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Abstract
Latin hypercube designs (LHDs), maximin distance designs (MDDs) and orthogo-
nal designs (ODs) are becoming popular and preferred choices in many areas of sci-
entific investigation. A LHD has good projective properties on any single dimension 
for its uniform coverage of each individual factor, but it does not guarantee good 
space-filling properties in higher dimensions. A MDD maximizes the distances 
between its points and thus achieves the space-filling property in the full-dimen-
sional space, but it does not guarantee the orthogonality of its factors. ODs are use-
ful because they ensure the estimates of linear effects are uncorrelated. Since each of 
these three designs has pros and cons from different perspectives, a design that com-
bines their benefits will be far superior to each design on its own. This paper gives 
a new non-iterative deterministic algorithm for constructing asymptotically orthog-
onal maximin distance LHDs. Compared with the existing results, the newly con-
structed LHDs have a much better performance in any dimension. Theoretical and 
numerical justifications for the optimality behavior of the newly constructed LHDs 
are given. Moreover, an iterative algorithm utilizing a mixture of criteria is provided 
for further improvement of the performance of the newly constructed LHDs from 
multiple perspectives.
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1 Introduction

Latin hypercube designs (LHDs) (McKay et al., 1979) are becoming popular and 
preferred choices for designing experiments, especially computer experiments, 
due to their uniform coverage of each individual factor (Fang et al., 2006; Santner 
et al., 2003). A LHD is an n × s matrix, denoted as LHD(n,s), whose columns are 
permutations of 

{
−

n−1

2
,−

n−3

2
, ...,

n−3

2
,
n−1

2

}
. From the perspective of experimental 

design, the columns are called factors, the rows are called runs and the values are 
called levels. If each level appears exactly n

q
 times, it is called a U-type design 

with n runs, s factors and q levels, denoted as U(n, qs). Developing new efficient 
techniques for constructing optimal U-type designs from various optimality per-
spectives is one of the hot topics recently (cf. Elsawah and Fang,  2020; 
Elsawah, 2022a). A LHD(n,s) is a U-type design with q = n . Since a LHD scat-
ters the representative points of each individual factor in an intelligent manner to 
cover the experimental region well, it has good projective properties on any sin-
gle dimension. However, there is no guarantee that a full-dimensional LHD (i.e., 
all the s factors together) has good space-filling properties when it is randomly 
generated. From the perspective of statistics, we can simply conclude that LHDs 
guarantee uniform samples for the marginal distribution of each single input, 
however there is no guarantee that they will have good multivariate properties.

A maximin distance design (MDD) (Johnson et al., 1990) maximizes the dis-
tances between the experimental points by maximizing the minimum L2-dis-
tance ( ML2D ) so that no two points are too close. For any LHD(n,s) with n rows 
ri = (ri1, ..., ris), 1 ≤ i ≤ n, its ML2D is defined as follows

A MDD maximizes the ML2D value among all the ML2D values over the experi-
mental domain. Therefore, a MDD achieves the space-filling property in the 
full-dimensional space that cannot be guaranteed by a randomly generated LHD. 
Moreover, a MDD is asymptotically D-optimal under the Gaussian process model 
(Johnson et al., 1990). The construction of maximin distance LHDs (MDLHDs) has 
received a significant attention in the past few years and many techniques have been 
presented, interested reader can refer to Tang (1994); Van Dam et al. (2007); Zhou 
and Xu (2015); Joseph et al. (2015); Lin and Kang (2016); Wang et al. (2018). It is 
worth-mentioning that the level-permutation technique can be employed to enhance 
the space-filling behavior of a constructed design (cf. Elsawah, 2022b). For first-
order polynomial models, orthogonal LHDs (OLHDs) are useful because they 
ensure the estimates of linear effects are uncorrelated. However, a space-filling LHD 
in terms of distance (i.e., MDLHD) may not be an OLHD and vice versa (Joseph & 
Hung, 2008). This fact is investigated in Sect. 5.

ML2D(LHD(n, s)) = min

{
L2Dij =

s∑

k=1

|rik − rjk|2 ∶ |ri ≠ rj, |ri, rj ∈ LHD(n, s)

}
.
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Orthogonality is a significant criterion for evaluating designs that estimate 
more effects without confounding. A design is called orthogonal if the correla-
tion coefficient between any two distinct columns in the design is zero. For any 
LHD(n,s) with s columns cj = (c1j, ..., cnj), 1 ≤ j ≤ s, its orthogonality can be 
measured as follows

where

A design is called an orthogonal design(OD), if �max = 0. If �max ≠ 0 but very close 
to zero, it is called a nearly OD. The construction of OLHDs and ODs has received 
a significant attention in the past few years and many techniques have been given, 
interested reader can refer to Ye (1998); Steinberg and Lin (2006); Cioppa and 
Lucas (2007); Bingham et al. (2009); Pang et al. (2009); Georgiou (2009); Lin et al. 
(2009, 2010); Sun et  al. (2009, 2010, 2011); Yang and Liu (2012); Georgiou and 
Efthimiou (2014); Elsawah et al. (2021); Wang et al. (2022); Weng et al. (2023); Ke 
et al. (2023).

Recently, Pang et  al. (2022) presented a new non-iterative technique for 
constructing asymptotically MDLHDs with 2�+1 runs and 3 × 2�−1 factors, 
LHD(2�+1, 3 × 2�−1), � ≥ 2. This paper improves the technique in Pang et al. (2022) 
and gives a new non-iterative deterministic algorithm for constructing nearly orthogo-
nal MDLHDs (OMDLHDs) with 2�+1 runs and 3 × 2�−1 factors. The newly constructed 
LHDs are better than the existing LHDs that can be generated via the non-iterative 
algorithm in Pang et al. (2022) and the iterative algorithm using the SA2008 function 
in the R package LHD (cf. Joseph and Hung, 2008). The newly constructed LHDs are 
OMDLHDs for large numbers of runs and factors. The numerical results show that for 
� ≥ 10, the newly constructed LHDs are optimal in view of orthogonality and ML2D , 
i.e., they are OMDLHDs. Theoretical and numerical justifications for the optimality 
behavior of the newly constructed LHDs are given. For further improvement of the per-
formance of the newly constructed LHDs, an iterative algorithm is given based on a 
mixture of orthogonality and ML2D criteria.

The rest of this paper is organized as follows. Section 2 gives the new non-iterative 
deterministic construction algorithm for asymptotically OMDLHDs. Sections 3 and 4 
investigate the behavior of the newly constructed LHDs in view of the orthogonality 
and L2-distance, respectively. An iterative algorithm for improving the performance of 
the newly constructed LHDs is discussed in Sect. 5. We close through the conclusion 
and future work in Sect. 6. For clarity and due to the limitation of the space, we relegate 
the all figures (cf. Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) and all the 
proofs to an Appendix.

�max(LHD(n, s)) = max
{
�ij(LHD(n, s)) = �(ci, cj) ∶ ci ≠ cj, ci, cj ∈ LHD(n, s)

}
,

�(ci, cj) =

��������

∑n

k=1
(cki − ci)(ckj − cj)

�∑n

k=1
(cki − ci)

2
∑n

k=1
(ckj − cj)

2

��������

and ci =

n�

k=1

cki

n
.
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2  A non‑iterative algorithm for asymptotically OMDLHDs

Sun et  al. (2009) presented a new construction technique for OLHDs with 2�+1 
runs and 2� factors LHD(2�+1, 2�), � ≥ 2 with a fold-over structure. Readers who 
are interested in reading more about fold-over techniques for symmetric and 
asymmetric designs can refer to Elsawah  and Qin (2017) and Elsawah (2017), 
respectively and the references therein. Recently, Wang et  al. (2015) gave two 
techniques (cf. Algorithm 1 and Algorithm 2 in Wang et al., 2015) to add more 
columns to any LHD with a fold-over structure. The power of the combination of 
the techniques in Sun et al. (2009) and Wang et al. (2015) is investigated in this 
paper to construct asymptotically OMDLHDs with 2�+1 runs and 3 × 2�−1 factors 
LHD(2�+1, 3 × 2�−1), � ≥ 2 , called Łnew

�
 , by constructing OLHDs via the tech-

nique in Sun et al. (2009) and then following Algorithm 2 in Wang et al. (2015) 
to add more columns as follows.

Algorithm 1: Constructing asymptotically OMDLHDs

• Step 1: For an integer � ≥ 2, generate the following two 2� × 2� matrices 

 where A1 =

(
1 1

1 − 1

)
, B1 =

(
1 2

2 − 1

)
 and M⋆ =

(
−M1

M2

)
 for any n × m 

matrix M =

(
M1

M2

)
 with even n and M1 and M2 are the top and bottom half, 

respectively.
• Step 2: Generate a 2�+1 × 2� matrix with a fold-over structure by combining 

the matrices A� and B� as follows 

• Step 3: Generate the following 2�+1 × 2�−1 matrix 

 where E�−1 = (Eij), F�−1 = (Fij), C�−1 = (Cij), SC�−1
= (Sij), 

Sij =

{
+1, if Cij ≥ 0;

−1, if Cij < 0
 and 

• Step 4: The newly constructed LHD(2�+1, 3 × 2�−1) is given by column-com-
bining the two matrices C� and Hnew

�
 as follows Łnew

�
=
(
C� H

new
�

)
.

A𝛼 =

(
A𝛼−1 −A

⋆

𝛼−1

A𝛼−1 A
⋆

𝛼−1

)
and B𝛼 =

(
B𝛼−1 − B

⋆

𝛼−1
− 2𝛼−1A⋆

𝛼−1

B𝛼−1 + 2𝛼−1A𝛼−1 B
⋆

𝛼−1

)
,

C� =

(
B� −

1

2
A�

1

2
A� − B�

)
.

H
new
�

=

(
E�−1
F�−1

)
,

{
Eij = Sij(2|Cij| −

1

2
), Fij = Sij(2|Cij| +

1

2
), for 1 ≤ i ≤ 2�−1;

Eij = Sij(2|Cij| +
1

2
), Fij = Sij(2|Cij| −

1

2
), for 2�−1 + 1 ≤ i ≤ 2� .
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Remark 1 Pang et  al. (2022) constructed LHD(2�+1, 3 × 2�−1), � ≥ 2, called ŁP22
�

, 
by constructing OLHDs via the technique in Sun et al. (2009) and then following 
Algorithm 1 in Wang et al. (2015) as follows

where C� is generated as mentioned-above and 1C�−1 is an all-ones matrix with the 
same size as C�−1.

An illustrative example. To understand the mecha-
nism of the above-mentioned algorithms, Table  1 gives the 
A� , B� , C� , H

P22
�

, ŁP22
�

, Hnew
�

 and Łnew
�

 for � = 2. From Table  1, we get: (i) 
ML2D(Ł

new
2

) = 55 > ML2D(Ł
P22
2

) = 52 , ML2D(H
new
2

) = ML2D(H
P22
2

) = 2 and 
2ndML2D(H

new
2

) = 13 > 2ndML2D(H
P22
2

) = 10, where 2ndML2D is the second minimum 
L2-distance. (ii) �

max
(Łnew

2
) = �

max
(ŁP22

2
) = 0.1904 , 𝜌max(H

new
2

) = 0 < 𝜌max(H
P22
2

) = 0.047 
and 𝜌mean(Ł

new
2

) = 0.037 < 𝜌mean(Ł
P22
2

) = 0.039, where �mean is the mean of all the 
absolute correlation values among the factors. That is, the newly constructed LHD Łnew

2
 

is better than the existing LHD ŁP22
2

 in terms of the L2-distances among their runs and the 
correlations among their factors. The forthcoming discussions provide more numerical 
and theoretical investigations to support this interesting finding.

Lemma 1 For any j-th column Lj = (L1,j, ..., L2�+1,j)
T , � ≥ 2, 1 ≤ j ≤ 3 × 2�−1 of the 

newly constructed LHD Łnew
�

 , we get the following interesting behavior: (a) Lj is a 

permutation of 
{
−

2�+1−1

2
,−

2�+1−3

2
, ...,

2�+1−3

2
,
2�+1−1

2

}
 for any � ≥ 2 and 

1 ≤ j ≤ 3 × 2�−1. (b) |Li,j + L2�+i,j| = 0 for any 1 ≤ i ≤ 2� and 1 ≤ j ≤ 2� . (c) 
|Li,j − L2�+i,j| = 1 for any 1 ≤ i ≤ 2� and 2� + 1 ≤ j ≤ 3 × 2�−1. (d) |Li,j − Lk,j| ≥ 1 
for any 1 ≤ i, k ≤ 2� and 1 ≤ j ≤ 3 × 2�−1.

3  Investigating the orthogonality of the newly constructed LHDs

This section investigates the correlations among the factors of the newly constructed 
LHDs. A comparison study between the existing LHDs by Pang et al. (2022) (cf. 
Remark 1) and the newly constructed LHDs via the new proposed Algorithm 1 is 
given. All the theoretical proofs are given in the Appendix.

Lemma 2 From the above-mentioned Algorithm 1, it is obvious that: (i) The designs 
C� and Hnew

�
 are LHDs with a fold-over structure, i.e., they can be written as follows 

ŁP22
�

=
(
C� H

P22
�

)
, HP22

�
=

(
2C�−1 −

1

2
1C�−1

2C�−1 +
1

2
1C�−1

)
,
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(
dT − dT

)T
. (ii) The design C� is an orthogonal LHD, i.e., the correlation between 

any i-th column and j-th column is �max(C�) = �ij(C�) = 0, 1 ≤ i ≠ j ≤ 2� .

Theorem 1 The newly constructed LHDs Hnew
�

 are orthogonal LHDs, however the 
existing LHDs HP22

�
 are nearly orthogonal LHDs, where for any � ≥ 2 we get

Theorem  2 The newly constructed LHDs Łnew
�

= (C� H
new
�

) are asymptotically 
OLHDs, where

To provide numerical justifications for the above-mentioned theoretical main find-
ings, Table 2 gives the maximum �max and mean �mean of the correlations correla-
tions |�ij|, 1 ≤ i ≠ j ≤ 3 × 2�−1 between each two factors of the 3 × 2�−1 factors of 
the existing LHDs ŁP22

�
 and the newly constructed LHDs Łnew

�
 for 2 ≤ � ≤ 10. For a 

closer look and greater understanding, all the 
(
3 × 2�−1

2

)
 correlations 

|�ij|, 1 ≤ i ≠ j ≤ 3 × 2�−1 for ŁP22
�

 and Łnew
�

 are given in Figs. 1, 2, 3, 4 for 2 ≤ � ≤ 5. 
From Table 2 and Figs. 1, 2, 3, 4, we can conclude that: (i) The correlations among 
the 3 × 2�−1 factors of the newly constructed LHDs Łnew

�
 are less than those among 

the factors of the existing LHDs ŁP22
�

, where 𝜌mean(Ł
new
𝛼

) < 𝜌mean(Ł
P22
𝛼

) (cf. the in-
depth justification in Remark A1 in the Appendix). (ii) The existing LHDs ŁP22

�
 and 

the newly constructed LHDs Łnew
�

 are nearly orthogonal LHDs with the same maxi-
mum correlation values, where �max(Ł

P22
�

) = �max(Ł
new
�

). (iii) The efficiency in terms 
of the orthogonality increases as � increases, where 

𝜌max(H
new
𝛼

) = 𝜌ij(H
new
𝛼

) = 0 < 𝜌max(H
P22
𝛼

) = 𝜌ij(H
P22
𝛼

) =
3

4𝛼+1 − 1
, 1 ≤ i ≠ j ≤ 2𝛼−1.

�max
(
Łnew
�

)
⟶ 0 as � ⟶ ∞.

Table 2  The orthogonality of the newly constructed LHDs Łnew

�
 compared with the existing LHDs ŁP22

�
 

for 2 ≤ � ≤ 10

�max = max{�ij, i ≠ j} �mean = mean{�ij, i ≠ j}

� size Ł
P22
�

Ł
new
� Ł

P22
�

Ł
new
�

2 8×6 0.1904 0.1904 0.039683 0.037037
3 16×12 0.0941 0.0941 0.010784 0.009804
4 32×24 0.04692 0.04692 0.002810 0.002525
5 64×48 0.02344 0.02344 0.000717 0.000641
6 128×96 0.01171 0.01171 0.000181 0.000161
7 256×192 0.00585 0.00585 0.000046 0.000041
8 512×384 0.00292 0.00292 0.000011 0.000010
9 1024×768 0.00147 0.00147 2.8573×10−6 2.5406×10−6

10 2048×1536 0.00073 0.00073 7.1479×10−7 6.3547×10−7
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𝜌max(Ł
new
𝛼

) < 𝜌max(Ł
new
𝛽

) for any 𝛼 > 𝛽. Moreover, it is worth-mentioning that 
�max(Ł

new
�

) ≃ 0 for any � ≥ 10.

4  Investigating the L
2
‑distance of the newly constructed LHDs

This section investigates the L2-distances among the runs of the newly constructed 
LHDs. A comparison study between the existing LHDs in Pang et  al. (2022) (cf. 
Remark 1) and the newly constructed LHDs via the new proposed Algorithm 1 is 
given. All the theoretical proofs are given in the Appendix.

Theorem 3 The design C� is a MDLHD among all the LHDs with 2�+1 runs, 2� fac-
tors and a fold-over structure, where

Remark 2 From Lemma 2 and Theorem  3, we conclude that the design C� is an 
OMDLHD among all the LHDs with 2�+1 runs, 2� factors and a fold-over structure.

Lemma 3 It is worth-mentioning that the LHD C� has only the following two differ-
ent L2-distance values

Theorem 4 The newly constructed LHD Hnew
�

 and the existing LHD HP22
�

 have the 
same ML2D, which is the L2-distance between the i-th run and the j(= i + 2�)-th run, 
where

Theorem 5 The ML2D of the newly constructed LHD Łnew
�

 is larger than the ML2D 
of the existing LHD ŁP22

�
, where

Moreover, the difference between them is given as follows

ML2D(C�) =
2�−1

3
(4�+1 − 1).

L2Dij(C�) =

{
2� (4�+1−1)

3
, for any j = i + 2� and 1 ≤ i ≤ 2�;

2�−1(4�+1−1)

3
, otherwise.

ML2D(H
new
�

) = ML2D(H
P22
�

) = 2�−1.

ML2D(Ł
new
𝛼

) = 23𝛼 − 22𝛼−1 − 2𝛼−2 > ML2D(Ł
P22
𝛼

) = 23𝛼 −
3

4
22𝛼 .

ML2D(Ł
new
𝛼

) −ML2D(Ł
P22
𝛼

) = 4𝛼−1 − 2𝛼−2 > 0.
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Theorem 6 The newly constructed LHDs Łnew
�

 are asymptotically MDLHDs, where 
the efficiency is given as follows

To provide numerical justifications for the above-mentioned theoretical main 
findings, Table 3 gives the ML2D between any two runs of all the 2�+1 runs of the 
existing LHDs ŁP22

�
 and the newly constructed LHDs Łnew

�
 for 2 ≤ � ≤ 10 . Moreo-

ver, the upper bound of the ML2D, UB =
⌊
23� + 22�−1

⌋
, where ⌊�⌋ is the integral part 

of � (cf. Zhou and Xu (2015)), and the corresponding efficiency of the newly con-
structed LHDs are calculated in Table 3. For a closer look and greater understand-

ing, all the 
(
2�+1

2

)
 L2-distances L2Dij between each two runs of all the 2�+1 runs of 

the LHDs C� for 2 ≤ � ≤ 4 are given in Fig. 5; all the 
(
2�+1

2

)
 L2-distances between 

each two runs of all the 2�+1 runs of the existing LHDs HP22
�

 and the newly con-

structed LHDs Hnew
�

 for 2 ≤ � ≤ 4 are given in Figs. 6, 7, 8; and all the 
(
2�+1

2

)
 L2

-distances between each two runs of all the 2�+1 runs of ŁP22
�

 and Łnew
�

 for 2 ≤ � ≤ 4 
are given in Figs. 9, 10, 11. From Table 3 and Figs. 5, 6, 7, 8, 9, 10, 11, we can con-
clude that: (i) For any � ≥ 2, the LHD C� has only two different L2-distance values. 
(ii) For any � ≥ 2, the newly constructed LHD Hnew

�
 and the existing LHD HP22

�
 have 

the same ML2D , however the 2ndML2D of the newly constructed LHD Hnew
�

 is larger 
than the 2ndML2D of the existing LHD HP22

�
. (iii) The newly constructed LHDs Łnew

�
 

is better than the existing LHDs ŁP22
�

 , where ML2D(Ł
new
𝛼

) > ML2D(Ł
P22
𝛼

). (iv) The 
efficiency in terms of the ML2D increases as � increases, where 
eff (Łnew

𝛼
) > eff (Łnew

𝛽
) for any 𝛼 > 𝛽. Moreover, it is worth-mentioning that 

eff (Łnew
�

) ≃ 1 for any � ≥ 10.

eff
(
Łnew
�

)
⟶ 1 as � ⟶ ∞.

Table 3  The ML
2
D of the newly constructed LHDs Łnew

�
 compared with the existing LHDs ŁP22

�
 for 

2 ≤ � ≤ 10

� size Ł
P22
�

Ł
new
� Ł

new
�

− Ł
P22
�

UB =
⌊
23� + 22�−1

⌋
eff (Łnew

�
)

2 8×6 52 55 3 72 0.764
3 16×12 464 478 14 544 0.88
4 32×24 3904 3964 60 4224 0.94
5 64×48 32000 32248 248 33280 0.97
6 128×96 259072 260080 1008 264192 0.98
7 256×192 2084864 2088928 4064 2105344 0.992
8 512×384 16728064 16744384 16320 16809984 0.996
9 1024×768 134021120 134086528 65408 134348800 0.998
10 2048×1536 1072955392 1073217280 261888 1074266112 0.999≃1
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5  An iterative algorithm for improving the new LHDs

As we can see from the foregoing discussions, the maximum pairwise correlation 
between the factors and the minimum L2-distance between the points are both good 
criteria for generating efficient LHDs. It is thought that minimizing correlation 
should spread out the points and maximizing the distance between the points should 
reduce the correlation. However, the practice demonstrated that each criterion has 
its advantages and disadvantages from different perspectives and there is no one-to-
one relationship between them and designs obtained by them can be quite different 
(cf. Joseph and Hung (2008)). Figure 12 illustrates this fact for randomly generated 
100 LHDs with 10 factors and 8 runs. Thus, it is still hard to classify LHDs based 
on these two criteria and there is a need to present a new criterion or investigate a 
new perspective at the use of these two efficient criteria. A bi-objective criterion 
( CorML2D ) for constructing nearly OMDLHDs can be defined for the newly con-
structed LHD Ł with 2�+1 runs and 3 × 2�−1 factors as follows

The optimal LHD Łoptimal from the set of all the possible LHDs U with the same size 
maximizes CorML2D� for a given � over all the LHDs in U, i.e.,

Therefore, it obvious that: (i) The optimal LHD Łoptimal is an OLHD if � = 1 
and a MDLHD if � = 0. (ii) When � is close to 0, the new bi-objective criterion 
CorML2D� is more sensitive to the ML2D criterion, where they are directly pro-
portional (cf. Fig.  13). (iii) When � is close to 1, the new bi-objective criterion 
CorML2D� is more sensitive to the orthogonality criterion, where they are inversely 
proportional (cf. Fig.  14). (iv) The new bi-objective criterion CorML2D� is more 
sensitive to the ML2D criterion than the orthogonality criterion (cf. Fig. 15).

To provide numerical justifications of the powerful of the new criterion, Fig. 16 
and Table 4 give the new bi-objective criterion CorML2D� for the existing LHDs 
ŁP22
�

 and the newly constructed LHDs Łnew
�

 for 2 ≤ � ≤ 10 and 0 ≤ � ≤ 1. From 
Table 4 and Fig. 16, we get that the newly constructed LHDs Łnew

�
 are better than 

the existing LHDs ŁP22
�

 in terms of the orthogonality (i.e., � close to 1); the ML2D 
(i.e., � close to 0); and a mixture of orthogonality and ML2D (i.e., � close to 0.5). 
It is worth-mentioning that when � = 1 , CorML2D1(Ł

P22
�

) = CorML2D1(Ł
new
�

), 
which means that ŁP22

�
 and Łnew

�
 have the same maximum correlation that is consist-

ent with the result in Sect. 3. Moreover, this new criterion can be combined with an 
iterative algorithm for further improvement of the performance of the newly con-
structed LHDs.

The threshold accepting (TA) algorithm (cf. Fang et al., 2000) and adjusted TA 
algorithm (cf. Fang et al., 2017) are widely used efficient iterative algorithms for 
generating as optimal as possible design from a randomly generated initial design. 
When the initial design is good (as optimal as possible), an optimal (better than 

CorML2D�(Ł) = �(1 − �max(Ł)) + (1 − �)
ML2D(Ł)

⌊23� + 22�−1⌋
, 0 ≤ � ≤ 1.

CorML2D�

(
Łoptimal

)
= max

Ł∈U

(
CorML2D�(Ł)

)
.
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the initial one) resulting design can be generated after few iterations. However, 
when the initial design is not good (far away from optimal), an optimal resulting 
design cannot be generated after the same number of iterations and more itera-
tions (time) are needed and there is no guarantee that the resulting design will be 
optimal. Therefore, using as good as possible designs as initial designs is much 

Table 4  The new bi-objective criterion of the newly constructed LHDs Łnew

�
 compared with the existing 

LHDs ŁP22

�
 for 2 ≤ � ≤ 10

� CorML2D� CorML2D� CorML2D�

� Ł
P22
�

Ł
new
�

� Ł
P22
�

Ł
new
�

� Ł
P22
�

Ł
new
�

0.0 0.7222222 0.7638889 0.8529412 0.8786765 0.9242424 0.9384470
0.1 0.7309524 0.7684524 0.8582353 0.8813971 0.9271261 0.9399102
0.2 0.7396825 0.7730159 0.8635294 0.8841176 0.9300098 0.9413734
0.3 0.7484127 0.7775794 0.8688235 0.8868382 0.9328935 0.9428366
0.4 0.7571429 0.7821429 0.8741176 0.8895588 0.9357771 0.9442999
0.5 2 0.7658730 0.7867063 3 0.8794118 0.8922794 4 0.9386608 0.9457631
0.6 0.7746032 0.7912698 0.8847059 0.8950000 0.9415445 0.9472263
0.7 0.7833333 0.7958333 0.8900000 0.8977206 0.9444282 0.9486895
0.8 0.7920635 0.8003968 0.8952941 0.9004412 0.9473118 0.9501527
0.9 0.8007937 0.8049603 0.9005882 0.9031618 0.9501955 0.9516160
1.0 0.8095238 0.8095238 0.9058824 0.9058824 0.9530792 0.9530792
0.0 0.9615385 0.9689904 0.9806202 0.9844356 0.9902724 0.9922027
0.1 0.9630403 0.9697470 0.9813862 0.9848201 0.9906592 0.9923965
0.2 0.9645421 0.9705037 0.9821522 0.9852046 0.9910460 0.9925903
0.3 0.9660440 0.9712603 0.9829183 0.9855891 0.9914328 0.9927841
0.4 0.9675458 0.9720169 0.9836843 0.9859736 0.9918196 0.9929778
0.5 5 0.9690476 0.9727736 6 0.9844503 0.9863580 7 0.9922065 0.9931716
0.6 0.9705495 0.9735302 0.9852164 0.9867425 0.9925933 0.9933654
0.7 0.9720513 0.9742869 0.9859824 0.9871270 0.9929801 0.9935592
0.8 0.9735531 0.9750435 0.9867485 0.9875115 0.9933669 0.9937530
0.9 0.9750549 0.9758001 0.9875145 0.9878960 0.9937537 0.9939468
1.0 0.9765568 0.9765568 0.9882805 0.9882805 0.9941405 0.9941405
0.0 0.9951267 0.9960976 0.9975610 0.9980478 0.9987799 0.9990237
0.1 0.9953211 0.9961948 0.9976584 0.9980966 0.9988287 0.9990481
0.2 0.9955154 0.9962921 0.9977558 0.9981453 0.9988774 0.9990725
0.3 0.9957098 0.9963894 0.9978532 0.9981940 0.9989262 0.9990968
0.4 0.9959041 0.9964867 0.9979506 0.9982428 0.9989750 0.9991212
0.5 8 0.9960985 0.9965839 9 0.9980481 0.9982915 10 0.9990237 0.9991456
0.6 0.9962929 0.9966812 0.9981455 0.9983402 0.9990725 0.9991700
0.7 0.9964872 0.9967785 0.9982429 0.9983890 0.9991213 0.9991944
0.8 0.9966816 0.9968758 0.9983403 0.9984377 0.9991700 0.9992188
0.9 0.9968759 0.9969730 0.9984377 0.9984864 0.9992188 0.9992432
1.0 0.9970703 0.9970703 0.9985352 0.9985352 0.9992676 0.9992676
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better than the randomly generated designs. Since the newly constructed LHDs 
Łnew
�

 in this paper are nearly optimal from orthogonality and ML2D , they can be 
used as initial LHDs for the TA algorithm or adjusted TA algorithm to get much 
better LHDs from various perspectives. Fig. 17 gives the flowchart of an updated 
version of the TA algorithm as an iterative algorithm for improving the perfor-
mance of the newly constructed LHDs in terms of the new bi-objective criterion 
CorML2D� for a given � . It is worth-mentioning that by using the updated ver-
sion of the TA algorithm in Fig. 17 with small numbers of iterations, we could 
not get LHDs better than our newly constructed LHDs. Which means that our 
newly constructed LHDs are optimal LHDs, especially for large sizes.

6  Conclusion and future work

A new construction non-iterative algorithm for nearly orthogonal maximin distance 
LHDs is given in this paper. The newly constructed LHDs are compared with the 
existing LHDs in Pang et  al. (2022) and appear to perform better than them. The 
main results show that the newly constructed LHDs are asymptotically orthogonal 
maximin distance LHDs. Moreover, an iterative algorithm for further improvement 
of the performance of the newly constructed LHDs is given using a new criterion. 
Furthermore, the iterative algorithm using the SA2008 function in the R package 
LHD (cf. Joseph and Hung, 2008) is used to generate LHDs with the same sizes as 
those for the newly constructed LHDs and �max , �mean and ML2D are calculated in 
Table 5. The results show that, aside from the fact that the SA2008 function gener-
ated LHDs too slowly and takes too long time for large sizes, the LHDs that are gen-
erated by our new non-iterative algorithm are superior to those that are generated by 
the SA2008 function in view of orthogonality and L2-distance.

There are some other interesting ideas related to this idea for further study, 
such as: (i) This idea can be extended to generate large nearly orthogonal maxi-
min distance LHDs by combining the technique in this paper with the multiple 
doubling technique in Elsawah (2021). The initial results show that this idea is a 
promising idea and the results will be given in the future paper. (ii) The bi-objec-
tive criterion can be extended to multi-objective criterion by combining more 

Table 5  The orthogonality and ML
2
D of the newly constructed LHDs Łnew

�
 compared with the LHDs that 

are generated using the SA2008 function in the R package LHD

�max = max{�ij, i ≠ j} �mean = mean{�ij, i ≠ j} ML2D

� size SA2008 Ł
new
�

SA2008 Ł
new
�

SA2008 Ł
new
�

2 8×6 0.3095238 0.1904 0.10582011 0.037037 49 55
3 16×12 0.4088235 0.0941 0.12495915 0.009804 284 478
4 32×24 0.3771994 0.04692 0.09074108 0.002525 2663 3964
5 64×48 0.3191850 0.02344 0.08194182 0.000641 21940 32248
6 128×96 0.2981253 0.01171 0.06657851 0.000161 21940 32248
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criteria. For example, Elsawah and Fang (2019) constructed uniform minimum 
aberration designs by minimizing the generalized word-length pattern (GWLP, 
cf. Ma and Fang, 2001) and then minimizing the used uniformity criterion. How-
ever, combining these two criteria as the above-mentioned bi-objective criterion 
needs more attention, where the uniformity criterion is a scalar and the GWLP is 
a sequence. In such cases, the dictionary cross-entropy loss function from Weng 
et al. (2021) can be used to transfer (simplify) the GWLP from sequence to sca-
lar. The power of the combination of many criteria from this point of view will 
be investigated in our future work. (iii) Suppose that an experimenter begins the 
experimentation using the newly constructed LHDs. After the experiment is over 
or during the experimentation, some additional resources become available and 
the experimenter needs to afford more runs to the design. How does the experi-
menter pick the additional runs and augment the original LHD so as to get an 
optimal extended LHD? The future paper will provide an answer to this ques-
tion by combining the technique in this paper with the augmented techniques in 
Elsawah et  al. (2019)(cf. also Elsawah and Qin, 2016). (iv) Finally, the projec-
tion properties of the newly constructed LHDs need to be investigated and the 
relationship between a newly constructed LHD in the full-dimension and its low-
dimensional projections will be studied in the light of the results in Elsawah et al. 
(2019).

Appendix

Proof of Theorem 1 From Theorems 2 and 3 in Wang et al. (2015), we get the follow-
ing correlations between any i-th column and j-th column of HP22

�
 and Hnew

�

and

respectively. From Lemma 2, we get that C�−1 and SC�−1
 are orthogonal matrices, i.e.,

From (A1)-(A3), the proof can be completed.   ◻

Proof of Theorem 2 From Algorithm 1, we get

(A1)�ij(H
P22
�

) =
4(22� − 1)�ij(C�−1) + 3

22�+2 − 1
, 1 ≤ i ≠ j ≤ 2�−1

(A2)�ij(H
new
�

) =
4(22� − 1)�ij(C�−1) + 3�ij(SC�−1

)

22�+2 − 1
, 1 ≤ i ≠ j ≤ 2�−1,

(A3)�ij(SC�−1
) = �ij(C�−1) = 0, 1 ≤ i ≠ j ≤ 2�−1.

(A4)�max(Ł
new
�

) = max
{
�max(C�), �max(C� ,H

new
�

), �max(H
new
�

)
}
,
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where �max(C� ,H
new
�

) = max{�ij
(
C� ,H

new
�

)
, 1 ≤ i ≤ 2� , 1 ≤ j ≤ 2�−1} for any i-th 

column of C� and j-th column of Hnew
�

. From Theorem 1, Lemma 2 and (A4), we get

From Theorem 1 in Wang et  al. (2015), we get the following upper bound of the 
correlation between the i-th column of C� and any column j satisfying (a) and (c) in 
Lemma 1 (i.e., column of Hnew

�
)

From (A5) and (A6), we get the following upper bound of the maximum correlation 
between any distinct columns

(A5)�max(Ł
new
�

) = �max
(
C� ,H

new
�

)
.

(A6)∣ �ij
(
C� ,H

new
�

)
∣≤

3 × 2�

22�+2 − 1
.

Fig. 1  Correlations among the factors of the newly constructed LHD ( Łnew

�
 , left) and the existing LHD 

( ŁP22

�
 , right) for � = 2

Fig. 2  Correlations among the factors of the newly constructed LHD ( Łnew

�
 , left) and the exisitng LHD 

( ŁP22

�
 , right) for � = 3
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From (A7), the proof can be completed.   ◻

Remark A1 From Figs. 1, 2, 3, 4, it is obvious that the set of the correlations among 
the columns of C� and HP22

�

(A7)�max
(
Łnew
�

)
= max{�ij, 1 ≤ i ≠ j ≤ 2� + 2�−1} ≤

3 × 2�

22�+2 − 1
.

Fig. 3  Correlations among the factors of the newly constructed LHD ( Łnew

�
 , left) and the existing LHD 

( ŁP22

�
 , right) for � = 4

Fig. 4  Correlations among the factors of the newly constructed LHD ( Łnew

�
 , left) and the existing LHD 

( ŁP22

�
 , right) for � = 5
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has the same values as the set of the correlations among the columns of C� and Hnew
�

That is,

{�ij(C� ,H
P22
�

), 1 ≤ i ≤ 2� , 1 ≤ j ≤ 2�−1}

{�ij(C� ,H
new
�

), 1 ≤ i ≤ 2� , 1 ≤ j ≤ 2�−1}.

Fig. 5  L
2
-distances among the 2� runs of the LHD C� for � = 2 (left), � = 3 (median) and � = 3 (right)

Fig. 6  L
2
-distances among the runs of the newly constructed LHD ( Hnew

�
 , left) and the existing LHD 

( HP22

�
 , right) for � = 2
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From Lemma 2 and Theorem 1, we get

(A8)
2�∑

i(≠j)=1

2�−1∑

j=1

�ij(C� ,H
P22
�

) =

2�∑

i(≠j)=1

2�−1∑

j=1

�ij(C� ,H
new
�

).

Fig. 7  L
2
-distances among the runs of the newly constructed LHD ( Hnew

�
 , left) and the existing LHD 

( HP22

�
 , right) for � = 3

Fig. 8  L
2
-distances among the runs of the newly constructed LHD ( Hnew

�
 , left) and the existing LHD 

( HP22

�
 , right) for � = 4
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From (A8, A9, A10), we get

Therefore, the newly constructed LHDs Łnew
�

 have correlations among their 3 × 2�−1 
factors less than the correlations among the 3 × 2�−1 factors of the existing LHDs 
ŁP22
�

.   ◻

(A9)

3×2�−1∑

i(≠j)=1

3×2�−1∑

j=1

�ij(Ł
new
�

) =

2�∑

i(≠j)=1

2�∑

j=1

�ij(C�) +

2�∑

i(≠j)=1

2�−1∑

j=1

�ij(C� ,H
new
�

)

+

2�−1∑

i(≠j)=1

2�−1∑

j=1

�ij(H
new
�

)

=

2�∑

i(≠j)=1

2�−1∑

j=1

�ij(C� ,H
new
�

).

(A10)

3×2�−1∑

i(≠j)=1

3×2�−1∑

j=1

�ij(Ł
P22
�

) =

2�∑

i(≠j)=1

2�∑

j=1

�ij(C�) +

2�∑

i(≠j)=1

2�−1∑

j=1

�ij(C� ,H
P22
�

)

+

2�−1∑

i(≠j)=1

2�−1∑

j=1

�ij(H
P22
�

)

=

2�∑

i(≠j)=1

2�−1∑

j=1

�ij(C� ,H
P22
�

) +

2�−1∑

i(≠j)=1

2�−1∑

j=1

�ij(H
P22
�

).

𝜌mean(Ł
new
𝛼

) = mean{𝜌ij(Ł
new
𝛼

), i ≠ j} < 𝜌mean(Ł
P22
𝛼

) = mean{𝜌ij(Ł
P22
𝛼

), i ≠ j}.

Fig. 9  L
2
-distances among the runs of the newly constructed LHD ( Łnew

�
 , left) and the existing LHD 

( ŁP22

�
 , right) for � = 2
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Proof of Theorem 3 From Lemma 2 in Wang et al. (2018), we get the following upper 
bound of the ML2D for any mirror-symmetric U-type design with even number of 
runs n and s q-level factors d ∈ U(n, qs)

From Theorem  1 in Wang et  al. (2018), a mirror-symmetric U-type design 
d ∈ U(n, qs) with n = 2s achieves this upper bound if it is orthogonal. From Lemma 

(A11)ML2D(d) ≤
s(q2 − 1)

6
.

Fig. 10  L
2
-distances among the runs of the newly constructed LHD ( Łnew

�
 , left) and the existing LHD 

( ŁP22

�
 , right) for � = 3

Fig. 11  L
2
-distances among the runs of the newly constructed LHD ( Łnew

�
 , left) and the existing LHD 

( ŁP22

�
 , right) for � = 4
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2, we get C� is an orthogonal LHD with fold-over structure (i.e., mirror-symmetric 
U-type design), 2�+1 runs and 2� factors. From (A11) and this discussion, the proof 
is completed.   ◻

Proof of Theorem  4 From Lemma 1, for any column h = (h1, ..., h2�+1) of Hnew
�

 or 
H

P22
�

 we get

(A12)
{

|hi − hj|2 = 1, for any j = i + 2� and 1 ≤ i ≤ 2�;

|hi − hj|2 ≥ 1, otherwise.

Fig. 12  Maximum correlations vs minimum L
2
-distances for randomly generated 100 LHDs(10,8)

Fig. 13  The new bi-objective criterion vs maximum correlation and minimum L
2
-distance for the ran-

domly generated 100 LHDs(10,8) at � = 0.1



641

1 3

Journal of the Korean Statistical Society (2023) 52:621–646 

From (A12), the proof can be completed.   ◻

Proof of Theorem 5 From Theorem 1 in Pang et al. (2022), the 2ndML2D of the LHD 
H

P22
�

 is given as follows

Fig. 14  The new bi-objective criterion vs maximum correlation and minimum L
2
-distance for the ran-

domly generated 100 LHDs(10,8) at � = 0.9

Fig. 15  The new bi-objective criterion vs maximum correlation and minimum L
2
-distance for the ran-

domly generated 100 LHDs(10,8) at � = 0.5
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which is achieved only for the runs i = 1 and j = 2� + 2�−1 + 2�−2 + 1 and the runs 
i = 2�−2 + 1 and j = 2� + 2�−1 + 1. By the same technique as that in the proof of 
Theorem  1 in Pang et  al. (2022) with some calculations and obvious changes 
between the new Algorithm 1 in this paper and the algorithm in Pang et al. (2022) 
(cf. Remark 1), we can get the following 2ndML2D of the newly constructed LHD 
H

new
�

(A13)2ndML2D(H
P22
�

) =
1

3
23� −

3

4
22� +

1

6
2� ,

Fig. 16  The new bi-objective criterion of the newly constructed LHDs Łnew

�
 compared with the existing 

LHDs ŁP22

�
 for 2 ≤ � ≤ 9
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which is achieved for the runs i = 1 and j = 2� + 2�−1 + 2�−2 + 1 and the runs 
i = 2�−2 + 1 and j = 2� + 2�−1 + 1 (cf. Figures   6, 7, 8). From Theorems 3 and 4 
and Lemma 3, by the same technique as that in the proof of Theorem 2 in Pang et al. 
(2022) with some calculations, we get that

From (A11, A13, A14, A15, A16) with simple calculations, the proof can be com-
pleted.   ◻

Proof of Theorem 6 From Zhou and Xu (2015), we get the following upper bound of 
the ML2D

(A14)2ndML2D(H
new
�

) =
1

3
23� − 22�−1 −

1

12
2� ,

(A15)ML2D(Ł
P22
�

) =ML2D(C�) + 2ndML2D(H
P22
�

).

(A16)ML2D(Ł
new
�

) =ML2D(C�) + 2ndML2D(H
new
�

).

Fig. 17  The flowchart of the iterative algorithm for improving the performance newly constructed LHDs
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From Theorem 5 and (A17), we get

From (A18), the proof is completed.   ◻
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