,0.1,0.2,0.2,2, 2) 0.99 0.99 0.99 0.99 0.99 0.99

- (0.4,0.2,0.2,0.5,0.1,0.2,0.3,0.1, 1, 1)

9°¢,(0)

< o0, E| sup 30007

00

(0, |I>
EHM (7.20)

06

o (90)

Then, applying the martingale central limit theorem to { —/— }, we obtain

B Z ot (90) KR

Moreover, owing to (7.20), using the uniform law of strong large numbers combined
with the ergodicity of {Y,} and the dominated convergence theorem, we can have

1 Z 6,0, _ (P40
n &= 00067 96007

’ =0o(1) as.,
1

where 8, is an intermediate point between 0, and 9n, and ||A]|, = Z _; |A;| for any
d X d matrix A = (A;), so that
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1 w 0%4,0,)
2

0ot Jo A5

3

which asserts the theorem. []
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