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Abstract
Instrumental variable methods allow for inference about the treatment effect by con-
trolling for unmeasured confounding in randomized experiments with noncompli-
ance. However, many studies do not consider the observed compliance behavior in 
the testing procedure, leading to loss of power. In this paper, we propose a novel 
nonparametric likelihood approach, referred to as the binomial likelihood method, 
that incorporates information on compliance behavior while overcoming several 
limitations of previous techniques. Our proposed method produces proper estimates 
of the counterfactual distribution functions by maximizing the binomial likelihood 
over the space of distribution functions. Using this we propose two versions of a 
binomial likelihood ratio test for the null hypothesis of no treatment effect, and study 
their finite sample and asymptotic properties. We also develop an efficient algorithm 
for computing our estimates, and apply the method to study the effect of Medicaid 
coverage on mental health using the Oregon Health Insurance Experiment.
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1 Introduction

The instrumental variables (IV) method is a popular technique for estimating the 
casual effect of a treatment in the presence of unmeasured confounding (Angrist 
et  al., 1996; Baiocchi et  al., 2014; Tan, 2006). This arises in  situations where, 
even through direct randomization is impossible, an encouragement to take the 
treatment can be randomized (Holland, 1988), or there is a “natural experiment” 
such that some people are encouraged to receive the treatment compared to others 
in a way that is effectively random (Angrist et  al., 1996). Informally, an instru-
ment is a variable that affects the treatment but is independent of unmeasured 
confounders and only affects the outcome through affecting the treatment (see 
Sect. 2.1 for a more precise definition). Under a monotonicity assumption that the 
encouraging level of the instrument never causes someone not to take the treat-
ment, the treatment effect can be identified for the compliers, those subjects who 
would take the treatment if they were encouraged to take the treatment but would 
not take the treatment if they were not encouraged [see Angrist et  al. (1996), 
Abadie (2003), Baiocchi et al. (2014), Brookhart and Schneeweiss (2007), Cheng 
et  al. (2009a, 2009b), Hernan and Robins (2006), Kang et  al. (2018), Johnson 
et  al. (2019), Ogburn et  al. (2015), Tan (2006) and the references therein for 
methods of inference using instrumental variables].

In causal inference, to evaluate the treatment effect on the outcome, Fisher’s 
sharp hypothesis of no effect is often considered, which, in the potential outcome 
framework (Neyman, 1923; Rubin, 1974), asserts that the two potential outcomes 
Yi(1) and Yi(0) , which are the outcomes individual i ∈ {1, 2,… , n} would experi-
ence with or without treatment, respectively, are the same for every individual 
i. Under the IV assumptions, where the treatment effect can be identified for the 
compliers, the hypothesis of no effect for compliers can be tested by compar-
ing the distributions of Yi(1) and Yi(0) for compliers. Unfortunately, it is difficult 
to make inference about these distributions since researchers do not know who 
are the compliers from data. Abadie (2002) proposed an approach that indi-
rectly compares the two potential outcome distributions, by using the Kolmog-
orov–Smirnov test statistic. However, this approach ignores the treatment vari-
able during the testing procedure. Thus, it does not consider the compliance class 
information of the individuals, which can lead to loss of power, as discussed in 
Rubin (1998).

In this paper, we propose a novel nonparametric likelihood-based approach 
for comparing the two counterfactual distribution functions, with or without 
treatment for compliers, that uses the compliance class information and allows 
for estimation and hypothesis testing in a common holistic framework. This 
requires a methodological innovation because the usual nonparametric likelihood 
approach using the empirical likelihood (Owen, 2001) does not work for the IV 
model because there are infinitely many solutions that maximize the likelihood 
(Geman & Hwang, 1982). Our proposed binomial likelihood (BL) approach cre-
ates a piece of likelihood at each knot (or evaluating point), by using binomially 
distributed outcomes: outcomes smaller than or equal to the knot, and outcomes 
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larger than the knot. Then, it multiplies together the pieces of these likelihoods 
across all knots creating a composite likelihood. This is a “pseudo” likelihood 
rather than the true likelihood because the binomial random variables are actually 
dependent, but are treated as independent in the composite likelihood. Due to its 
binomial nature in defining likelihood functions, we specifically call this compos-
ite likelihood, the binomial likelihood (BL). Composite likelihood has been found 
useful in a range of areas including problems in geostatistics, spatial extremes, 
space-time models, clustered data, longitudinal data, time series and statistical 
genetics; see Lindsay (1988), Heagerty and Lele (1998), Larribe and Fearnhead 
(2011), and Varin et al. (2011).

The BL approach can be used for statistical inference similar to the usual like-
lihood method. For instance, for estimating the distribution functions of the com-
pliers, the maximum binomial likelihood (MBL) estimate can be obtained by max-
imizing the BL over the space of distribution functions. Therefore, by definition, 
the MBL estimates satisfy the necessary conditions for a proper distribution func-
tion (increasing and non-negative). This make the BL estimates easily interpret-
able, and is a major improvement over the naive plug-in estimates, which can be 
non-monotonic and negative. As a consequence, the BL method can be effectively 
used for making further inferences, such as integrating utility functions or estimat-
ing moments of the probability function. Furthermore, similar to classical likelihood 
ratio tests, the binomial likelihood ratio test (BLRT) for the null hypothesis of no 
treatment effect can be constructed by taking the ratio of two BL values that are 
maximized over the null and the alternative respectively. For computing the MBL 
estimate and conducting hypothesis testing using the BLRT we develop a compu-
tationally efficient iterative algorithm based on the expectation-maximization (EM) 
and pool-adjacent-violators (PAV) algorithms. Thus, the BL approach provides the 
practitioners with a comprehensive toolbox for causal inference in non-parametric 
IV problems.

The BL method has several attractive limiting and finite-sample properties. To 
begin with, we show that the MBL estimate for the distribution function of the com-
pliers has the same first-order asymptotics (limiting distribution) as the naive plug-
in estimates. This shows that the BL estimates, which preserve all the properties of 
a proper distribution, have no loss in asymptotic efficiency compared to the naive 
estimates, which can be non-monotone and negative in finite samples. For hypoth-
esis testing, we show that the BLRT is asymptotically equivalent to the well-known 
Anderson–Darling two-sample test (Pettitt, 1976). Since there are no closed form 
expressions for the BL estimates in general, these asymptotic results are important 
to the understanding of the BL approach. The BLRT also has better finite-sample 
performance for detecting distributional changes compared to other baseline meth-
ods. The improvement is especially significant in the weak IV setting, exhibiting the 
importance of incorporating the compliance class information for hypothesis test-
ing in IV models. We also apply the BL approach to study the effect of Medicaid 
coverage for African American adults on self-reported mental health, as studied by 
Baicker et al. (2013).

The rest of the article is organized as follows. Basic notation and assumptions of 
the IV model are discussed in Sect. 2. In this section, we also review the existing 
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plug-in approach for testing the hypothesis of no effect. In Sect.  3, we introduce 
the BL approach and derive the asymptotic properties of the MBL estimate (Theo-
rem 1). In Sect. 4, we develop two versions of the BLRT for testing the null hypoth-
esis, and derive the asymptotic properties of the tests (Theorems 2 and 3). In Sect. 5 
we discuss the algorithm for computing the BL estimates and present the numerical 
results for the BLRT. The analysis of the real data is given in Sect. 6. Proofs of the 
theorems and additional simulations are given in the supplementary materials.

2  Framework and review

2.1  Assumptions and identification with instrumental variables

For individual i, denote Zi as the binary IV, Di as the indicator variable for 
whether individual i receives the treatment or not, and Yi as the outcome vari-
able that is continuous in this paper. Using the potential outcome framework 
(Neyman, 1923; Rubin, 1974), define Di(0) as the value that Di would be if Zi 
were to be set to 0, and Di(1) as the value that Di would be if Zi were to be set 
to 1. Similarly, Yi(z, d) for (z, d) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} , is the value that the 
outcome Yi would be if Zi = z and Di = d . For each individual i, the analyst can 
only observe one of the two potential values Di(0) and Di(1) , and one of the four 
potential values Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1) . The observed treatment Di is 
Di = ZiDi(1) + (1 − Zi)Di(0). Similarly, the observed outcome Yi can be expressed as 
Yi = ZiDiYi(1, 1) + Zi(1 − Di)Yi(1, 0) + (1 − Zi)DiYi(0, 1) + (1 − Zi)(1 − Di)Yi(0, 0)  . 
An individual’s compliance class is determined by the combination of the potential 
treatment values Di(0) and Di(1) , which is denoted by Si : Si = always-taker (at) if 
Di(0) = Di(1) = 1 ; Si = never-taker (nt) if Di(0) = Di(1) = 0 ; Si = complier (co) if 
Di(0) = 0,Di(1) = 1 ; and Si = defier (de) if Di(0) = 1,Di(1) = 0.

For the rest of this paper, the following standard identifying conditions are 
assumed. The implications of these conditions are briefly explained in the paragraph 
below; see Angrist et al. (1996) for more details on these conditions.

Assumption 1 The following identification conditions will be imposed on the instru-
mental variable model: 

(a) Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1986): The outcome 
(treatment) for individual i is not affected by the values of the treatment or instru-
ment (instrument) for other individuals and the outcome (treatment) does not 
depend on the way the treatment or instrument (instrument) is administered.

(b) The instrumental variable Zi is independent of the potential outcomes Yi(z, d) 
and potential treatment Di(z) . 

(c) Nonzero average causal effect of Zi on Di : ℙ(Di(1) = 1) > ℙ(Di(0) = 1).
(d) Monotonicity Di(1) ≥ Di(0).

Zi ⟂⟂
(
Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1),Di(0),Di(1)

)
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(e) Exclusion restriction Yi(0, d) = Yi(1, d) , for d = 0 or 1.

Assumption 1 enables the causal effect of the treatment for the subpopulation of 
the compliers to be identified. Condition (a) allows us to use the notation Yi(z, d) 
(or Di(z) ), which means that the outcome (treatment) for individual i is not affected 
by the values of the treatment and instrument (instrument) for other individuals. 
Condition (b) will be satisfied if Zi is randomized. Condition (c) requires Zi to have 
some effect on the average probability of treatment. Condition (d), the monotonicity 
assumption, means that the possibility of Di(0) = 1 , Di(1) = 0 is excluded, that is, 
there are no defiers. Condition (e) assures that any effect of Zi on Yi must be through 
an effect of Zi on Di . Under this assumption, the potential outcome can be written as 
Yi(d) , instead of Yi(z, d).

Let �1 = ℙ(Z = 1) , �s = ℙ(S = s), s ∈ {co, nt, at} . Also, let F(0)
co
(t),Fnt(t),F

(1)
co
(t) , 

and Fat(t) be the cumulative distribution functions of the outcome Y for compli-
ers without treatment, never-takers, compliers with treatment, and always-takers 
respectively. For F(0)

co
(t) and F(1)

co
(t) , under Assumption 1, they are identified as the 

distributions of the potential outcome Y(0) and Y(1) respectively, for example, 
F(0)
co
(t) = ℙ(Y(0) ≤ t ∣ S = co) . Similarly, we define the distribution functions of Y 

corresponding to combinations of Z,  D. Denote Fzd(t) = ℙ(Y ≤ t ∣ Z = z,D = d) . 
Although FY∣zd can be more accurate notation than Fzd since Z and D are conditioned 
on, we will instead use simpler notation Fzd . Any notation involving F followed 
by a subscript means the distribution function of Y conditioning on the subscript. 
Also, we define the probabilities �zd = ℙ(Z = z,D = d) for z, d ∈ {0, 1} . Finally, let 
H(t) = P(Y ≤ t) =

∑
z,d∈{0,1} �zdFzd(t) , be the mixture distribution of Fzd . The out-

comes Y1, Y2,… , Yn are independent and identically distributed from H(t). Under 
Assumption 1, as discussed in Abadie (2002), both F(0)

co
(t) and F(1)

co
(t) can be identi-

fied as

Also, Fnt(t) and Fat(t) can be identified under Assumption 1 as Fnt(t) = F10(t) and 
Fat(t) = F01(t).

2.2  Testing Fisher’s null hypothesis of no effect: review of the existing 
approaches

A central question in causal inference is to understand if the treatment has any 
causal effect on the outcome. To evaluate the treatment effect on the outcome, Fish-
er’s sharp hypothesis of no effect can be considered. Under Assumption 1, it can 
be tested whether there is any causal treatment effect for compliers. Technically, 
Fisher’s hypothesis can be constructed for compliers as Hcompliers

0
∶ Yi(1) = Yi(0) 

for Si = co . However, Hcompliers

0
 cannot be directly tested since only one of the two 

potential outcomes for each individual can be observed. Instead, we consider a test 
for equality of distributions using the potential outcome distributions for compliers,

(1)

F
(0)
co
(t) =

(�
co
+ �

nt
)F00(t) − �

nt
F10(t)

�
co

, F
(1)
co
(t) =

(�
co
+ �

at
)F11(t) − �

at
F01(t)

�
co

.
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The existing approach for testing H0 is based on the fact that F(0)
co
(t) = F(1)

co
(t) implies 

F0(t) = F1(t) where Fz(t) = ℙ(Y ≤ t ∣ Z = z) under Assumption  1. Abadie (2002) 
proposed using the Kolmogorov–Smirnov test TKS = supt∈ℝ |F0(t) − F1(t)| , where 
Fz(t) =

∑n

i=1
1{Yi ≤ t, Zi = z}∕

∑n

i=1
1{Zi = z} are the empirical distribution func-

tions for z = 0, 1 . This test is the comparison between the outcome distribution of 
the Z = 0 group and the outcome distribution of the Z = 1 group. To show a con-
nection between these two distributions with the compliers’ distribution functions 
F(0)
co
(t) and F(1)

co
(t) , define the plug-in estimates obtained using (1) as

where nzd =
∑n

i=1 1{Zi = z,Di = d} , �̆�nt = n10∕(n10 + n11) , �̆�at = n01∕(n00 + n01) , 
�̆�co = 1 − �̆�nt − �̆�at , and {Fzd}z,d∈{0,1} are the empirical distribution func-
tions, Fzd(t) = (1∕nzd)

∑n

i=1
1{Yi ≤ t, Zi = z,Di = d} . Since 

|F0(t) − F1(t)| =
|(F̆(0)

co (t) − F̆(1)
co (t)) ⋅ �̆co| , TKS is equivalent to the test based on comparison between 

F̆(0)
co

 and F̆(1)
co

 . However, the plug-in estimates have two limitations: (1) violating the 
non-decreasing condition of distribution functions and (2) being unstable when an 
IV is weak. First, the violation leads to producing estimates that are often located 
outside of [0, 1]. Therefore, they are not proper estimates of F(0)

co
 and F(1)

co
 , which is 

due to not incorporating the observed information on compliance behavior. Further-
more, the test statistic TKS can be misleading since it is based on proper distribution 
functions F̄0 and F̄1 even when the fluctuations of F̆(0)

co
 and F̆(1)

co
 are severe. This issue 

often occurs when an IV is weak. As discussed in Rubin (1998), making use of the 
IV structure can produce a better test statistic, and thus increase power.

To employ the structure of the instrumental variable model, one simple way 
is to transform the plug-in estimates to proper distribution functions by using the 
monotone rearrangement method (Chernozhukov et al., 2010), followed by trun-
cation to [0, 1]. Chernozhukov et al. (2010) showed that the transformed estimates 
have the same first-order properties (asymptotic distribution) as the plug-in esti-
mates. The rearrangement method produces a quick fix of the plug-in estimates 
(F̆(0)

co
, F̆(1)

co
) and provides promising empirical properties, however it is difficult to 

use the method in hypothesis testing for evaluating the asymptotic properties.
We want to note that the estimators �̆�co, �̆�nt, �̆�at are driven under the intrinsic 

assumption that the compliance group membership Si is independent of Zi . How-
ever, in practice, the sample proportion 

∑
i 1{Si = co,Zi = 0}∕

∑
i 1{Zi = 0} might 

not be the same as 
∑

i 1{Si = co,Zi = 1}∕
∑

i 1{Zi = 1} because of sampling vari-
ability. In such cases, it would be better to consider compliance class informa-
tion as additional parameters in order to increase accuracy during estimation and 
power during hypothesis testing. In the next section, we propose the BL approach 
incorporating compliance class parameters.

(2)H0 ∶ F(0)
co
(t) = F(1)

co
(t), for all t ∈ ℝ.

(3)

F̆
(0)
co
(t) =

(
�̆�
co
+ �̆�

nt

)
F00(t) − �̆�

nt
F10(t)

�̆�
co

, F̆
(1)
co
(t) =

(
�̆�
co
+ �̆�

at

)
F11(t) − �̆�

at
F01(t)

�̆�
co

,
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Remark 1 The plug-in estimators F̆(0)
co
(t) and F̆(0)

co
(t) are obtained as (3). Other 

plug-in estimators are F̆at(t) = F01(t) and F̆nt(t) = F10(t) . We denote the vec-
tor of the plug-in estimators of the outcome distribution functions, as 
F̆(t) = (F̆(0)

co
(t), F̆nt(t), F̆

(1)
co
(t), F̆at(t)) . We consider the plug-in estimators of the 

compliance classes as a function of t such that �̆(t) = (�̆�nt(t), �̆�at(t)) where 
�̆�nt(t) = �̆�nt = n10∕(n10 + n11) and �̆�at(t) = �̆�at = n01∕(n00 + n01) for all t with termi-
nology slightly abused.

3  The binomial likelihood (BL) approach

3.1  Constructing binomial likelihood with an instrumental variable

Define � ∶ ℝ → [0, 1]4 such that �(t) = (�(0)
co
(t) , �nt(t) , �(1)co

(t) , �at(t)), where �(0)
co

 , �nt , 
�(1)
co

 , �at : ℝ → [0, 1] are functional variables representing four different outcome 
distributions. Instead of using previously defined F , we use the parameter set � to 
emphasize the fact that it is a variable to be estimated. Similarly, we can define the 
parameter � ∶ ℝ → [0, 1]2 such that �(t) = (�nt(t),�at(t)) , where �nt(t) and �at(t) are 
functional variables representing the proportions of compliance classes. Since the 
true proportions �nt and �at do not depend on knots, we take the average across the 
knots to build estimators for them. We set knots t = (t1,… , tm) that are the loca-
tions to evaluate BL functions later. Then, 

∑m

j=1
�nt(tj)∕m and 

∑m

j=1
�at(tj)∕m are the 

estimators of �nt and �at respectively. Also, we define �co(tj) = 1 − �nt(tj) − �at(tj) , 
and then 

∑m

j=1
(1 − �nt(tj) − �at(tj))∕m is the estimator of �co . Furthermore, we use 

�1 that is the estimator of �1 . Finally, we define �zd(tj) that is the estimator of Fzd(tj) . 
For example, �00(tj) = (�co(tj)�

(0)
co
(tj) + �nt(tj)�nt(tj))∕(1 − �at(tj)) , �01(tj) = �at(tj) , 

�10(tj) = �nt(tj) and �11(tj) = (�co(tj)�
(1)
co
(tj) + �at(tj)�at(tj))∕(1 − �nt(tj)).

Denote the data Dn = (Z,D,Y) where Z = (Z1,… , Zn)
T , D = (D1,… ,Dn)

T , 
Y = (Y1,… , Yn)

T . Also, denote the event Kij

zd
= {Zi = z,Di = d ∣ tj} . The event 

itself does not depend on the knot tj , but the probability of occurring this event does 
depend on tj through � . The probability ℙ(Kij

zd
) can be easily computed in therms 

of the variables (� ,�1) , discussed in Appendix A.2. At each knot tj , we define the 
point-knot-specific BL function for a data point (Zi,Di, Yi),

Then, by aggregating the point-knot-specific BL functions across all data points, we 
can define the knot-specific BL function at knot tj,

Lij
(
�,� ,𝜒1|Dn

)
=

∏

z,d∈{0,1}

ℙ

(
K

ij

zd

)1

(
K

ij

zd

)

×
(
𝜃zd(tj)

1(Yi≤tj)(1 − 𝜃zd(tj)
)1(Yi>tj)).

Lj
(
�,� ,�1|Dn

)
=

n∏

i=1

Lij
(
�,� ,�1|Dn

)
.
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Finally, we can define the BL function by taking the geometric mean of the knot-
specific BL functions across all knots,

The BL function depends on the choice of knots even when the data points are fixed. 
The knots can be given by researchers, but we propose to use all observed outcomes 
as knots. More specifically, we use the order statistics Y(j) as knots with m = n . This 
selection procedure provides an automatic way to build the BL function and avoids 
an arbitrary decision that may cause a favorable conclusion. The contributions of the 
knot-specific BL functions are, obviously, not independent on data points. Neverthe-
less, we pretend they are independent. To reduce such dependency, a random sample 
from Y can be chosen as knots in practice. Also, for a large n, the size of knots does 
not need to be n. A smaller set of knots can be helpful for reducing computation 
time. Although we choose tj = Y(j) , we emphasize that, for general knots t , the BL 
function can be constructed and also the MBL estimator can be obtained. Theoreti-
cal results in the following section are derived for knots tj = Y(j) . As long as the dis-
tribution of knots t is the same as the distribution of Y , the theoretical arguments 
hold.

Remark 2 The knot-specific BL function at knot tj = Y(j) for some j becomes 
zero when any of �zd(Y(j)) is either 0 or 1. This occasionally occurs at the 
extreme order statistics. To avoid technicalities in the proofs arising from this, 
we define the likelihood function (4) over the central order statistics, that is, for 
j ∈ I� = [⌈n�⌉, ⌈n(1 − �)⌉] for a small fixed constant � . Throughout the proofs in 
the supplementary materials, the asymptotics will be in the regime where the sample 
size n grows to infinity, keeping � fixed. We omit dependence on � in the BL for 
notational brevity. Also, in practice, to avoid computational issues, we can let the 
knot-specific BL values be 1 when probabilities vanish on the boundary.

3.2  The maximum binomial likelihood (MBL) method

In Sect.  3.1, we introduce a BL approach for constructing a nonparamet-
ric likelihood function. Given the BL function L(�,� ,�1|Dn) , we pro-
pose the maximum binomial likelihood (MBL) method to obtain the esti-
mates of (�,� ,�1) by maximizing them over their parameters spaces. To 
this end, denote P([0, 1]ℝ) as the space of all distribution functions from 
ℝ → [0, 1] . Let �+ = {(�(0)

co
, �nt, �

(1)
co
, �at) ∶ �(0)

co
, �nt, �

(1)
co
, �at ∈ P([0, 1]ℝ)} , and 

�+ = {(�nt,�at) ∶ for any t, (�nt(t),�at(t)) ∈ [0, 1]2, 0 ≤ �nt(t) + �at(t) ≤ 1} be the 
parameter spaces for � and �.

Definition 1 The MBL estimate (F̂, �̂, �̂�1) is defined as

(4)L
(
�,� ,�1|Dn

)
=

m∏

j=1

Lj
(
�,� ,�1|Dn

)1∕m
.
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where F̂ = (F̂(0)
co
, F̂nt, F̂

(1)
co
, F̂at) and �̂ = (�̂�nt, �̂�at) are defined at the knots 

t = (t1,… , tm).

Remark 3 The complete parameter space �+ × �+ × [0, 1] of the three parameters 
(F,�,�1) will be hereafter referred to as the restricted parameter space. To ensure 
that (5) is well-defined, we extend F̂ between the knots by using coordinate-wise 
right-continuous interpolation and extrapolation beyond the knots by 0 or 1. Also, 
(1∕m)

∑m

j=1
�̂�nt(tj) and (1∕m)

∑m

j=1
�̂�at(tj) are the estimators of �nt and �at.

The full expression of the binomial log-likelihood func-
tion �(�,� ,�1|Dn) = log L(�,� ,�1|Dn) is long and unwieldy. How-
ever, we can rewrite it in a compact and instructive form, by group-
ing and rearranging the terms. It follows (see proof of Proposition 1 
below for details) that �(�,� ,�1|Dn) = �

Y,D|Z(�,�) + �
Z
(�1) , where 

�
Z
(�1) =

1

n

{
(n00 + n01) log(1 − �1) + (n10 + n11) log�1

}
 , and

with �zd(�,�) , for z, d ∈ {0, 1} , defined as follows:

where the function J(x, y) = x log y + (1 − x) log(1 − y).

Proposition 1 Let (F̂, �̂, �̂�1) be the binomial likelihood estimates as defined in (5). 
Then �̂�1 =

n10+n11

n
 that is equal to the plug-in estimate �̆�1 , and

Proof See Section A in the Supplementary Material.   ◻

(5)
(
F̂, �̂, �̂�1

)
= arg max

�∈�+,�∈�+,𝜒1∈[0,1]
L
(
�,� ,𝜒1|Dn

)
,

�
Y,D|Z(�,�) =

∑

z,d∈{0,1}

�zd(�,�),

�00(�,�) =
1

m

m∑

j=1

n00

{
log

(
1 − �at

(
tj
))

+ J(F00

(
tj
)
, �00

(
tj
)}

,

�10(�,�) =
1

m

m∑

j=1

n10

{
log�nt

(
tj
)
+ J

(
F10

(
tj
)
, �10

(
tj
))}

,

�01(�,�) =
1

m

m∑

j=1

n01

{
log�at(tj) + J(F01(tj), �01(tj))

}
,

�11(�,�) =
1

m

m∑

j=1

n11

{
log

(
1 − �nt

(
tj
))

+ J

(
F11

(
tj
)
, �11

(
tj
)}

,

(
F̂, �̂

)
= arg max

�∈�+,�∈�+

�
Y,D|Z(�,�).
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This proposition shows that the MBL estimate of �1 is the proportion of indi-
viduals with instrument (that is, Z = 1 ) in the observed sample. Furthermore, 
the MBL estimates of F and � can be obtained by maximizing the function 
�
Y,D|Z(�,�).

Remark 4 Maximizing the BL function over the unrestricted parameter space 
� × � , where � = {(�(0)

co
, �nt, �

(1)
co
, �at) ∶ �(0)

co
, �nt, �

(1)
co
, �at ∈ ℝ

ℝ} with ℝℝ the set of 
all functions from ℝ → ℝ and � = {(�nt,�at) ∶ for any t, (�nt(t),�at(t)) ∈ ℝ

2} , pro-
duces the plug-in estimates (F̆, �̆) = argmax�∈�,�∈� �Y,D|Z(�,�) (see Lemma 1 in 
the Supplementary Material for the proof).

3.3  Asymptotic properties of the MBL estimates

In this section we discuss the asymptotic properties of the MBL estimates (F̂, �̂) , 
and how they compare with the plug-in estimates (F̆, �̆) . Assume the knots tj = Y(j) , 
for 1 ≤ j ≤ n.

Assumption 2 We assume the following: 

(a) The proportion parameter vector � belongs to the interior of the parameter space 
[0, 1]2

+
.

(b) The distribution functions Fzd are continuous, strictly increasing, and have the 
same support.

(c) For all K ⊂ ℝ compact, s, t ∈ K  , there exists constants 0 < C1 ≤ C2 < ∞ 
(depending on K) such that C1|s − t| ≤ |Fzd(s) − Fzd(t)| ≤ C2|s − t|.

In particular, Assumption 2 holds whenever Fzd are differentiable and the deriva-
tives are uniformly bounded above and below, that is, C1 ≤ F�

zd
(t) ≤ C2 , for all 

t ∈ K , and K ⊂ ℝ compact. Under this assumption we show that the MBL estimates 
and the plug-in estimates have mean squared errors converging to zero, after res-
caling by 

√
n . Recall that H(t) =

∑
z,d∈{0,1} �zdFzd(t) is the true population outcome 

distribution of Y.

Theorem  1 For any fixed 0 < 𝜅 < 1∕2 , let I� = [⌈n�⌉, ⌈n(1 − �)⌉] and 
J� = [H−1(�),H−1(1 − �)] . Then, the MBL estimates (F̂, �̂) and the plug-in esti-
mates (F̆, �̆) satisfy

and

1

�I𝜅�
�

j∈I𝜅

����
√
n
�
F̂
�
Y(j)

�
− F̆

�
Y(j)

������

2

2

= oP(1),
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where the oP(1) term goes to zero as n → ∞ . Moreover, 
1

�I𝜅 �
∑

j∈I𝜅
‖
√
n{�̂�(Y(j)) − �̆�(Y(j))}‖22 = oP(1) . Also, it implies that the two estimators 

1

�I𝜅 �
∑

j∈I𝜅
�̂s(Y(j)) and 1

�I𝜅 �
∑

j∈I𝜅
�̆s(Y(j)) of the population �s for s ∈ {nt, at} satisfy

Proof See Section B in the Supplementary Material.   ◻

The theorem shows that F̂ and F̆ (also, �̂ and �̆ ) have the same first-order 
behavior, and hence the same limiting distribution, which can be derived using 
the Brownian bridge approximation of the empirical distribution functions; see 
Corollary 1 (Section C) in the Supplementary Material. Interestingly, Chernozhu-
kov et  al. (2010) showed the monotone rearrangement estimates also have the 
same first-order behavior as the plug-in estimates, which together with Theo-
rem 1, implies that the MBL estimates have the same first-order properties as the 
rearrangement estimates.

Remark 5 The proof of Theorem  1 can be easily modified to show finite 
dimensional convergence, that is, for every s ≥ 1 and given t1 < t2 < ⋯ < ts , 
‖
√
n(F̂(tj) − F̆(tj))‖22 = oP(1) . This would imply that the finite dimensional distribu-

tions of the plug-in estimate process 
√
n(F̆(t) − F(t)) and the MBL estimate process √

n(F̂(t) − F(t)) are asymptotically the same. We present this result in terms of mean 
squared errors as in (6), because it emerges naturally from the asymptotic properties 
of the BL function, and can be directly applied to the analysis of the BLRT that is 
introduced in Sect. 4.

4  Extension of the BL approach: hypothesis testing

4.1  Binomial likelihood ratio test (BLRT): Full Version

The BL approach can be extended to constructing a likelihood ratio-type test in 
a similar way that the ML approach can be extended to constructing a likelihood 
ratio test. We take two times the difference in two binomial log-likelihood values; 
one is obtained with the constraint F(0)

co
(t) = F(1)

co
(t) (that is, under the null) and the 

other is obtained without this constraint (that is, under the alternative). This gives 
a new test for the null hypothesis H0 ∶ F(0)

co
(t) = F(1)

co
(t) , and hereafter, we call it 

the binomial likelihood ratio test (BLRT).

(6)∫J𝜅

����
√
n
�
F̂(t) − F̆(t)

�����

2

2

dH = oP(1),

√
n

�
1

�I𝜅�
�

j∈I𝜅

�̂s(Y(j)) −
1

�I𝜅�
�

j∈I𝜅

�̆s(Y(j))

�
= oP(1)
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Define the restricted null parameter space as 
�+,0 = {(�co, �nt, �at) ∶ �co, �nt, �at ∈ P([0, 1]ℝ)} , where P([0, 1]ℝ) is the set of dis-
tribution functions from ℝ → [0, 1] . Then, the BLRT statistic is obtained by

Let (�̂ , �̂) = argmax�∈�+,0,�∈�+
�
Y,D∣Z(�,�) . The asymptotic properties of �̂ can be 

derived as we did for F̂ in Theorem 1. Also, we can derive the asymptotically equiv-
alent plugin-type estimators that have not been studied before. It is worth noting that 
the explicit form of the equivalent estimators of (�̂ , �̂) is provided in Section D, the 
Supplementary Material.

Theorem 2 Fix 0 < 𝜅 < 1∕2 and recall that H(t) = P(Y ≤ t) . Let Tn be the binomial 
likelihood ratio test statistic as defined in (7). Denote J� = [H

−1
(�),H

−1
(1 − �)] . 

Then,

where H̄(t) = (n0F̄0(t) + n1F̄1(t))∕n is the empirical distribution function of Y.

Proof See Section E in the Supplementary Material.   ◻

This theorem gives an asymptotically equivalent representation of the BLRT sta-
tistic as the two-sample Anderson–Darling test statistic (Pettitt, 1976). It can be used 
to construct the rejection region and compute the critical value for a given signifi-
cance level. Moreover, this shows that the test based on Tn is consistent against all 
fixed alternatives, because of the universal consistency of the two-sample Ander-
son–Darling test (Scholz & Stephens, 1987).

However, in finite-sample settings, the critical value obtained from the asymptotic 
distribution of Tn can be conservative. In the theorem above, to derive the asymptotic 
properties, we use the equivalent plug-in estimators of (�̂ , �̂) instead of using (�̂ , �̂) 
directly. However, they do not lie in the restricted parameter space, which leads to a 
gap between the equivalent and actual BL values. This gap fades out as n increases, 
but it can be critical when we evaluate finite-sample performance. This issue will be 
further discussed in the simulation section.

The BLRT is developed for testing the null hypothesis H0 ∶ F(0)
co
(t) = F(1)

co
(t) that 

assumes no treatment effect for compliers. The BLRT can be further extended to 
testing other hypotheses like Hg

0
∶ F(0)

co
(g(t)) = F(1)

co
(t) for some g. To test Hg

0
 , a sim-

ple modification is required. A new outcome variable Y∗
i
 can be generated: Y∗

i
= g(Yi) 

if Di = 1 , and Y∗
i
= Yi otherwise. Then, (Zi,Di, Y

∗
i
) can be used for the BLRT as (7), 

and this test based on the new dataset conducts a hypothesis test for Hg

0
 . Among 

many choices of g, g(t) = t − � can be considered to check whether there is any loca-
tion shift between the two distributions. The assumption of the location shift means 

(7)Tn = 2

(
max

�∈�+,�∈�+

�
Y,D∣Z(�,�) − max

�∈�+,0,�∈�+

�
Y,D∣Z(�,�)

)
.

Tn =
n0n1

n ∫J𝜅

(
F̄0(t) − F̄1(t)

)2

H̄(t)
(
1 − H̄(t)

) dH̄(t) + oP(1),
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that there is a constant treatment effect � for all compliers. Therefore, this test can be 
used for examining treatment effect heterogeneity. If Hlocation

0
∶ F(0)

co
(t − �) = F(1)

co
(t) 

is rejected for all � , then there is evidence that treatment effects are heterogeneous.

4.2  Binomial likelihood ratio test: simple version

As we discussed in Sect.  2.2, under Assumption  1, testing the null hypothesis 
H0 ∶ F(0)

co
(t) = F(1)

co
(t) is equivalent to testing the null hypothesis 

H
simple

0
∶ F0(t) = F1(t) . Based on this, we propose a simple version of the BLRT 

by comparing F0(t) = F1(t) instead of F(0)
co
(t) = F(1)

co
(t) . This test does not use the 

information of compliance classes by ignoring the treatment D , but uses only Z 
and Y . We define the parameter � such that �(t) = (�0(t), �1(t)) , where 
�0(t), �1(t) ∶ ℝ → [0, 1] are functional variables representing the outcome distri-
butions for Y|Z = 0 and Y|Z = 1 . Then, given that Z is conditioned on, the simple 
version binomial log-likelihood function �simple

Y|Z (�) is

where J(x, y) = x log y + (1 − x) log(1 − y) . The simple version BLRT statistic Tsimple
n  

is defined as

Since this test does not use any information of the compliance class behaviors, it 
does not require estimation of the proportions, and estimation of the outcome distri-
bution for the compliance classes. The following gives the asymptotic approxima-
tion of Tsimple

n .

Theorem 3 The test statistic Tsimple
n  has an explicit form as

If we assume that the knots are t = (Y(1),… , Y(n)) , then the test statistic Tsimple
n  is 

asymptotically equivalent to the two-sample Anderson–Darling test statistic, that is,

(8)

�simple
Y∣Z (�) = 1

m

n
∑

i=1

m
∑

j=1
1
(

Zi = 0, Yi ≤ tj
)

log �0
(

tj
)

+ 1
(

Zi = 0, Yi ≤ tj
)

log
(

1 − �0
(

tj
))

+ 1
(

Zi = 1, Yi ≤ tj
)

log �1
(

tj
)

+ 1
(

Zi = 1, Yi ≤ tj
)

log
(

1 − �1
(

tj
))

= 1
m

m
∑

j=1
n0J

(

F0
(

tj
)

, �0(tj)
)

+ n1J
(

F1
(

tj
)

, �1
(

tj
)

)

,

Tsimple
n

= 2

(
max

�0,�1∈P([0,1]ℝ)
�
simple

Y∣Z
(�) − max

�0=�1∈P([0,1]ℝ)
�
simple

Y∣Z
(�)

)
.

Tsimple
n

= 2
(
�
simple

Y∣Z

(
F0,F1

)
− �

simple

Y∣Z

(
H,H

))
.
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Proof See Section E in the Supplementary Material.   ◻

Theorem  3 shows that, as in the case of the full version BLRT, the simple 
version BLRT is asymptotically equivalent to the two-sample Anderson–Darling 
test, and, therefore, is consistent against all fixed alternatives, as well. The dif-
ference is that Tsimple

n  has a closed form and does not need the EM-PAV algorithm 
that will be introduced in the next section. However, Tsimple

n  does not involve any 
estimation procedure of outcome distributions for compliance classes, and, 
hence, cannot be applied for estimation purposes.

5  Computation and simulation

5.1  EM‑PAV algorithm for computing the MBL estimates

There are no closed form solutions to the MBL estimates. However, the estimates 
can be computed efficiently by using a combination of the expectation-maximi-
zation (EM) algorithm and the pool-adjacent-violator(PAV) algorithm. We call 
it the EM-PAV algorithm. To begin with, we introduce the complete-data Dn , 
which includes the compliance class S , Dn = (Z,S,D,Y)T . If Zi and Si are known, 
then Di is determined; for example, if Zi = 0 and Si = co , then Di = 0 . Denote the 
event K

ij

zs
= {Zi = z, Si = s ∣ tj} , where s ∈ {co, at, nt}.

Given the complete data, we can define a point-knot-specific complete-data 
binomial likelihood function for the data point (Zi, Si,Di, Yi) at knot tj,

The complete-data binomial likelihood is obtained by combining all point-knot-spe-
cific complete-data likelihood functions in the same way to define the BL,

As in the BL, the dependence on �1 in the complete-data likelihood is separable, that 
is,

Tsimple
n

=
n0n1

n ∫J𝜅

(
F̄0(t) − F̄1(t)

)2

H̄(t)
(
1 − H̄(t)

) dH̄(t) + oP(1).

Lij

(
�,� ,𝜒1 ∣ Dn

)
=

∏

z∈{0,1}

∏

s∈{co,nt,at}

ℙ

(
K

ij

zs

)1

(
K

ij

zs

)

×
(
𝜃s
(
tj
)1(Yi≤tj)(1 − 𝜃s

(
tj
))1(Yi>tj)).

L
(
�,� ,�1 ∣ Dn

)
=

m∏

j=1

{
n∏

i=1

Lij

(
�,� ,�1 ∣ Dn

)}1∕m

.

logL
(
�,� ,�1 ∣ Dn

)
= �

(
�1

)
+ logL

(
�,� ∣ Dn

)
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where �(�1) = (n00 + n01) log(1 − �1) + (n10 + n11) log�1 , and logL(�,� ∣ Dn) does 
not depend on �1 . Hereafter, we will refer to logL(�,� ∣ Dn) as the complete-data 
binomial log-likelihood. To find the maximizer of logL(�,� ∣ Dn) , our algorithm 
is initiated by specifying the initial values (�(0),� (0)) that lie in the parameter space 
�+ × �+ . Then the following steps are repeated until the values converge:

Algorithm  1 (EM-PAV algorithm) Let �̂�(k) = (�̂�
(0)

co,(k)
, �̂�nt,(k), �̂�

(1)

co,(k)
, �̂�at,(k)) and 

�̂� (k) = (�̂�nt,(k), �̂�at,(k)) be the outputs after the kth step of the iteration. The following 
shows the (k + 1) th step.

(Expectation Step) Given these outputs (�̂�(k), �̂� (k))and the observed data Dn , the 
expected complete-data binomial log-likelihood is

The expectation can be easily calculated; see Section  F2 in the Supplementary 
Material for computational details.

(Maximization Step) To begin with, define

Note that �̆(k+1) =
(
�̆
(0)

co,(k+1)
�̆nt,(k+1), �̆

(1)

co,(k+1)
, �̆at,(k+1)

)
, where �̆(0)

co,(k+1)
 is evaluated at 

knots Y(j) , and similarly for other estimates. Observe that (�̆(k+1), �̆ (k+1)) is the unre-
stricted maximizer of Qk(�,� ∣ �̂(k), �̂ (k)) . These estimates can be computed explic-
itly; see Section  F3 in the Supplementary Material. It can be shown that 
�̆ (k+1) = (�̆�nt,(k+1), �̆�at,(k+1)) is actually in the restricted space �+ , that is, 
�̆�nt,(k+1)(tj), �̆�at,(k+1)(tj) ∈ [0, 1] and 0 ≤ �̆�nt,(k+1)(tj) + �̆�at,(k+1)(tj) ≤ 1 for any knot tj . 
Define �̂ (k+1) = �̆ (k+1) . In general, however, �̆(k+1) ∉ �+ , because �̆(k+1) may not sat-
isfy the non-decreasing condition of distribution functions. To ensure the monoto-
nicity constraint we apply the PAV algorithm to the estimate �̆(k+1),

where the operation PAV
w
 is applied coordinate-wise and the weight vector is 

w(k+1) = (w
(0)

co,(k+1)
, wnt,(k+1),w

(1)

co,(k+1)
,wat,(k+1)) , where the weights are defined in Sec-

tion F in the Supplementary Material.

The following proposition establishes the correctness of this algorithm.

Proposition 2 Let �̂(k+1), �̂ (k+1) be as defined above. Then

Proof See Section F in the Supplementary Material.   ◻

Qk(𝜽,𝝌 ∣ �̂�(k), �̂� (k)) = E�̂�(k),�̂� (k)

(
logL

(
𝜽,𝝌 ∣ Dn

)
∣ Dn

)
.

(
�̆(k+1), �̆ (k+1)

)
= arg max

�∈�,�∈�
Qk

(
�,� ∣ �̂(k), �̂ (k)

)
.

�̂(k+1) = PAV
w
(�̆

(0)

co,(k+1)
, �̆nt,(k+1), �̆

(1)

co,(k+1)
, �̆at,(k+1)),

(
�̂(k+1), �̂ (k+1)

)
= arg max

�∈�+,�∈�+

Qk

(
�,� ∣ �̂(k), �̂ (k)

)
.
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Table 1  Size and power of the different tests with a significance level 0.05

(�nt,�at) IV � N(−�, 1) vs. N(�, 1)

Tn (boot.) Tn (asymp.) T
simple
n

TAD TKS

(−1, 1) Strong 0 0.054 0.042 0.056 0.047 0.047
0.3 0.313 0.277 0.270 0.287 0.249
0.6 0.839 0.802 0.796 0.777 0.779
0.9 0.983 0.968 0.963 0.971 0.954

Weak 0 0.044 0.027 0.053 0.052 0.050
0.3 0.200 0.149 0.146 0.120 0.134
0.6 0.486 0.393 0.385 0.356 0.362
0.9 0.721 0.637 0.624 0.646 0.584

(−2, 2) Strong 0 0.041 0.022 0.047 0.050 0.046
0.3 0.258 0.188 0.171 0.170 0.237
0.6 0.668 0.590 0.536 0.529 0.663
0.9 0.918 0.877 0.841 0.831 0.928

Weak 0 0.045 0.026 0.042 0.043 0.033
0.3 0.142 0.095 0.080 0.081 0.101
0.6 0.319 0.236 0.177 0.185 0.267
0.9 0.504 0.423 0.336 0.339 0.457

Fig. 1  Power of Tn , T
simple
n  and TKS . Power is calculated given a significance level � = 0.05 . Upper 

left: (�nt,�at) = (−1, 1) and strong IV, Upper right: (�nt,�at) = (−2, 2) and strong IV, Lower left: 
(�nt,�at) = (−1, 1) and weak IV, lower right: (�nt,�at) = (−2, 2) and weak IV
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5.2  Simulation: performance of BLRT

To assess the performance of the two versions of the proposed BLRT, we compare 
them to the Kolmogorov–Smirnov test with TKS in a simulation study. Note that both 
T
simple
n  and TKS do not use the variable D , but use Z and Y . The null distribution 

of TKS can be obtained by permuting Z multiple times while the Anderson–Darling 
distribution A2 is used as the asymptotic null distribution of Tsimple

n  . The distribution 
A2 is the limiting distribution of the two-sample Anderson–Darling test statistic TAD 
(Pettitt, 1976). Also, A2 is used as the limiting distribution of the full version BLRT 
Tn as well.

In the simulation study, assume that all four potential outcome distributions are 
normal distributions with variance 1, but with different means: F(0)

co
∼ N(�(0)

co
, 1) , 

F(1)
co

∼ N(�(1)
co
, 1) , Fnt ∼ N(�nt, 1) and Fat ∼ N(�at, 1) . Two simulation factors are 

considered: (1) how far the distributions are from each other, (2) how strong the 
IV is. To see the impact of the first factor, we consider two simulation settings with 
(�nt,�at) = (−1, 1) (close) and (�nt,�at) = (−2, 2) (far). We evaluate these settings 
with (�(0)

co
,�(1)

co
) = (−�,�) for various � values. In addition, to assess the second factor, 

we consider the weak IV setting with the proportions (�co,�nt,�at) = (0.2, 0.4, 0.4) 
and the strong IV setting with (�co,�nt,�at) = (1∕3, 1∕3, 1∕3) . We consider four 
simulations settings, and, in each simulation setting, various values of � and n are 
considered.

Table  1 shows estimated size and power of Tn , T
simple
n  , TAD and TKS from 1000 

simulated datasets. This table reports the four simulation settings for n = 300 and 
� = (0, 0.3, 0.6, 0.9) . Other values of � are not reported in this table, but are plotted 
in Fig. 1. More simulation results are reported in the Supplementary Materials (Sec-
tion G). The first row of each simulation setting shows the simulated size. For power 
comparisons, one of the main findings is that the shape difference between F0(t) 
and F1(t) is important for the performances of the tests. When (�nt,�at) = (−1, 1) , 
F0(t) and F1(t) differ at tails, and Tn and Tsimple

n  outperforms TKS . However, when 
(�nt,�at) = (−2, 2) , F0(t) and F1(t) differ mostly at the middle, and TKS outperforms 
the others. For another finding, when an IV is weak, meaning that �co is small, power 
is reduced, but at the same time, the shape difference between F0(t) and F1(t) is less 
centered since Fnt(t) and Fat(t) dominate the shape. Therefore, as �co decreases, Tn 
can capture the distributional difference more and produce better performance than 
TKS . This can be found in Fig. 1 by comparing the upper right plot and lower right 
plot; the asymptotic Tn is less powerful than TKS when an IV is strong, but they have 
the almost same power in the weak IV setting. In summary, when the difference of 
the distributions in two samples is not concentrated in the middle, Tn and Tsimple

n  can 
be powerful.

As we pointed out in the previous section, the simulation results indicate that 
using the limiting distribution A2 for Tn is conservative. The simulated sizes do not 
reach the nominal level 0.05. We conducted additional simulations for various n val-
ues when there is no effect at all. We conducted simulations for different sample 
sizes n = (500, 1000, 1500, 2000) and the estimated sizes from 10,000 simulations 
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for each n are (0.027, 0.029, 0.032, 0.034) when (�nt,�at) = (−2, 2) . As we expected, 
the size approaches to the correct nominal level � = 0.05 as n increases. However, 
the convergence for Tn is not satisfactory for a moderately large n. This conservative-
ness essentially lowers the performance of Tn in finite samples.

To boost the finite-sample performance, we can consider the bootstrapping 
method that simulates the true null distribution of Tn under the null hypothesis for 
given n. Bootstrapping can be done using the estimates �̂ and �̂ that are obtained 
under the null hypothesis. For the bth procedure of bootstrapping, first fix Z and 
sample the compliance class membership S(b) using �̂ . Second, determine D(b) 
based on Z and S(b) ; for instance, if Zi = 0 and S(b)

i
= co , then D(b)

i
= 0 . Third, take 

a sample Y(b) based on Z and S(b) using the estimate �̂ . Finally, repeat the entire 
process for 1 ≤ b ≤ B to obtain the bootstrapped samples {(Z,D(b),Y(b))}1≤b≤B . 
Table  1 reports simulated size and power based on B = 1000 bootstrapped 
samples for each simulated dataset. The column of Tn (boot.) in Table  1 shows 
the estimated size and power from the bootstrap procedure. All the values are 
improved from the asymptotic-version values. The bootstrap-version Tn can 
reduce the performance gap in cases where TKS is superior, and in some cases, can 
overtake TKS.

5.3  Simulation: performance of the MBL method

In this section, we evaluate the MBL estimates by comparing it with the plug-
in estimates (3) and the estimates obtained from the rearrangement method pro-
posed by Chernozhukov et al. (2010).

We consider the four situations in simulation studies. In the 
first three situations, all distributions are Gamma distributions: 
F(0)
co

= F(1)
co

∼ Gamma(1.22, 1),Fnt ∼ Gamma(12, 1) and Fat ∼ Gamma(1.42, 1) . 

Table 2  Average performance 
of the three estimation methods

Situation Method Bias SE 1000MSE

1 Plug-in 0.0514 0.0923 11.16
MBL 0.0288 0.0330 1.92
Rearrangement 0.0359 0.0740 6.76

2 Plug-in 0.0098 0.0101 0.20
MBL 0.0088 0.0089 0.16
Rearrangement 0.0087 0.0094 0.16

3 Plug-in 0.0032 0.0032 0.02
MBL 0.0031 0.0031 0.02
Rearrangement 0.0030 0.0031 0.02

4 Plug-in 0.0612 0.1745 34.20
MBL 0.0276 0.0328 1.84
Rearrangement 0.0255 0.0404 2.28
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The compliance class proportions are (1) (�co,�nt,�at) = (0.10, 0.45, 0.45) , (2) 
(�co,�nt,�at) = (0.2, 0.4, 0.4) , (3) (�co,�nt,�at) = (1∕3, 1∕3, 1∕3) . In the fourth situ-
ation, all distributions are normal distributions: F(0)

co
= F(1)

co
∼ N(0, 1),Fnt ∼ N(−1, 1) 

and Fat ∼ N(1, 1) with (�co,�nt,�at) = (0.10, 0.45, 0.45) . The sample size is n = 1000 . 
To compute the average performance, we consider 1000 simulated datasets. For each 
dataset, we compute the L2 distance between the estimated function F̂ and the true func-
tion F, L2(F̂,F) = ∫ (F̂ − F)2dF.

Table 2 shows the average performance of three considered estimation meth-
ods. Biases, standard errors and mean squared errors are reported. The MBL 
method has the least bias in  situation 1, but the rearrangement method has the 
least bias in situations 2, 3 and 4. However, the MBL method has the least stand-
ard errors in every situation. Moreover, it has the best mean squared error in all 
the situations, although it has similar performance to the rearrangement method 
when an instrument is not weak.

6  Oregon health insurance experiment: the effect of medicaid 
coverage on mental health

We consider the 2008 Oregon health insurance experiment data that is publicly 
available from https:// www. nber. org/ oregon/ 1. home. html. To investigate the 
effect of Medicaid on health outcomes, Oregon opened a waiting list for a limited 
number of spots in its Medicaid program for low-income, uninsured, able-bodied 
adults between 19-64, which had previously been closed to new enrollment. From 
the waiting list, people selected by random lottery drawings, won the opportu-
nity for themselves, and any household member, to apply for Oregon Health Pro-
gram (OHP) Standard. However, not all persons selected by the lottery enrolled in 
Medicaid, either because they did not apply or because they were deemed ineli-
gible. The lottery process and OHP standard are described in more detail in Fin-
kelstein et al. (2012). This random assignment embedded in the lottery allows us 
to study the effect of Medicaid coverage in a random encouragement design. An 
indicator of winning a lottery is the instrumental variable. Also, enrollment to the 
Medicaid program is the non-randomized treatment variable. Approximately 2 
years after the lottery, health outcomes are measured for persons who responded 
to the follow-up survey. In our example, we use a self-reported mental health out-
come by using scores on the Medical Outcome Study 8-Item Short-Form Survey 
(SF-8). The scores range from 0 to 100, with higher scores indicating better self-
reported health-related quality of life. The scale is normalized to yield a mean of 
50 and a standard deviation of 10 in the general U.S. population. Details of other 
health outcomes and data collection have been provided in Baicker et al. (2013).

From the data, we consider a sample of 1,117 African Americans (single-
person households) who signed themselves up for the lottery. Among them, 
546 people (48.9%) were selected by the lottery drawings. The probability of 
Medicaid coverage is 0.511 in the lottery winning group and 0.226 in the other 
group. The plug-in estimates of the proportions for compliance classes are 
(�̆�co, �̆�nt, �̆�at) = (0.285, 0.489, 0.226) . Lottery selection increased the probability 

https://www.nber.org/oregon/1.home.html
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of Medicaid coverage by 28.5 points among the single-person African American 
households. The MBL estimates of the proportions are the same as the plug-in 
estimates up to three decimal places. The two-stage least squares (2SLS) estimate 
is 4.88 (95% CI 0.01– 9.75) with p-value 0.050. The magnitude of improvement 
was approximately half of the standard deviation of the mental-component score. 
Furthermore, we can restrict our attention to a subsample of African Amer-
icans aged between 19 and 34 ( N = 378 ). The 2SLS estimate is 9.92 (95% CI 
0.98–18.86) with p-value 0.030. The estimated proportions of compliance classes 
are (0.284, 0.495, 0.221) which are almost identical to the estimated proportions 
for the total African American population.

Figure 2 shows the estimated distribution functions of the potential outcomes 
of mental-component scores for compliers when enrolled in the Medicaid pro-
gram and when not enrolled. The left plot shows the plug-in estimates described 
in Sect. 2.2 and the MBL estimates for African Americans aged between 19 and 
64 (the full sample), and the right plot shows them for African Americans aged 
between 19-34. In both of the plots, we see that the estimated distribution func-
tion for complier without Medicaid coverage is almost always above the other. 
The gap between the two functions is wider at higher mental-component scores. 
Unlike the plug-in estimate, the MBL estimate satisfies the non-decreasing condi-
tion, and, as a result, there is a unique value of estimated scores corresponding to 
a specific quantile level. This feature can be useful for those who want to estimate 
the treatment effect at a certain quantile level using the estimated distribution 
functions. For example, the MBL method estimates that Medicaid coverage led to 
an increase of 8.70 points in the median score on the mental component for com-
pliers. However, from the plug-in method, there are two values that correspond 

Fig. 2  Estimated distribution functions of the mental-component scores for compliers in the African-
American population. Higher mental-component scores indicates better self-reported mental health. The 
dotted blue and black lines are the plug-in estimates and the solid blue and black lines are the BL esti-
mates of the distribution functions of the complier with Medicaid coverage and the complier without 
medicaid coverage, respectively



1075

1 3

Journal of the Korean Statistical Society (2023) 52:1055–1077 

to the value 0.5 of the distribution for complier with Medicaid coverage, mak-
ing it unclear how to compare the medians of the two distribution functions. For 
the young African American population (aged between 19-34), Medicaid cover-
age increased the median mental-component score by 14.68 points from 38.13 to 
52.81.

Furthermore, the BLRT can be conducted for testing the null hypothesis 
H0 ∶ F(0)

co
= F(1)

co
 . Our simulation studies suggest that Tn can be more powerful than 

TKS in such setting. We apply both versions of the proposed binomial likelihood 
test, Tn and Tsimple

n  , and compare them with TKS . Using the asymptotic null distri-
bution A2 , the P-values are computed as (0.021, 0.020, 0.031) for (Tn, T

simple
n , TKS) . 

Moreover, the P-value of Tn can be computed by the bootstrap procedure with 
B = 10, 000 described in Sect. 5.2, and the P-value is 0.021, which agrees with 
the asymptotic version of the P-value. Similarly, for the young African American 
population, the estimated P-values are (0.012, 0.012, 0.030) for (Tn, T

simple
n , TKS) . 

For a smaller sample size, the proposed BLRT produced a smaller P-value. For 
all considered tests, we reject equality of distributions at a significance level 
� = 0.05.

Finally, using the BLRT, we also test another hypothesis 
Hlocation

0
∶ F(0)

co
(t − �) = F(1)

co
(t) for testing treatment effect heterogeneity. All pos-

sible values of � are examined for the African American population and its sub-
population of African American aged between 19-34. For the African American 
population, Hlocation

0
 is not rejected for values between 0.76 ≤ � ≤ 10.59 . Also, 

for the African American aged between 19-34, Hlocation
0

 is not rejected for values 
between 1.92 ≤ � ≤ 21.38 . These results show that there is no evidence of treat-
ment effect heterogeneity.

7  Discussion

We propose a non-parametric composite likelihood approach, referred to as the 
binomial likelihood (BL) method, for making causal inferences about the dis-
tributional treatment effect in a randomized experiment with an instrumental 
variable. The BL approach provides a non-parametric inferential tool similar to 
the classical parametric likelihood. The maximum binomial likelihood (MBL) 
method provides estimates of the outcome distributions, which are proper distri-
bution functions and the binomial likelihood ratio test (BLRT) is a powerful tech-
nique to detect distributional changes when the outcome distributions are close to 
each other, especially when the IV is weak.

Several extensions and generalizations of the BL method are possible. For 
instance, while constructing the BL functions one requires specification of the 
knots as evaluating points. We recommended to use all the observed outcomes 
for the knots, but a different specification can be considered depending on the 
question of interest. For example, in the Oregon Health Insurance experiment, if 
one wants to examine whether there is any effect for people above mental score 



1076 Journal of the Korean Statistical Society (2023) 52:1055–1077

1 3

40, then only outcomes above 40 can be chosen as knots. In such a setting, a 
rejection implies that there is evidence of distributional changes for this specific 
subpopulation.

The results in this paper show that the BL approach works well in randomized 
encouragement experiments where a compliance class is latent. A possible future 
direction could be to study the performance of the BL approach in general mix-
ture models when there is a latent variable.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s42952- 023- 00233-4.
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