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Abstract
This study aims to improve the predictive performance for the event time through 
the machine learning model and find informative variables in the time-to-event data, 
simultaneously. To address this issue, after regarding the time-to-event data as the 
dichotomized counting processes data for predicting survival time, we consider the 
time-dependent support vector machine (SVM) framework for the dichotomized 
counting process data, where the decision function in this framework consists of the 
time-independent risk score and time-dependent intercept. Also, we consider the 
empirical partial derivative of the risk score function with respect to each marginal 
predictor as the indicator for the important predictor. Through this approach, it is 
possible to predict survival time and find variables that affect on the survival time 
at the same time. Simulation studies were conducted to confirm the performance of 
the model, and real data analysis was conducted by predicting the survival time of 
the lung cancer after the diagnosis and selecting genes associate with lung cancer 
through human gene data.

Keywords Counting process · Prediction · Reproducing kernel · Risk process · 
Variable selection · Weight

1 Introduction

Several parametric and nonparametric approaches have been developed in the 
survival analysis area to account for the occurrence or survival time of an event. 
Most of these methods focus on estimating conditional and unconditional survival 
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probability up to a certain point in time and predicting the conditional survival time 
using covariates (Kalbfleisch & Prentice, 2011; Fleming & Harrington, 2011; Ibra-
him et al., 2001; Lawless, 2002). The outcome variable is the observed time, which 
can be either of the survival time or the censoring time away from the observation, 
wherein the observed time’s actual meaning is denoted by the censoring indicator. 
Such a characteristic of the outcome variable requires a distinct approach—one 
that differs from the conventional statistical models, such as the Cox proportional 
hazards model (Cox, 1972), which is the representative method widely used for the 
time-to-event data, particularly in terms of the hazard function associated with the 
survival outcome as the multiplicative structure between the baseline hazard func-
tion and the exponential function of the linear predictor. Estimators of the regression 
coefficients are obtained by numerically maximizing the partial likelihood describ-
ing the observed data; these estimated coefficients can be used not only for the infer-
ence on the effect of the covariate’s effect, but also for predicting survival time in 
the context of the covariate’s specific level.

Although estimating the regression coefficients of the Cox proportional hazards 
model helps to understand the characteristics of the hazard function, the proportional 
hazards assumption that the hazard ratio of any level of the predictor is constant over 
time, must be premised. An accelerated failure time model (Wei, 1992) accounting 
for the relationship between the log-transformed survival time and predictors in the 
presence of the error term followed from a specific probability distribution can be 
an alternative to the Cox proportional hazards model in the survival analysis. How-
ever, it also requires the premised belief called the accelerated failure time assump-
tion that any level of predictor additively effects on the log survival time. Likewise 
these two typical models, because most of survival models tend to accompany with 
the model-based assumptions, the issue for predicting survival time depends on the 
model-based assumption. The performance of the prediction for the survival time 
may be inaccurate if the assumed model is incorrect in reality. Following the work 
of Wang et al. (2016), a support vector hazard machine (SVHM) which estimates the 
hyperplane maximizing the margin to classify the censored or uncensored observa-
tions at each survival time can be used for the prediction on the survival time with-
out any model-based assumptions.

When the dimension of the covariates is large, many statistical models may also 
suffer from difficulties, such as computational stability, noise accumulation, and 
variable selection problems (Clarke et  al., 2009). The regularized solution mini-
mizing the objective function comprising the empirical risk and penalty terms has 
great advantages in that it leads to numerical stability and avoids the problem of 
overfitting (Tibshirani, 1997). However, this is an insufficient approach when the 
dimensions of the covariates are extremely large. Various feature screening methods 
with specific modeling assumptions have been suggested to filter the massive num-
ber of non-informative covariates, which have complemented regularized methods. 
Fan and Lv (2010) recommended a two-stage approach that screens out the non-
informative covariates in the first stage of variable selection and uses the regulariza-
tion method in the second stage. However, these existing variable selection methods 
may not be optimal when prediction and variable selection for time-to-event data 
must be achieved simultaneously. Specifically, if the negative partial log-likelihood 
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loss function is replaced by another loss function: Owing to the prediction purpose, 
the approach that estimates the optimal decision function under the modified loss 
function may conflict with the important covariates selected under the partial likeli-
hood framework. However, if the aforementioned approach can estimate the optimal 
decision function under the modified loss function and find clues for the important 
covariates from this decision function, it would be more desirable and accessible to 
simultaneously achieve the two objectives of prediction and variable selection.

This study aims to predict the survival time and develop a variable selection 
method for the time-to-event dataset. We use the SVHM framework with the two 
different weights to estimate the time-dependent intercept and time-independent risk 
score after considering the observed time-to-event data as dichotomized counting 
processes. Then, we predict the survival time of the event based on the pair includ-
ing the ranks of the estimated risk scores estimated and observed survival time, 
Finally, we measure the contribution of each marginal covariate effect to the optimal 
decision function, through the gradient information (He et al., 2021; Park & Park, 
2021; Xia, 2007; Xia et al., 2002; Fukumizu & Leng, 2014). The selection method 
based on the gradient information basically assumes that the corresponding partial 
derivative of the optimal decision function must be zero if a particular covariate 
exhibits a negligible effect on the survival outcome. Following this belief, we com-
puted the optimal decision function’s partial derivatives for each marginal covariate 
producing the time-independent risk score to conduct the variable selection.

We consider that there are several contributions in terms of statistical point of 
views. While the existing SVHM can not conduct the variable selection, our pro-
posed method contributes to adding the role of variable selection to the SVHM 
method, which yields the unified framework in the survival analysis. Specifically, 
the proposed method can differ from the conventional prediction and variable selec-
tion methods in that it does not requires any premised belief such as the proportional 
hazards or the accelerated failure time assumptions. Also, the predicted survival time 
and selected variables from our proposed method can be more systematically con-
sistent results because these results are established within the identical loss function 
framework, within the same kernel choice, and within one stage estimation com-
pared with the existing two stages models. For instance, the survival time predicted 
by the hinge loss function in the SVHM and the important variables selected by the 
negative partial likelihood loss function in the Cox model seems to be somewhat 
inconsistent. As another aspect, we propose the inverse probability weight to deal 
with the unbalanced time-to-event data, which provides the possibility being able to 
incorporate the current suggested approach with the various weighted models.

The remainder of this paper is organized as follows. In Sect.  2, we introduce 
relevant notations and fundamental results of the SVHM, and variable selection 
approaches. In Sect. 3, we perform quantitative studies using the proposed approach 
and provide illustrative example based on real data in Sect. 4. We present conclud-
ing remarks in Sect. 5.
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2  Methodology

2.1  Support vector hazards machine

We start with the mathematical notation and fundamental concept of the SVHM (Wang 
et al., 2016) in this subsection. Let a random vector X = (x1,… , xp)

T ∈ ℝ
p be a set 

of predictors, and random variables T∗ ∈ ℝ
+ and C ∈ ℝ

+ be the survival time and 
censoring time, respectively. The observed time and censoring indicator are defined 
as T = min(T∗,C) and the Δ = I(T∗ ≤ C) , respectively, where I(⋅) is an indicator 
function and Δ is the event indicator. Assumedly, the survival time is independent of 
the censoring time given by predictors X. We observed a sample of n subjects given 
by {(Xi, Ti,Δi) ∶ i = 1,… , n} , where Xi , Ti and Δi denote a p-dimensional vector of 
covariates, observed time, and censoring indicator of the ith individual, respectively. 
Let Ni(t) = ΔiI(Ti ≤ t) be the counting process and Yi(t) = I(Ti ≥ t) be the at-risk pro-
cess for the ith individual for any t ∈ T = [0, �] , where � denotes the stopping time. 
dNi(t) is the jump size of the counting process in a small time interval [t, t + dt] . Thus, 
dNi(t) = 1 if Ti ∈ [t, t + dt] , and dNi(t) = 0 otherwise. Let t(1) ≤ t(2) ≤ ⋯ ,≤ t(q) be an 
order statistics for q distinct event times obtained from the observed dataset, where it is 
assumed that there are no ties in the event times.

We defined the dichotomized variable for each subject and event time as 
�Ni(t(j)) = 2(Ni(t(j)) − Ni(t(j)−)) − 1 , which takes the value of 1 if the survival time of 
the ith subject is observed, and −1 otherwise.

We considered the time-dependent risk score f0(t,X) , where f0 ∶ T ×ℝ
p
→ ℝ is a 

nonparametric smoothed function of the covariates at a specific time. Suppose that such 
a general risk score comprises the intercept term, � ∶ T → ℝ , as a function of time, and 
the nonparametric risk score term, f ∶ ℝ

p
→ ℝ as a function of the covariates, that is, 

f0(t,X) = �(t) + f (X) . We used the time-dependent risk score to predict whether the 
corresponding subject experienced a failure event at the next immediate time. Specifi-
cally, when the ith subject is still contained in the risk set at time t, we predicted the ith 
subject to have an event if f0(t,X) ≥ 0 , or not to have the event if f0(t,X) < 0 . When 
a symmetric positive definite kernel k(⋅, ⋅) ∶ ℝ

p ×ℝ
p
→ ℝ is available, we can con-

struct a feature map with the kernel, that is, �(X) = k(X, ⋅) such that �(⋅) ∶ ℝ
p
→ H . 

When endowing the inner product between the feature maps as the value of the kernel, 
k(X,X�) = ⟨�(X),�(X�)⟩H , we can establish a unique RKHS, denoted by (H, ⟨⋅, ⋅⟩) , 
such that the reproducing property f (X) = ⟨f , k(⋅,X)⟩ holds for all f ∈ H , and X ∈ ℝ

p.
The optimal separating hyperplane between subjects with and without the event at 

each time is the hyperplane that can create the largest margin between the two classes. 
Following Wang et al. (2016), we can express such an optimization problem as follows:

(1)

min
�,f

1

2
‖f‖2

H
+ �−1

n�

i=1

q�

j=1

wi(tj)Yi(tj)�i(tj),

subject to Yi(tj)�Ni(tj)
�
�(tj) + f (Xi)

� ≥ Yi(tj)
�
1 − �i(tj)

�
,

Yi(tj)�i(tj) ≥ 0,

for i = 1,… , n, j = 1,… , q,
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where the slack variable �i(tj) allows the prediction of the ith subject on the wrong 
side of its margin at the jth event time, the weight wi(tj) adjusts the imbalance for 
the dichotomized response of the ith subject at the jth event time, the cost variable 
C controls the total sum of the weighted slack variables, and ‖f‖H denotes the norm 
in the RKHS. Problem (1) is a convex optimization problem with inequality con-
straints, and using Lagrange multipliers leads to the primal function

where it must be minimized with respect to � , f, and �i(tj) , where �ij ≥ 0 and �ij ≥ 0 
are the corresponding Lagrange multipliers, and ‖f‖H denotes the norm in the 
RKHS. By the reproducing property (Aronszajn, 1950), we can represent f ∈ H as 
the evaluation functional, f (X) = ⟨f ,�(X)⟩ . Substituting this representation into the 
primal function and considering the partial derivatives as zeros, we obtain

By substituting the above results into the primal function, we obtain the dual 
function

for which it must be maximized with respect to the multipliers �ij subject to 
0 ≤ �ij ≤ �−1wi(tj) and 

∑n

i=1
�ijYi(tj)�Ni(tj) = 0 for i = 1,… , n and j = 1,… , q . The 

Karush–Kuhn–Tucker includes the constraints

characterizing the optimal solution for the above primal and dual objective func-
tions. The solution for f has the form f̂ =

∑n

i=1

∑q

j=1
�̂ijYi(tj)�Ni(tj)�(Xi) , which 

yields the estimator for the smoothed risk score, given by

Lp =
1

2
‖f‖2

H
+ �−1

n�

i=1

q�

j=1

wi(tj)Yi(tj)�i(tj) −

n�

i=1

q�

j=1

�ijYi(tj)�i(tj)

−

n�

i=1

q�

j=1

�ij
�
Yi(tj)�Ni(tj)

�
�(tj) + f (Xi)

�
− Yi(tj)

�
1 − �i(tj)

��
,

f =

n∑

i=1

q∑

j=1

�ijYi(tj)�Ni(tj)�(Xi),

0 =

n∑

i=1

�ijYi(tj)�Ni(tj),

�ijYi(tj) = �−1wi(tj)Yi(tj) − �ijYi(tj), for i = 1,… , n, j = 1,… , q.

LD =

n∑

i=1

q∑

j=1

�ijYi(tj) −
1

2

n∑

i=1

n∑

i�=1

q∑

j=1

q∑

j�=1

�ij�i�j�Yi(tj)Yi� (tj� )�Ni(tj)�Ni� (tj� )k(Xi,Xi� ),

[
Yi(tj)�Ni(tj)

{
�(tj) + f (Xi)

}
− Yi(tj)

{
1 − �i(tj)

}] ≥ 0

�ij
[
Yi(tj)�Ni(tj)

{
�(tj) + f (Xi)

}
− Yi(tj)

{
1 − �i(tj)

}]
= 0,

�ij�i(tj) = 0 for i = 1,… , n j = 1,… , q
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where x ∈ ℝ
p denotes a test point for any covariate. Complementary slackness is 

summarized as the following equations

These conditions allow for the ith subject to be well separated at the jth time if 
�ij = 0 , �i(tj) = 0 , and Yi(tj) = 1 are satisfied, whereas they allow for the ith sub-
ject at the jth time to be contained in the support vectors lying on the edge of 
the margin when 0 < 𝛼ij ≤ 𝜆−1wi(tj) , �i(tj) = 0 , and Yi(tj) = 1 are satisfied, and 
lying on the wrong side of the margin when �ij = �−1wi(tj) , and Yi(tj) = 1 are sat-
isfied. According to the complementary slackness, the estimator for f in (2) is 
characterized by the support vectors across all subjects and event times. The 
optimal time-varying intercept is also estimated by using complementary slack-
ness. At the jth time point tj , all subjects lying on the edge of the margin satisfy 
the condition Yi(tj)�Ni(tj)

{
�(tj) + f (Xi)

}
− Yi(tj) = 0 , which is equivalent to 

�̂(tj) = 1∕�Ni(tj) − f (Xi) . In practice, we used the average of all subjects at the time.

2.2  Gradient‑based variable selection

The sparsity assumption that only a few covariates have been associated with the 
survival outcome is more practical than relating all covariates with the outcome 
in the real world. Such a sparsity assumption has been widely employed within 
various models for the last two decades in the variable selection areas. In this 
subsection, we intend to develop a variable selection approach for the SVHM 
within the sparsity assumption. Suppose that function f is continuously differenti-
able. If there exists a covariate strongly related to the risk score f associated with 
the survival time, guessing that a small change in the value of the corresponding 
covariate will cause a large change in the value, the risk score is not unreason-
able. Following the work of (Park & Park, 2021), the partial derivative of f with 
respect to the jth predictor xk given by

can serve as the aforementioned criterion by capturing the relative importance of the 
jth predictor at a fixed point. Suppose that the inner product in the reproducing ker-
nel Hilbert space (RKHS) is computed with the partial differential operator, and the 
partial differential operator is a self-adjoint operator. It follows from the reproducing 
property that:

(2)

f̂ (x) =

⟨
n∑

i=1

q∑

j=1

�̂ijYi(tj)�Ni(tj)�(Xi),�k(x)

⟩
=

n∑

i=1

q∑

j=1

�̂ijYi(tj)�Ni(tj)k(Xi, x),

�ij
[
Yi(tj)�Ni(tj)

{
�(tj) + f (Xi)

}
− Yi(tj)

{
1 − �i(tj)

}]
= 0,

(�−1wi(tj) − �ij)�i(tj)Yi(tj) = 0 for i = 1,… , n j = 1,… , q,

�f (X)

�xj
=

�f (x1,… , xp)

�xj
≡ �jf
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holds for all f ∈ H and X ∈ ℝ
p . From the Cauchy–Schwarz inequality, we have an 

upper bound:

Thereafter, we observe that the partial derivative of f with respect to any predic-
tor belongs to the RKHS when the partial derivative of the reproducing kernel is 
bounded, which reveals that the reproducing kernel remains an essential tool for 
obtaining the partial derivative of f. The above partial derivative depends on the 
fixed point xj , which might make it difficult to understand the importance of covari-
ate Xj across the entire sample space. If the marginal probability density function for 
X, denoted by PX(x) , is available, the L2 norm with respect to PX(x) is given by

provides a better understanding of the importance of covariate Xj across possible 
realizations. If the jth predictor does not have a relationship with the risk score asso-
ciated with the survival outcome, then the L2 norm in (3) tends to be close to zero 
for any fixed point xj . Let

be a true set of indices containing the important predictors, and s = |M| be the 
number of elements in the true set, for which it is assumed that s is a smaller integer 
compared with the sample size n, and dimension p. We use the estimator f̂  men-
tioned in Sect. 2.1 for the risk score f to compute the empirical partial derivatives 
for each predictor and the empirical probability measure as the counter part of the 
marginal probability measure of the predictor to obtain the index set estimating the 
true sparse set. Taking the partial derivative of f̂  mentioned in (2) with respect to 
the jth predictor,

and applying the empirical probability to the L2 norm in (3), we compute the estima-
tor for the magnitude of the risk score with respect to the jth expressed as:

�jf =
�

�xj
⟨f , k(⋅,X)⟩H = ⟨f , �

�xj
k(⋅,X)⟩H = ⟨ �

�xj
f , k(⋅,X)⟩H

⟨f , �

�xj
k(⋅,X)⟩H ≤ ‖f‖H‖

�

�xj
k(⋅,X)‖H.

(3)‖�jf‖2L2(PX )
= ∫

X

(�jf )
2dPX(x).

M = {1 ≤ j ≤ p ∶ ‖�jf‖2L2(PX )
≠ 0}

�j f̂ =

n∑

i=1

q∑

j=1

�̂ijYi(tj)�Ni(tj)
�k(Xi, x)

�xj
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We utilized the empirical norm of the partial derivative for the risk score presented 
in (4) to select informative variables,

where �n is the predefined threshold value. Numerous literature on the variable 
selection issues (Fan & Lv, 2010; Jeong et al., 2023) have popularly used the value 
of �n as n − 1 or [n∕ log(n)] , and we use this value as our predefined threshold value, 
where [a] denotes the greatest integer value less than a.

2.3  Properties of gradient based kernel selection

Let X ⊂ ℝ
p be a boundedly connected set including all possible value of random 

vector X and Hk be a RKHS induced by the kernel k. Let 
M = {1 ≤ j ≤ p � ‖𝜕jf ∗‖2PX

> 0} and �M(𝜌) = {1 ≤ j ≤ p � ‖𝜕j�f‖2n > 𝜌} be the true 
set of indices including the important predictors and the estimated set of indices 
based on the the empirical norm of the partial derivative function for each predictor, 
where � is pre-defined threshold value. Since there is one-to-one relationship 
between �n in (5) and � in M̂(�) , we mainly focus on �n in this subsection. Define the 
empirical risk

where [a]+ = max{0, a} . Then, define the empirical solution as

and the true decision function as (�, f ∗) = argmin�,f R(f ,�) , respectively, where

(4)

‖�j f̂‖2n =
1

n

n�

l=1

�
�f̂ (xl)

�xj

�2

=
1

n

n�

l=1

�
⟨ �

�xj
f̂ , k(⋅, xl)⟩H

�2

=
1

n

n�

l=1

�� n�

i=1

q�

j=1

�̂ijYi(tj)�Ni(tj)
�k(⋅,Xi, )

�xj
, k(⋅, xl)

�

H

�2

=
1

n

n�

l=1

� n�

i=1

q�

j=1

�̂ijYi(tj)�Ni(tj)
�k(Xi, xl)

�xj

�2

.

(5)M̂(�n) = {1 ≤ j ≤ p ∶ ‖�j f̂‖2n is amongst the first �n largest of all values},

(6)Rn(f ,�) = min
�,f

1

n

n∑

i=1

q∑

j=1

Yi(tj)
[
1 − (�(tj) + f (Xi))�Ni(tj)

]
+

(�̂, f̂ ) = argmin
�,f

Rn(f ,�) +
1

2
�‖f‖2

R(f ,�) = E

[

∫ Y(t)[1 − �(tj) − f (X))]+dN(t)

]

+ ∫
E(Y(t))[1 + �(tj) + f (X))]+

E(Y(t))
E(dN(t)).
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To conveniently develop theoretical justification, instead of using the risk functions 
aforementioned Rn(f ,�) and R(f ,�) , we use the profile risk function excluding the 
effect of the time-dependent function � . Following Wang et al. (2016), the profile 
risk can be derived as

where �∗ = min� R(f ,�) and P̃ is the probability measure with respect to (Ỹ , X̃, Δ̃).

The following conditions are required to establish the properties for our method.

 (A1) For each f ∈ Hk , f is continuous and continuously differentiable.
 (A2) There exists a constant � such that for all j ∈ {1, 2,… , p}

 (A3) There exists a constant c1 such that for f̂ , f ∗ ∈ Hk

 and exists a constant c2 such that for some positive �

 (A4) There exists a positive constant 𝜂 <
q

q+1
 such that for some positive constant �2

Condition (A1) enables us to exclude the discontinuously differentiable functions 
strongly associated with the survival time. For instance, there may exit a piecewise 
constant function defined as the survival time on some region of the jth predictor and 
zeros on the other regions though ‖�jf‖ = 0 . By the condition (A1), we can be more 
confident that the jth predictor is not important when observing ‖�jf‖ = 0 . Condi-
tion (A2) provides the boundedness of the reproducing kernel and the partial deriva-
tive function with the respect to all marginal predictors. Condition (A2) is always 
satisfied for the typical kernels such as the Guassian, polynomial and Sobolev ker-
nels defined on a bounded domain. The first assertion of the condition (A3) implies 
that the discrepancy between the empirical estimator and true solution has an upper 
bound consisting of the discrepancy between the corresponding profiled risk func-
tions. The second assertion of the condition (A3) assumes the specific probability of 
the difference between the profiled risk functions evaluated at the estimator and true 
function, respectively. The rate of the convergence for PR(̂f ) − PR(f ∗) to the zero 
is known to be Op(n

−
q

q+1 ) when taking � = n−q∕(q+1) with some other conditions as 
introduced in Wang et al. (2016) or Remark 1, where q = 1∕(4∕� + 1) and � ∈ (0, 2) . 

PR(f ) = R(f ,𝜇∗) = E

[
Δ
P̃I(Ỹ ≥ Y)[2 − f (X̃) − f (X)]+

P̃I(Ỹ ≥ Y)

]
,

sup
X∈X

‖k(X, ⋅)‖ ≤ � and sup
X∈X

‖�jk(X, ⋅)‖ ≤ �.

‖f̂ − f ∗‖ ≤ c1�PR(̂f ) − PR(f ∗)�

P(|PR(̂f ) − PR(f ∗)| ≥ c2n
−(

q

q+1
) ≤ �

2
.

min
j∈M∗

‖𝜕jf ∗‖2 > 𝜅2(log p)n
−𝜂 .
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We adopt this result as the basic condition to develop the theoretical justification for 
the proposed method. Consequently, condition (A3) allows us to approximate the 
probability of the tails of ‖f̂ − f ∗‖ although it seems to be somewhat strong assump-
tion. Condition (A4) assumes that the true gradient function for the important pre-
dictors contains sufficient information as the value being able to discriminate from 
the uninformative predictors.

Remark 1 For the convergence rate of PR(̂f ) − PR(f ∗) , the literature (Wang et al., 
2016) assumes that � and � go to zero, that n��p(2∕�−1∕2)) goes to infinity, and 
E[Y(t∗)|X] is bounded away from zero, where t∗ is the stopping time, and that � is a 
scale factor in the Gaussian kernel defined as k(z1, z2) = exp{−‖z1 − z2‖2∕�}.

We establish two results as the justification of the proposed selection method.

Proposition 1 Suppose that assumptions 1–3 are satisfied. Then with the probability 
at least 1 − � , there holds

where q = 1∕(4∕� + 1) , � ∈ (0, 2) , and � is some positive constant.

Proposition 1 lays out the rate of the convergence for the maximum discrepancy 
between the empirical norm for the partial derivative of the estimated SVHM and 
the L2 norm for the partial derivative of the true function for all predictors. This 
result is important because it implies that ‖�j f̂‖2n converges to ‖�jf ∗‖2PX

 and contrib-
utes to establish the asymptotic selection consistency as the followings.

Proposition 2 Suppose that assumptions 1–4 are satisfied and Proposition 1 holds. 
Let � =

�

2
(log p)n−� . Then we have

as n goes to infinity.

Proposition 2 demonstrate the asymptotic selection consistency of our proposed 
gradient based selection method. With the condition (A4), the specific rate of the 
selection consistency is determined by the result in Proposition 1. Thereby, the pro-
posed method keeps the informative predictors and filter out the uninformative pre-
dictors in the selection procedure with the overwhelming probability.

2.4  Prediction, weight and tuning parameters

Following the work of Wang et al. (2016), we predicted the survival time for the risk 
score evaluated for the specific predictors. Specifically, we first sorted the observed 
survival time t(q) ≥ t(q−1) ≥ ⋯ ,≥ t(1) in decreasing order. Thereafter, we computed 

(7)max
1≤j≤p

����
‖�j f̂‖2n − ‖�jf ∗‖2PX

����
≤ �(log p)n

−
q

q+1

(8)P(M̂(�) = M
∗) ⟶ 1
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the risk score f̂ (xik ) for the corresponding subjects with the observed event time, 
k = 1, 2,… , q , and sorted the risk scores f̂ (x(i1)) ≤ f̂ (x(i2)) ≤ ⋯ ,≤ f̂ (x(iq)) in increas-
ing order. We redefined the reference pair for the prediction of survival time given 
by {(̂f (x(i1)), t(q)), (̂f (x(i2)), t(q−1)),… , (̂f (x(iq)), t(1))} . as {(̂f (x(ik)), t̃(k)) ∶ k = 1,… , q} 
We predicted the survival time for the new observation x , given by 
T̂ =

∑
k∈N(h) t̃(k)∕�N(h)� , where N(h) is the set of pairs (̂f (x), f̂ (x(ik))) approximately 

distance h depart for k = 1,… , q , and N(h) denotes the number of pairs in N(h). For 
computational simplicity, we selected the first three closest observed survival times 
to replace the value of h.

In classification problems, an imbalance of the response variables reduces the 
performance of the classifier. Although the introduced nonparametric risk score has 
played a role in classifying whether or not an event occurs at a specific time, the 
situation is extremely similar to the situation of unbalanced data in the classification 
problem, when considering the general situation that there is usually a single event 
at a specific time, while the rest of the observations remain at risk, which means that 
the event is free at a specific time. Therefore, we need subject- and time-specific 
weight to balance the occurrence and nonoccurrence of the event. We considered 
two types of weights expressed as

proposed by Wang et al. (2016), and

proposed by Yang et al. (2021), where

and Ñi(t) = (1 − Δi)I(Ti ≤ t) presents the counting process for any t ∈ T = [0, �] . 
Notably, the first type of weight increases the occurrence of the event up to the size 
of the risk set at a specific time, and reduces the number of nonoccurrence events 
to one at the time. The second weight is an inverse probability-of-censoring weight 
that enables adjustment of the imbalance in the number of event occurrences by 
increasing it to the expected number of trials wherein the survival time is observed 
at a specific time.

For the choice of the tuning parameters including the cost variable �−1 , and scale 
factor � associated with the kernel, the grid search method can be used to find the opti-
mal tuning parameter estimates �̂−1

cv
 and �̂cv that minimizes the k-fold cross-validation 

errors defined as the empirical root mean squared error as mentioned in (10), after 
splitting the dataset into training and test datasets. However, because the grid search 
method needs the expensive cost in terms of the computational time, it is appropriate 

wi(tj) = I(�Ni(tj) = 1)

∑
i=1 Yi(tj) − 1
∑

i=1 Yi(tj)
+ I(�Ni(tj) = −1)

1∑
i=1 Yi(tj)

wi(tj) = I(�Ni(tj) = 1)
1

exp{−G(tj)}
+ I(�Ni(tj) = −1)

G(tj) = ∫
tj

0

∑n

i=1
dÑi(s)∑n

i=1
Yi(s)

,
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for the data sets with the low dimensional predictors or the high censoring rate. For the 
data sets with the high dimensional predictors and the low censoring rate, a value of 
the decreasing sequence less than one can be used as �̂ because � → 0 is assumed in 
Remark 1, where the results depending on these values did not yield dramatic change. 
For instance, we observed that �̂−1 = 1000 and �̂−1 = 100 leads to the identical support 
vectors in the simulation study.

3  Simulation

We conducted four sets of numerical simulations to examine the finite-sample per-
formance of the prediction and variable selection for our proposed method at dif-
ferent censoring rates, sample sizes, and the number of covariates. In the first 
scenario, we generated p-dimensional random predictors Xi = (xi1,… , xip)

T 
using a uniform distribution. Specifically, we independently generated the 
first five predictors xi1, xi2,… , xi5 ∼ Uniform(0, 5) , and the other predictors 
xi6, xi7,… , xip ∼ Uniform(0, 1) . We set the true proportional hazards regression coeffi-
cients as � = (1, 1, 1, 1, 1, 0, 0,⋯ , 0)T for the random predictors, that is, we set the true 
set of indices indicating the specific predictors associated with the outcome variable 
as M = {1, 2, 3, 4, 5} for the variable selection. After we generated the true survival 
probability Ui ∼ Uniform(0, 1) for each ith observation, we generated the true survival 
time of the event with probability, that is,

where �0 denotes the baseline hazard function, and �0 = 0.25 , and a = 1 were used.
The censoring time of the ith observation was independently generated from the 

exponential distribution, Ci ∼ Exponential(�i) , where �i =
cr

1−cr
�0∕exp{�

TXi} for cen-
soring rate, denoted by cr. We generated the observed survival time Ti = min(T∗

i
,Ci) 

and the observed censoring indicator Δi = I(T∗
i
≤ Ci) for each ith observation. 

Then, we obtained sample of n observations expressed as {(Xi, Ti,Δi) ∶ i = 1,… , n} 
as the dataset for the simulation. In the second scenario, we generated the impor-
tant predictors xi1, xi2,… , xi5 ∼ Uniform(0, 5) , and other unimportant predictors 
xi6, xi7,… , xip ∼ Uniform(0, 1) , respectively. We defined the logarithm of the hazard 
ratio as a polynomial function given by

and generated the true survival time, whereas the polynomial function g(Xi) was 
substituted for the linear function term �TXi in (9), where an identical value was 
used as the baseline hazard function. We used the correlated predictors in the third 
scenario. Specifically, the predictors were generated from Np(�,Σ) , where 
� = (3 ⋅ 1T

5
, 0T

p−5
)T and Σ = Σ5 ⊕ Σp−5 , with Σ5 = 0.5 ⋅ I5 + 0.5 ⋅ 151

T
5
 and 

Σp−5 = 0.5 ⋅ Ip−5 + 0.5 ⋅ 1p−51
T
p−5

 for which ⊕ denotes the direct sum, and 0k is a 

(9)T∗
i
=

1

�
1∕a

0

[
−log(Ui)

exp
{
�TXi

}
]1∕a

,

g(Xi) = xi1 ⋅ xi2 ⋅ xi3 + x2
i4
+ 5xi5
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k × 1 column vector of zeros. The corresponding survival times were generated from 
the model (9) in the setting with a = 2 and � = 0.1 . In the fourth scenario, we gener-
ated the first five predictors xi1, xi2,… , xi5 ∼ Uniform(0, 5) , and the other predictors 
xi6, xi7,… , xip ∼ Uniform(0, 1) , and used the following nonlinear function

as the logarithm of the hazard ratio.
Following a similar procedure, we generated censoring time, observed survival 

time, and censoring indicator variables. For each simulation scenario, we considered 
sample sizes of 50 and 100 (denoted by n), censoring rates of 20% , 40% , and 60% 
(denoted by cr), while we changed the number of predictors with various settings 
of 50, 200, and 1000 (denoted by p). Additionally, for each scenario, we simulated 
100 datasets, for which each dataset consisted of training data with a sample size 
of n and test data with a sample size of 500 (denoted by ntest) . Notably, the first five 
covariates were set as the important covariates associated with variable selection for 
all scenarios.

For each new observation, denoted by (Xtest
i

,T test
i

,Δtest
i

) in the test dataset, we 
predicted survival time of the event, T̂ test

i
 after computing the predicted risk score 

f̂ (Xtest
i

) and estimating the smoothed risk score f̂ (⋅) based on the training dataset for 
each iteration. For the prediction accuracy of the proposed method, we considered 
two performance measures: the empirical root mean squared error (RMSE) term

and the empirical concordance index term (CCI)

respectively. This implies that the proportion of pairs wherein the ranking of pre-
dicted values is accurately arranged among all comparable pairs of time-to-event 
data. Furthermore, we computed the empirical partial derivative of the smoothed 
risk score f̂ (X) with respect to all marginal covariates, and, thereby, obtained 
the estimated set of indices M̂ for the true important subset M , as mentioned 
in (5). For the accuracy associated with the proposed method’s variable selec-
tion, we considered three performance measures: the empirical true positive rate, 
defined as TPR = |M ∩ M̂|∕|M| , the empirical false positive rate, defined as 
FPR = |Mc ∩ M̂|∕|Mc| , and the number of elements for the smallest set of indices 
M̂ being able to include all the true important covariates (denoted by d̂ ), where Ac 

g(Xi) = xi1 ⋅ xi2 + 5cos(xi3) + x2
i4
+ 3xi5

(10)RMSE =

√√√√
ntest∑

i=1

Δtest
i

(T test
i

− T̂ (̂f test
i

))2∕

ntest∑

i=1

Δtest
i

CCI =

∑ntest

i=1
Δtest

i

�
∑

T test
j

>T test
i

I(�f (Xtest
j

) > �f (Xtest
i

))

�

∑ntest

i=1
Δtest

i

�
∑

T test
j

>T test
i

1

� ,
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denotes the complement set of A and |A| denotes the number of elements contained 
in a set A.

For our proposed methods, we used the SVHM with the weight based on the risk 
process and weight based on the censoring distribution’s inverse survival probabil-
ity, as described in Sect. 2.3, denoted by Models (1) and (2), respectively. For com-
parison, we employed support vector regression (SVR) method introduced in (Khan 
& Zubek, 2008) and support vector machine based on the ranking (SVMR) intro-
duced in Van Belle et al. (2011) for the time-to-event dataset, denoted by Models (3) 
and (4), respectively. Notably, the approach in Khan and Zubek (2008) directly pre-
dicted the survival time by applying the variant epsilon-insensitive hinge loss func-
tion depending on the censoring type, whereas Van Belle et al. (2011) predicted the 
survival time by voting in the nearest observed survival times, which were computed 
based on the risk score and its ranking as mentioned in Sect. 2.3.

We focused on using the Gaussian radial basis function (RBF) kernel, 
k(x, x�) = exp(−‖x − x

�‖2∕�) for all methods. As the gradient of the smoothed risk 
score is represented by the linear combination of the selected kernel’s partial deriva-
tive, we had to choose a kernel that can have a varied values of partial derivatives, 
and the Gaussian RBF kernel sufficiently satisfies this condition. For the choice of 
the scale parameter, we used � = 1∕p as the fixed value to control noise accumula-
tion due to the high dimensionality of the predictors in the L2 distance of the expo-
nent. To compute the inverse probability weight, we used the Kaplan–Meier esti-
mates for the survival function of the censoring distribution for each observation.

Tables 1, 2, 3 and 4 present the empirical average values of the total iterations for 
the prediction performance including the RMSE and CCI for sample size of 100 in 
all simulation scenarios, where the numbers in the parenthesis indicate the empiri-
cal standard deviation. Clearly, the SVHMs with the weight based on the risk pro-
cess (Model (1)) outperformed the other methods across all cases of p = 50 , 200, 
and 1,  000 in terms of RMSE for all simulation scenarios. The weight based on 
the inverse probability (Model (2)) showed similar or slightly inferior performance 
compared with Model (1) across the different dimension settings in the linear, poly-
nomial, and nonlinear scenarios with the independent predictors from Tables 1, 2 
and 4. Although the performances of the SVR (Model (3)) for RMSE were not better 
than Model (1) and (2) in Tables 1, 2 and 3 for the first three scenarios, these results 
were not extremely poor, as much as the results of Model (3) shown in Table 4 for 
the nonlinear scenario. Interestingly, we found that Model (3) showed good result 
when the censoring rate and dimension were set to be 60% and p = 1, 000 in Table 3 
for the correlated predictors scenario. The support vector machine based on the cen-
soring type (Model (4)) exhibited unsatisfactory results. We observed that Models 
(1) and (2) outperformed the other methods across all dimension cases and four dif-
ferent simulation scenarios in terms of CCI. We also see that Model (1) provided 
more stable results for the different censoring rates and dimension settings. Overall, 
for all methods, when the sample size increases, the CCI tends to improve, and this 
measure tends to be worse despite their slight difference when the censoring rate 
increases. The corresponding results for the sample size of 50 were summarized in 
the supplementary material.
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Tables 5, 6, 7 and 8 report the empirical average and the corresponding standard 
deviation values for the true positive rate, false positive rate, and number of ele-
ments for the smallest set of indices containing all the true important predictors for 
each dimension of the predictors in the four simulation scenarios. We found that the 
selection accuracy of Model (1) outperformed the others across all different settings 
in the four simulation scenarios, and that it showed the best performance especially 
in Tables 5 and 7 for the two linear scenarios including the independent and depend-
ent predictors. While model (2) using the inverse probability weight exhibited desir-
able results, for which it tended to be slightly lower than that of Model (1) in most 
cases (Tables 5, 6 and 8), it provided the inferior results compared with Model (3) 
in Table 7 when the predictors tended to be correlated and high dimensional set-
tings. Model (4) revealed better performance than Model (3) in Table 5, 6, and 8 
for the most situations. However, we observed the opposite results associated with 
the selection performance of Models (3) and (4) in Table 7. From four simulation 
studies, we confirmed that the proposed Models (1) and (2) can work better in both 
aspects of prediction and variable selection than the other methods when the time-
to-event dataset is generated from a more complex design. The selection results for 
the sample size of 50 were contained in the supplementary material.

Four panels contained in Fig. 1 depict the trajectories of the time varying intercept, 
�̂(t) in the SVHM for four different cases, denoted by A ( n = 50, p = 100, cr = 40% ), 

Table 1  Prediction measures in the first scenario ( n = 100)

Model (1) is SVHM, Model (2) is KM-inverse weight SVHM, Model (3) is SVR, and Model (4) is 
SVMR. The values in the table comprise average (standard deviation) (Units of RMSE: 1E−3)

p Censoring rate Model (1) Model (2) Model (3) Model (4)

RMSE CCI RMSE CCI RMSE CCI RMSE CCI

50 20% 2.51 0.874 2.77 0.826 2.92 0.375 336.49 0.359
(22.23) (0.01) (22.18) (0.024) (6.43) (0.047) (235.01) (0.074)

40% 2.55 0.867 2.6 0.824 2.12 0.382 406.61 0.352
(22.47) (0.014) (22.23) (0.028) (4.96) (0.047) (274.31) (0.083)

60% 2.57 0.851 2.73 0.821 2.39 0.38 456.36 0.343
(22.48) (0.021) (22.53) (0.032) (11.54) (0.046) (360.86) (0.088)

200 20% 0.88 0.867 0.88 0.828 2.81 0.328 145.08 0.396
(3.38) (0.013) (3.04) (0.023) (4.09) (0.043) (104.55) (0.059)

40% 0.75 0.857 0.75 0.821 3.8 0.327 191.44 0.411
(3.10) (0.017) (2.97) (0.032) (11.00) (0.040) (144.92) (0.064)

60% 0.55 0.843 0.83 0.821 2.72 0.319 229.04 0.387
(2.80) (0.023) (3.13) (0.037) (6.29) (0.042) (182.41) (0.064)

1000 20% 0.83 0.858 1.57 0.810 1.55 0.271 33.41 0.429
(0.00) (0.008) (0.00) (0.020) (0.00) (0.033) (0.03) (0.053)

40% 0.04 0.842 0.53 0.772 0.71 0.255 56.92 0.403
(0.00) (0.017) (0.00) (0.038) (0.00) (0.031) (0.04) (0.052)

60% 0.60 0.827 0.64 0.795 1.55 0.274 77.89 0.422
(0.00) (0.020) (0.00) (0.041) (0.00) (0.054) (0.04) (0.053)
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B ( n = 50, p = 100, cr = 60% ), C ( n = 50, p = 200, cr = 40% ), and D 
( n = 50, p = 200, cr = 60% ), where the horizontal axis denotes the event time and 
the vertical axis denotes the value of the time varying intercept. We confirmed that 
these intercepts did not decrease as time increased, which can be interpreted as an 
increasing tendency of the hazard rates for all cases. The four panels included in 
Fig. 2 present the scatter plots between the estimated risk score and observed sur-
vival time for identical simulation cases, where the horizontal axis denotes event 
time, and the vertical axis denotes the value of the risk score in each panel. We 
observed that the risk score tended to decrease when the survival time tended to be 
longer in all simulation settings.

4  Analysis of real data

To illustrate its usefulness, a real data application was performed using four differ-
ent prediction models. The data used for the analysis were human gene data col-
lected through an oligonucleotide array in the work (Beer et  al., 2002). We were 
biologically interested in predicting the time of occurrence of lung cancer and 
identifying the important genes that were mainly associated with the disease. The 

Table 2  Prediction measures in the second scenario ( n = 100)

Model (1) is SVHM, Model (2) is KM-inverse weight SVHM, Model (3) is SVR, and Model (4) is 
SVMR. The values in the table comprise average (standard deviation). (Units of RMSE: 1E−3)

p Censoring rate Model (1) Model (2) Model (3) Model (4)

RMSE CCI RMSE CCI RMSE CCI RMSE CCI

50 20% 9.63 0.874 9.65 0.906 20.91 0.419 343.93 0.370
(65.90) (0.013) (67.76) (0.012) (71.61) (0.04) (226.39) (0.066)

40% 9.72 0.863 9.55 0.894 18.42 0.419 419.65 0.353
(68.22) (0.018) (67.40) (0.018) (68.79) (0.04) (320.75) (0.089)

60% 9.77 0.844 9.69 0.875 15.25 0.420 440.49 0.352
(68.48) (0.025) (68.43) (0.027) (68.11) (0.042) (318.18) (0.08)

200 20% 0.98 0.850 1.08 0.828 9.46 0.385 133.25 0.386
(5.13) (0.015) (5.09) (0.026) (15.73) (0.037) (102.52) (0.065)

40% 0.88 0.841 1.05 0.826 7.85 0.383 193.01 0.400
(4.97) (0.02) (4.94) (0.028) (14.46) (0.036) (162.88) (0.055)

60% 0.83 0.828 1.48 0.825 5.64 0.382 238.81 0.403
(4.40) (0.03) (7.73) (0.036) (11.89) (0.037) (165.69) (0.072)

1000 20% 0.01 0.841 0.01 0.786 11.25 0.330 11.81 0.374
(0.00) (0.011) (0.00) (0.038) (0.02) (0.064) (0.01) (0.033)

40% 0.13 0.826 0.13 0.761 0.64 0.330 29.64 0.419
(0.00) (0.021) (0.00) (0.045) (0.00) (0.038) (0.03) (0.032)

60% 1.83 0.803 2.40 0.802 4.23 0.332 82.94 0.412
(0.01) (0.021) (0.01) (0.025) (0.01) (0.041) (0.07) (0.076)
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data comprised 86 subjects ( n = 86 ), the predictors were composed of 7129 genes 
( p = 7129 ), and the outcome was composed of the lung cancer diagnosis time and 
corresponding censoring indicator, for which 62 of the 86 subjects were observed 
with the survival time, whereas 24 subjects were observed with the censoring time; 
consequently, a censoring rate of 28% was calculated.

After the entire dataset was divided into five folds data sets, each of which com-
prised the training and test datasets, we attempted to fit the four different prediction 
models based on the margin maximization methods to the training datasets to esti-
mate the functional structure of the risk score. Thereafter, we predicted the risk score 
for each subject contained in the test datasets, computed the CCI values for each test 
dataset as a measure of the prediction performance, and compared the prediction 
performance of our proposed methods with those of the others. Finally, we selected 
the important genes through the gradient-based variable selection method, where the 
threshold number for the variable selection was set as [log(n)∕n] = [18.2] = 18 , the 
Gaussian RBF kernel was employed, and the bandwidth size was used as mentioned 
in the work (Wang, 2012). When dividing the data into five folds, the training data-
sets were generated with an almost identical censoring rate to that of the original 
dataset.

Table 3  Prediction measures in the third scenario ( n = 100)

Model (1) is SVHM, Model (2) is KM-inverse weight SVHM, Model (3) is SVR, and Model (4) is 
SVMR. The values in the table comprise average (standard deviation) (Units of RMSE: 1E−3)

p Censoring rate Model (1) Model (2) Model (3) Model (4)

RMSE CCI RMSE CCI RMSE CCI RMSE CCI

50 20% 6.77 0.860 10.15 0.809 14.33 0.242 321.47 0.323
(0.02) (0.011) (0.02) (0.025) (0.03) (0.029) (0.26) (0.047)

40% 1.95 0.837 3.94 0.789 7.45 0.251 361.09 0.304
(0.00) (0.026) (0.00) (0.030) (0.01) (0.054) (0.22) (0.063)

60% 7.60 0.826 8.19 0.787 5.69 0.251 231.78 0.318
(0.02) (0.031) (0.01) (0.043) (0.01) (0.052) (0.23) (0.061)

200 20% 8.19 0.766 9.88 0.724 11.11 0.255 273.84 0.388
(0.02) (0.062) (0.02) (0.045) (0.01) (0.022) (0.19) (0.046)

40% 10.96 0.701 19.57 0.707 13.39 0.252 199.00 0.388
(0.03) (0.060) (0.04) (0.060) (0.03) (0.021) (0.16) (0.050)

60% 8.05 0.670 7.19 0.695 11.53 0.262 186.53 0.374
(0.01) (0.051) (0.01) (0.059) (0.02) (0.039) (0.15) (0.042)

1000 20% 5.07 0.592 39.88 0.591 9.52 0.358 241.34 0.463
(0.01) (0.046) (0.07) (0.032) (0.01) (0.038) (0.16) (0.027)

40% 10.64 0.578 13.57 0.591 13.00 0.355 222.58 0.444
(0.01) (0.044) (0.02) (0.040) (0.01) (0.036) (0.19) (0.036)

60% 7.84 0.577 5.52 0.594 5.08 0.340 236.65 0.458
(0.01) (0.034) (0.01) (0.040) (0.00) (0.028) (0.20) (0.015)



526 Journal of the Korean Statistical Society (2024) 53:509–536

1 3

For each prediction model, we conducted variable selection with the gradient 
value estimate for each marginal predictor and refitted the prediction methods for the 
selected predictors.

Table  9 presents the average CCI values and RMSE performance for all the 
methods prior and posterior to the variable section. We observed that the three 
CCI values for Models (1), (2), and (3) slightly decreased after applying the vari-
able selection, while the CCI for Model (4) increased after applying the variable 
selection. In the contrast to the results of the CCI performance, we found that 
the prediction performance for Models (1) and (2) presented a meaningful result 
in that their corresponding RMSE values tended to be improved after conduct-
ing our proposed kernel-based variable selection approach. The prediction perfor-
mance of the rank-based SVM, Model (4) was also improved compared with the 
result before the variable selection while Model (3) was not improved even after 
applying the variable selection method.

Figure 3 contains four box plots, each of which shows the distribution of the 
RMSE value for each prediction method, with the weight based on the risk set. 
The weight based on the inverse probability, support vector regression,and sup-
port vector machine based on the ranking are denoted by Models (1), (2), (3), 
and (4), respectively. As the empirical average of the prediction performance, the 
RMSE values 5.305 and 4.884 were obtained for our proposed Models (1) and 

Table 4  Prediction measures in the fourth scenario ( n = 100)

Model (1) is SVHM, Model (2) is KM-inverse weight SVHM, Model (3) is SVR, and Model (4) is 
SVMR. The values in the table comprise average (standard deviation) (Units of RMSE: 1E−3)

p censoring rate Model (1) Model (2) Model (3) Model (4)

RMSE CCI RMSE CCI RMSE CCI RMSE CCI

50 20% 1.19 0.889 2.78 0.909 83.24 0.388 215.72 0.351
(0.00) (0.010) (0.01) (0.012) (0.11) (0.033) (0.20) (0.078)

40% 36.51 0.879 36.45 0.896 120.26 0.366 377.83 0.329
(0.16) (0.013) (0.15) (0.017) (0.16) (0.047) (0.22) (0.077)

60% 3.40 0.874 93.50 0.890 71.13 0.388 325.65 0.361
(0.01) (0.022) (0.40) (0.024) (0.11) (0.045) (0.24) (0.092)

200 20% 0.96 0.873 3.75 0.852 416.44 0.349 160.03 0.418
(0.00) (0.013) (0.01) (0.011) (1.05) (0.045) (0.12) (0.064)

40% 3.40 0.860 4.60 0.837 145.76 0.355 210.02 0.423
(0.01) (0.023) (0.01) (0.031) (0.19) (0.041) (0.11) (0.057)

60% 0.08 0.846 3.00 0.827 82.79 0.362 189.79 0.403
(0.00) (0.029) (0.01) (0.037) (0.16) (0.042) (0.15) (0.076)

1000 20% 8.06 0.837 8.02 0.817 97.49 0.284 19.83 0.407
(0.03) (0.010) (0.03) (0.016) (0.11) (0.032) (0.02) (0.052)

40% 0.67 0.844 30.26 0.788 60.67 0.295 156.42 0.404
(0.00) (0.019) (0.13) (0.037) (0.10) (0.028) (0.46) (0.063)

60% 18.22 0.837 24.97 0.792 148.36 0.298 66.86 0.400
(0.05) (0.026) (0.06) (0.037) (0.17) (0.034) (0.04) (0.053)



527

1 3

Journal of the Korean Statistical Society (2024) 53:509–536 

Ta
bl

e 
5 

 V
ar

ia
bl

e 
se

le
ct

io
n 

m
ea

su
re

s i
n 

th
e 

fir
st 

sc
en

ar
io

 ( n
=
1
0
0
)

M
od

el
 (1

) i
s S

V
H

M
, M

od
el

 (2
) i

s K
M

-in
ve

rs
e 

w
ei

gh
t S

V
H

M
, M

od
el

 (3
) i

s S
V

R
, a

nd
 M

od
el

 (4
) i

s S
V

M
R

. T
he

 v
al

ue
s i

n 
th

e 
ta

bl
e 

co
ns

ist
 o

f a
ve

ra
ge

 (s
ta

nd
ar

d 
de

vi
at

io
n)

p
cr

M
od

el
 (1

)
M

od
el

 (2
)

M
od

el
 (3

)
M

od
el

 (4
)

TP
R

FP
R

d̂
TP

R
FP

R
d̂

TP
R

FP
R

d̂
TP

R
FP

R
d̂

50
20

%
1.

00
0

0.
00

0
5.

00
0

0.
59

2
0.

04
5

10
.7

68
0.

13
1

0.
09

7
27

.3
96

0.
70

8
0.

03
2

13
.2

71
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.2
69

)
(0

.0
30

)
(5

.4
74

)
(0

.1
50

)
(0

.0
17

)
(8

.1
65

)
(0

.1
71

)
(0

.0
19

)
(6

.4
42

)
40

%
1.

00
0

0.
00

0
5.

00
0

0.
60

8
0.

04
4

11
.5

58
0.

12
7

0.
09

7
26

.7
08

0.
69

4
0.

03
4

12
.9

38
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.2
66

)
(0

.0
30

)
(6

.5
75

)
(0

.1
67

)
(0

.0
19

)
(8

.5
67

)
(0

.1
81

)
(0

.0
20

)
(6

.1
14

)
60

%
0.

99
6

0.
00

0
5.

03
1

0.
64

8
0.

03
9

11
.8

44
0.

10
8

0.
09

9
26

.9
90

0.
69

8
0.

03
4

13
.8

12
(0

.0
29

)
(0

.0
03

)
(0

.2
27

)
(0

.2
69

)
(0

.0
30

)
(7

.4
05

)
(0

.1
30

)
(0

.0
14

)
(7

.5
12

)
(0

.1
88

)
(0

.0
21

)
(7

.0
43

)
20

0
20

%
1.

00
0

0.
00

0
5.

00
0

0.
78

1
0.

00
6

12
.1

86
0.

01
0

0.
02

5
11

8.
69

8
0.

60
0

0.
01

0
77

.0
62

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.2

56
)

(0
.0

07
)

(1
3.

41
7)

(0
.0

45
)

(0
.0

01
)

(3
2.

05
4)

(0
.1

99
)

(0
.0

05
)

(4
8.

69
8)

40
%

1.
00

0
0.

00
0

5.
00

0
0.

74
6

0.
00

7
20

.6
02

0.
01

0
0.

02
5

12
1.

44
8

0.
59

6
0.

01
0

84
.6

35
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.2
78

)
(0

.0
07

)
(2

8.
58

4)
(0

.0
45

)
(0

.0
01

)
(3

4.
15

9)
(0

.1
95

)
(0

.0
05

)
(5

0.
35

6)
60

%
0.

99
1

0.
00

0
7.

75
6

0.
75

9
0.

00
6

25
.6

63
0.

01
2

0.
02

5
10

8.
55

2
0.

57
7

0.
01

1
87

.2
19

(0
.0

41
)

(0
.0

01
)

(1
3.

78
3)

(0
.2

56
)

(0
.0

07
)

(3
7.

03
4)

(0
.0

49
)

(0
.0

01
)

(3
3.

07
2)

(0
.2

21
)

(0
.0

06
)

(5
1.

57
9)

10
00

20
%

1.
00

0
0.

00
0

5.
00

0
0.

94
0

0.
00

0
6.

80
0

0.
68

0
0.

00
2

21
0.

90
0

0.
60

0
0.

00
2

41
9.

00
0

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.0

97
)

(0
.0

00
)

(3
.7

36
)

(0
.1

40
)

(0
.0

01
)

(2
06

.8
24

)
(0

.2
98

)
(0

.0
01

)
(3

38
.9

88
)

40
%

1.
00

0
0.

00
0

5.
00

0
0.

86
0

0.
00

1
82

.6
00

0.
68

0
0.

00
2

14
1.

40
0

0.
42

0
0.

00
3

54
3.

70
0

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.1

90
)

(0
.0

01
)

(1
36

.5
79

)
(0

.1
93

)
(0

.0
01

)
(2

23
.9

13
)

(0
.3

05
)

(0
.0

02
)

(2
92

.2
12

)
60

%
0.

94
0

0.
00

0
5.

50
0

0.
94

0
0.

00
0

23
.5

00
0.

76
0

0.
00

1
15

0.
80

0
0.

56
0

0.
00

2
41

4.
00

0
(0

.0
97

)
(0

.0
00

)
(0

.9
72

)
(0

.0
97

)
(0

.0
00

)
(5

3.
73

6)
(0

.2
27

)
(0

.0
01

)
(2

25
.1

40
)

(0
.2

46
)

(0
.0

01
)

(3
13

.8
78

)



528 Journal of the Korean Statistical Society (2024) 53:509–536

1 3

Ta
bl

e 
6 

 V
ar

ia
bl

e 
se

le
ct

io
n 

m
ea

su
re

s i
n 

th
e 

se
co

nd
 sc

en
ar

io
 ( n

=
1
0
0
)

M
od

el
 (1

) i
s S

V
H

M
, M

od
el

 (2
) i

s K
M

-in
ve

rs
e 

w
ei

gh
t S

V
H

M
, M

od
el

 (3
) i

s S
V

R
, a

nd
 M

od
el

 (4
) i

s S
V

M
R

. T
he

 v
al

ue
s i

n 
th

e 
ta

bl
e 

co
ns

ist
 o

f a
ve

ra
ge

 (s
ta

nd
ar

d 
de

vi
at

io
n)

p
cr

M
od

el
 (1

)
M

od
el

 (2
)

M
od

el
 (3

)
M

od
el

 (4
)

TP
R

FP
R

d̂
TP

R
FP

R
d̂

TP
R

FP
R

d̂
TP

R
FP

R
d̂

50
20

%
1.

00
0

0.
00

0
5.

00
0

0.
98

7
0.

00
1

5.
07

4
0.

06
5

0.
10

4
35

.2
29

0.
68

8
0.

03
5

13
.7

92
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
49

)
(0

.0
05

)
(0

.3
00

)
(0

.1
07

)
(0

.0
12

)
(6

.0
81

)
(0

.1
81

)
(0

.0
20

)
(7

.1
41

)
40

%
0.

99
6

0.
00

0
5.

02
2

0.
93

3
0.

00
7

5.
58

3
0.

07
1

0.
10

3
34

.5
52

0.
73

3
0.

03
0

12
.4

58
(0

.0
29

)
(0

.0
03

)
(0

.1
46

)
(0

.1
29

)
(0

.0
14

)
(1

.4
27

)
(0

.1
16

)
(0

.0
13

)
(6

.1
32

)
(0

.1
80

)
(0

.0
20

)
(6

.5
68

)
60

%
0.

98
1

0.
00

2
5.

18
9

0.
85

7
0.

01
6

6.
74

7
0.

06
0

0.
10

4
34

.3
33

0.
69

8
0.

03
4

13
.5

62
(0

.0
59

)
(0

.0
07

)
(0

.6
89

)
(0

.1
79

)
(0

.0
20

)
(2

.7
79

)
(0

.1
09

)
(0

.0
12

)
(6

.2
10

)
(0

.1
86

)
(0

.0
21

)
(7

.2
94

)
20

0
20

%
1.

00
0

0.
00

0
5.

00
0

0.
78

4
0.

00
6

14
.4

89
0.

00
4

0.
02

6
14

2.
96

9
0.

61
2

0.
01

0
83

.8
75

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.2

15
)

(0
.0

06
)

(1
6.

99
3)

(0
.0

29
)

(0
.0

01
)

(2
3.

26
5)

(0
.1

92
)

(0
.0

05
)

(5
1.

99
2)

40
%

0.
99

5
0.

00
0

6.
67

0
0.

77
3

0.
00

6
17

.6
11

0.
00

2
0.

02
6

14
2.

31
2

0.
62

9
0.

01
0

77
.3

54
(0

.0
30

)
(0

.0
01

)
(1

1.
02

3)
(0

.2
42

)
(0

.0
06

)
(2

4.
11

2)
(0

.0
20

)
(0

.0
01

)
(2

4.
67

1)
(0

.2
17

)
(0

.0
06

)
(5

0.
79

5)
60

%
0.

96
6

0.
00

1
9.

35
5

0.
77

9
0.

00
6

20
.2

77
0.

00
2

0.
02

6
14

2.
27

1
0.

62
3

0.
01

0
74

.8
33

(0
.0

81
)

(0
.0

02
)

(1
6.

86
7)

(0
.2

46
)

(0
.0

06
)

(3
1.

61
9)

(0
.0

20
)

(0
.0

01
)

(2
4.

15
8)

(0
.2

07
)

(0
.0

05
)

(5
4.

12
7)

10
00

20
%

1.
00

0
0.

00
0

5.
00

0
0.

90
0

0.
00

1
15

5.
12

5
0.

45
0

0.
00

3
46

4.
12

5
0.

50
0

0.
00

3
42

2.
37

5
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.1
51

)
(0

.0
01

)
(2

91
.0

31
)

(0
.1

41
)

(0
.0

01
)

(3
18

.3
74

)
(0

.2
39

)
(0

.0
01

)
(3

19
.7

76
)

40
%

0.
95

0
0.

00
0

65
.3

75
0.

85
0

0.
00

1
25

1.
62

5
0.

47
5

0.
00

3
46

9.
50

0
0.

55
0

0.
00

2
60

3.
50

0
(0

.0
93

)
(0

.0
00

)
(1

69
.5

57
)

(0
.1

77
)

(0
.0

01
)

(3
85

.6
06

)
(0

.1
83

)
(0

.0
01

)
(2

36
.3

53
)

(0
.2

07
)

(0
.0

01
)

(1
62

.2
08

)
60

%
0.

94
0

0.
00

0
70

.7
00

0.
90

0
0.

00
1

41
.2

00
0.

50
0

0.
00

3
49

3.
10

0
0.

50
0

0.
00

3
39

1.
60

0
(0

.0
97

)
(0

.0
00

)
(1

38
.2

09
)

(0
.1

41
)

(0
.0

01
)

(6
8.

26
4)

(0
.1

70
)

(0
.0

01
)

(2
81

.0
70

)
(0

.2
16

)
(0

.0
01

)
(3

26
.0

75
)



529

1 3

Journal of the Korean Statistical Society (2024) 53:509–536 

Ta
bl

e 
7 

 V
ar

ia
bl

e 
se

le
ct

io
n 

m
ea

su
re

s i
n 

th
e 

th
ird

 sc
en

ar
io

 ( n
=
1
0
0
)

M
od

el
 (1

) i
s S

V
H

M
, M

od
el

 (2
) i

s K
M

-in
ve

rs
e 

w
ei

gh
t S

V
H

M
, M

od
el

 (3
) i

s S
V

R
, a

nd
 M

od
el

 (4
) i

s S
V

M
R

. T
he

 v
al

ue
s i

n 
th

e 
ta

bl
e 

co
ns

ist
 o

f a
ve

ra
ge

 (s
ta

nd
ar

d 
de

vi
at

io
n)

p
cr

M
od

el
 (1

)
M

od
el

 (2
)

M
od

el
 (3

)
M

od
el

 (4
)

TP
R

FP
R

d̂
TP

R
FP

R
d̂

TP
R

FP
R

d̂
TP

R
FP

R
d̂

50
20

%
1.

00
0

0.
00

0
5.

00
0

0.
71

6
0.

03
2

13
.3

68
0.

70
5

0.
03

3
13

.7
89

0.
11

6
0.

09
8

35
.8

42
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.1
54

)
(0

.0
17

)
(1

0.
93

0)
(0

.1
68

)
(0

.0
19

)
(6

.9
09

)
(0

.1
21

)
(0

.0
13

)
(8

.5
85

)
40

%
1.

00
0

0.
00

0
5.

00
0

0.
66

0
0.

03
8

13
.3

50
0.

65
0

0.
03

9
14

.0
50

0.
16

0
0.

09
3

38
.0

00
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.2
06

)
(0

.0
23

)
(9

.8
26

)
(0

.1
82

)
(0

.0
20

)
(6

.5
33

)
(0

.1
67

)
(0

.0
19

)
(1

1.
10

7)
60

%
1.

00
0

0.
00

0
5.

00
0

0.
77

0
0.

02
6

11
.9

50
0.

70
0

0.
03

3
11

.9
00

0.
15

0
0.

09
4

34
.8

50
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.1
87

)
(0

.0
21

)
(7

.3
45

)
(0

.1
78

)
(0

.0
20

)
(5

.7
67

)
(0

.1
43

)
(0

.0
16

)
(9

.0
63

)
20

0
20

%
1.

00
0

0.
00

0
5.

00
0

0.
75

0
0.

00
6

24
.5

62
0.

70
0

0.
00

8
15

.4
38

0.
07

5
0.

02
4

12
5.

31
2

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.2

25
)

(0
.0

06
)

(2
6.

06
9)

(0
.2

31
)

(0
.0

06
)

(1
6.

21
9)

(0
.1

00
)

(0
.0

03
)

(4
1.

51
4)

40
%

1.
00

0
0.

00
0

5.
00

0
0.

75
0

0.
00

6
24

.2
00

0.
89

0
0.

00
3

7.
85

0
0.

06
0

0.
02

4
13

3.
95

0
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.1
93

)
(0

.0
05

)
(4

0.
06

9)
(0

.1
52

)
(0

.0
04

)
(5

.6
13

)
(0

.1
14

)
(0

.0
03

)
(3

3.
40

4)
60

%
1.

00
0

0.
00

0
5.

00
0

0.
74

7
0.

00
6

19
.0

53
0.

84
2

0.
00

4
13

.5
79

0.
10

5
0.

02
3

12
6.

05
3

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.2

48
)

(0
.0

06
)

(2
0.

11
8)

(0
.1

07
)

(0
.0

03
)

(2
0.

86
5)

(0
.1

93
)

(0
.0

05
)

(4
7.

51
2)

10
00

20
%

1.
00

0
0.

00
0

5.
00

0
0.

58
0

0.
00

2
10

6.
60

0
0.

92
0

0.
00

0
7.

10
0

0.
08

0
0.

00
5

63
6.

60
0

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.3

19
)

(0
.0

02
)

(2
22

.8
74

)
(0

.1
40

)
(0

.0
01

)
(3

.9
57

)
(0

.1
40

)
(0

.0
01

)
(2

92
.5

46
)

40
%

1.
00

0
0.

00
0

5.
00

0
0.

70
0

0.
00

2
62

.2
00

0.
94

0
0.

00
0

5.
90

0
0.

02
0

0.
00

5
71

3.
70

0
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.2
54

)
(0

.0
01

)
(8

2.
19

2)
(0

.0
97

)
(0

.0
00

)
(1

.9
12

)
(0

.0
63

)
(0

.0
00

)
(2

35
.1

35
)

60
%

1.
00

0
0.

00
0

5.
00

0
0.

68
0

0.
00

2
29

.4
00

0.
90

0
0.

00
1

6.
40

0
0.

04
0

0.
00

5
60

8.
60

0
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.2
86

)
(0

.0
01

)
(3

9.
09

3)
(0

.1
41

)
(0

.0
01

)
(2

.1
19

)
(0

.1
26

)
(0

.0
01

)
(2

25
.8

11
)



530 Journal of the Korean Statistical Society (2024) 53:509–536

1 3

Ta
bl

e 
8 

 V
ar

ia
bl

e 
se

le
ct

io
n 

m
ea

su
re

s i
n 

th
e 

fo
ur

th
 sc

en
ar

io
 ( n

=
1
0
0
)

M
od

el
 (1

) i
s S

V
H

M
, M

od
el

 (2
) i

s K
M

-in
ve

rs
e 

w
ei

gh
t S

V
H

M
, M

od
el

 (3
) i

s S
V

R
, a

nd
 M

od
el

 (4
) i

s S
V

M
R

. T
he

 v
al

ue
s i

n 
th

e 
ta

bl
e 

co
ns

ist
 o

f a
ve

ra
ge

 (s
ta

nd
ar

d 
de

vi
at

io
n)

p
cr

M
od

el
 (1

)
M

od
el

 (2
)

M
od

el
 (3

)
M

od
el

 (4
)

TP
R

FP
R

d̂
TP

R
FP

R
d̂

TP
R

FP
R

d̂
TP

R
FP

R
d̂

50
20

%
1.

00
0

0.
00

0
5.

00
0

0.
89

0
0.

01
2

5.
85

0
0.

06
0

0.
10

4
35

.2
00

0.
72

0
0.

03
1

11
.9

50
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.1
37

)
(0

.0
15

)
(1

.2
26

)
(0

.1
31

)
(0

.0
15

)
(5

.4
15

)
(0

.1
36

)
(0

.0
15

)
(5

.7
90

)
40

%
0.

97
9

0.
00

2
5.

26
3

0.
81

1
0.

02
1

6.
89

5
0.

08
4

0.
10

2
30

.8
95

0.
68

4
0.

03
5

14
.3

68
(0

.0
63

)
(0

.0
07

)
(0

.9
33

)
(0

.1
56

)
(0

.0
17

)
(1

.9
97

)
(0

.1
01

)
(0

.0
11

)
(7

.8
38

)
(0

.1
68

)
(0

.0
19

)
(6

.5
93

)
60

%
0.

97
9

0.
00

2
5.

36
8

0.
71

6
0.

03
2

8.
94

7
0.

09
5

0.
10

1
33

.1
58

0.
74

7
0.

02
8

12
.8

42
(0

.0
63

)
(0

.0
07

)
(1

.3
83

)
(0

.2
24

)
(0

.0
25

)
(4

.9
16

)
(0

.1
22

)
(0

.0
14

)
(6

.2
12

)
(0

.1
47

)
(0

.0
16

)
(7

.3
13

)
20

0
20

%
0.

96
5

0.
00

1
7.

29
4

0.
72

9
0.

00
7

17
.2

94
0.

01
2

0.
02

5
14

2.
47

1
0.

60
0

0.
01

0
75

.9
41

(0
.0

79
)

(0
.0

02
)

(8
.9

50
)

(0
.1

21
)

(0
.0

03
)

(1
5.

81
4)

(0
.0

49
)

(0
.0

01
)

(2
4.

60
0)

(0
.2

12
)

(0
.0

05
)

(5
8.

06
2)

40
%

0.
97

9
0.

00
1

7.
84

2
0.

65
3

0.
00

9
34

.7
37

0.
01

1
0.

02
5

14
1.

78
9

0.
61

1
0.

01
0

90
.4

21
(0

.0
63

)
(0

.0
02

)
(8

.7
45

)
(0

.1
98

)
(0

.0
05

)
(3

9.
54

6)
(0

.0
46

)
(0

.0
01

)
(2

1.
86

5)
(0

.1
56

)
(0

.0
04

)
(6

0.
37

9)
60

%
0.

89
5

0.
00

3
29

.3
68

0.
63

2
0.

00
9

54
.7

37
0.

01
1

0.
02

5
13

6.
78

9
0.

64
2

0.
00

9
66

.0
53

(0
.1

39
)

(0
.0

04
)

(4
0.

24
7)

(0
.2

33
)

(0
.0

06
)

(4
5.

42
3)

(0
.0

46
)

(0
.0

01
)

(2
9.

42
1)

(0
.2

17
)

(0
.0

06
)

(5
3.

64
2)

10
00

20
%

0.
97

1
0.

00
0

5.
42

9
0.

95
7

0.
00

0
30

.4
29

0.
52

9
0.

00
2

30
8.

07
1

0.
54

3
0.

00
2

56
0.

28
6

(0
.0

73
)

(0
.0

00
)

(1
.1

58
)

(0
.0

85
)

(0
.0

00
)

(8
3.

43
5)

(0
.1

27
)

(0
.0

01
)

(2
75

.8
65

)
(0

.2
87

)
(0

.0
01

)
(3

33
.6

82
)

40
%

0.
91

6
0.

00
0

38
.6

32
0.

83
2

0.
00

1
23

3.
05

3
0.

49
5

0.
00

3
52

7.
21

1
0.

58
9

0.
00

2
27

7.
21

1
(0

.1
54

)
(0

.0
01

)
(7

9.
09

6)
(0

.1
53

)
(0

.0
01

)
(2

74
.3

86
)

(0
.1

22
)

(0
.0

01
)

(3
05

.1
33

)
(0

.1
56

)
(0

.0
01

)
(2

81
.0

78
)

60
%

0.
95

6
0.

00
0

51
.7

78
0.

80
0

0.
00

1
26

7.
55

6
0.

50
0

0.
00

3
42

4.
94

4
0.

51
1

0.
00

2
46

4.
27

8
(0

.0
86

)
(0

.0
00

)
(1

90
.2

84
)

(0
.1

37
)

(0
.0

01
)

(2
84

.0
47

)
(0

.1
24

)
(0

.0
01

)
(1

68
.9

46
)

(0
.2

30
)

(0
.0

01
)

(3
10

.8
86

)



531

1 3

Journal of the Korean Statistical Society (2024) 53:509–536 

(2), respectively, which indicates better performance compared with the others in 
terms of the prediction. Additionally, we observed that the spread of the SVHM 

Fig. 1  The blue plus points (+) denotes the survival time, �̂�(t) , and the black dashed line is the line that 
connects the blue points. The results of SVHM were plotted, where A is n = 50, p = 100 , censoring rate 
= 0.4, B is n = 50, p = 100 , censoring rate = 0.6, C is n = 50, p = 200 , censoring rate = 0.4, and D is 
n = 50, p = 200 , censoring rate = 0.6

Fig. 2  Scatter plots of rank of observed time and risk score. The results of SVHM were plotted, 
where A is n = 50, p = 100 , censoring rate = 0.4, B is n = 50, p = 100 , censoring rate = 0.6, C is 
n = 50, p = 200 , censoring rate = 0.4, and D is n = 50, p = 200 , censoring rate = 0.6
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with the inverse probability based on the KM estimators in Model (2) tends to be 
smaller than that of the SVHM with the weight based on the risk set in Model (1).

Two panels of Fig. 4 depict the time-varying intercept �̂(t) and time-independent 
risk score f̂ (⋅) estimated for the lung cancer data set. With the increase in the sur-
vival time, the intercept tended to increase, which reveals an appropriately estimated 
appearance because the risk needs to be increased over the time. Although the time-
independent risk score showed a slightly scattered appearance, we observed a func-
tional tendency to decrease to some degree.

Table 10 shows the results of the variable selection through the gradient informa-
tion for each method. We observed that some genetic predictors were commonly 
selected by the prediction models employed, and there were also a few differences 
in the selected genetic predictors between the prediction models. The indices of the 

Fig. 3  Box plots for the results for RMSE of each model. Model (1) is SVHM, Model (2) is KM-inverse 
weight SVHM, Model (3) is SVR, and Model (4) is SVMR. The results before the variable selection are 
displayed on the left and the results after that are displayed on the right

Table 9  Prediction measures in 
the real data analysis

Model (1) is SVHM, Model (2) is KM-inverse weight SVHM, 
Model (3) is SVR, and Model (4) is SVMR. The values in the table 
consist of average (standard deviation)

Model Concordance Index RMSE

Before After Before After

Model (1) 0.693

(0.084)

0.652

(0.087)

6.704

(5.271)

5.305

(5.011)

Model (2) 0.723

(0.109)

0.671

(0.198)

9.992

(4.775)

4.884

(3.634)

Model (3) 0.331

(0.078)

0.326

(0.117)

6.886

(4.548)

7.325

(4.006)

Model (4) 0.260

(0.096)

0.513

(0.181)

11.996

(6.087)

10.686

(4.969)
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genetic predictors selected by three or more prediction models among the genes 
selected through the proposed SVHM contained (146, 148, 564, 1107, 2429, 2778, 
3001, 5474, 5909, and 6061), whereas the indices of the genetic predictors selected 
only by SVHM contained (3255, and 4548). To ascertain whether the selected 
genetic predictors can be a biologically meaningful result, we looked for a study 
with the association between the selected genes and lung cancer. Peng et al. (2022) 
found that the non-small cell lung cancer could be worse through the GAPDH (gene 
index 146). Carleo et al. (2020) found an association between the gene IGKC (gene 
index 3001) and the lung carcinogenesis in idiopathic pulmonary fibrosis patients. 
Ma et  al. (2017) investigated the expression and epigenetic regulation of CSTB 
(gene index 4548) in lung cancer, where this gene has been included only in our 
proposed method. Although it is not directly related with the lung cancer but may 
not be irrelevant to the lung cancer, there was a study Gustafsson et al. (2008) that 
showed an association the gene IGHG (gene index 3255) and asthma severity, where 
it has been detected only by our method. Through these cases, we confirmed that our 
proposed method could be biologically meaningful.

Fig. 4  (Left) Scatter plot of estimated intercept and survival time. The black dashed line is the line that 
connects the blue points. (Right) Scatter plot of rank of observed time and risk score

Table 10  Results of variable selection for each model

Model (1) is SVHM, Model (2) is KM-inverse weight SVHM, Model (3) is SVR, and Model (4) is 
SVMR

Model Variable index

Model (1) 144 146 148 564 1107 1188 1430 2429 2433 2778 3001 3255 3481 4548 5474 5491 5909 
6061 6678

Model (2) 133 146 148 564 892 1037 1107 2429 2778 2992 4551 5463 5474 5491 5521 5622 5909 
6061 6150

Model (3) 127 133 142 148 564 1107 1188 1221 2429 2433 2753 3001 3059 5474 5475 5782 5909 
6061 6678

Model (4) 131 144 146 148 564 686 1226 2326 2429 2753 2778 2873 2999 3001 3481 3596 5474 5903 
5909
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5  Discussion

In this study, we developed a method to improve the prediction performance of the 
survival time and to select the important predictors in the time-to-event dataset. Spe-
cifically, we considered the counting process for each subject in the time-to-event 
data as a time-varying dichotomized outcome and, thereafter, adopted the SVHM 
and gradient-based variable selection methods to achieve two purposes namely, pre-
diction and variable selection. Through simulation studies, we found that not only 
the existing margin-based methods, such as SVR and SVMR, but also the SVHM 
with the two different weights could present desirable prediction performance in 
terms of MSE, whereas the SVHM with the weights outperformed the others in 
terms of CCI. Moreover, we observed that the finite performance of the prediction 
measure for the SVHM approach with weights tended to be better for the compli-
cated scenario in the simulation study. We believe that the proposed framework can 
be practically used to solve the problem of predicting the time of occurrence of an 
event and choosing variables in time-to-event data.

For the real data application, we used the gene expression values of the microar-
ray data of the patients with lung cancer as high-dimensional predictors and survival 
time to death as the outcome. We demonstrated that both our SVHM approaches 
with two weights provided better prediction performance, and that such a prediction 
performance did not decrease significantly and was maintained even after using the 
gradient-based variable selection method. Using the results obtained by applying the 
gradient-based variable selection method to each prediction model, it was possible 
to identify genes that could be found in common and genes that can be uniquely dis-
covered using each method. We confirmed that the genes identified by our proposed 
method were biologically meaningful and demonstrated that the proposed method is 
scientifically valid.

We highlighted that the amount of computational time and time-independent 
covariates are limitations of our proposed approach. Moreover, we could not use 
time-dependent covariate because we were considering time-dependent risk scores 
and covariate-dependent risk scores for the time-independent covariate. Addition-
ally, we must optimize the regularized empirical risk at each survival time, which 
requires heavy computations. We believe that developing a scalable SVHM method 
is necessary and will leave this work for future research.
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