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Abstract
Common methods for Bayesian prior elicitation call for expert belief in the form 
of numerical summaries. However, certain challenges remain with such strategies. 
Drawing on recent advances made in graphical inference, we propose an interactive 
method and tool for prior elicitation in which experts express their belief through a 
sequence of selections between pairs of graphics, reminiscent of the common pro-
cedure used during eye examinations. The graphics are based on synthetic datasets 
generated from underlying prior models with carefully chosen parameters, instead of 
the parameters themselves. At each step of the process, the expert is presented with 
two familiar graphics based on these datasets, billed as hypothetical future datasets, 
and makes a selection regarding their relative likelihood. Underneath, the param-
eters that are used to generate the datasets are generated in a way that mimics the 
Metropolis algorithm, with the experts’ responses forming transition probabilities. 
Using the general method, we develop procedures for data models used regularly in 
practice: Bernoulli, Poisson, and Normal, though it extends to additional univariate 
data models as well. A free, open-source Shiny application designed for these pro-
cedures is also available online, helping promote best practice recommendations in 
myriad ways. The method is supported by simulation.
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1 Introduction

Eliciting a prior for a Bayesian analysis demands special care due to a prior’s abil-
ity to strongly impact results. To this end, substantial literature has been written on 
prior elicitation. Garthwaite et al. (2005) provides an overarching summary of this 
literature while also detailing a four-stage process for prior elicitation that consists 
of four stages: (1) setup, (2) elicitation, (3) fitting, and (4) adequacy assessment. 
During the setup stage, the prior model, elicitation method to be used, and statistical 
summaries to be acquired from the expert are determined, and the expert is selected 
and trained. During the elicitation stage, the expert quantifies their knowledge in 
the form of the statistician’s desired summaries, e.g. mean and percentiles. During 
the fitting stage, the statistician converts the summaries into the hyperparameters 
of the prior model. The exercise concludes with the adequacy assessment stage, in 
which the expert is asked to assess whether the resulting prior accurately reflects 
their beliefs.

While many methods and tools have been developed to assist this process (Morris 
et al., 2014; Oakley & O’Hagan, 2010; Su, 2006), certain drawbacks remain. One 
issue is that, despite training, it can be difficult for experts to provide reliable esti-
mates of the quantities of interest. For example, it is not uncommon for the desired 
summaries to be convenient for the statistician but awkward for the expert due to a 
different cognitive framing of the phenomenon under study. Another, more serious 
challenge is the tendency to undervalue the elicitation process as a whole and focus 
resources almost exclusively on stages 2 and 3 (elicitation and fitting), which are 
the most mathematically challenging yet not necessarily the most important overall. 
These drawbacks undermine the process and threaten the quality of the analysis and 
its results.

In this article we use advances made in graphical inference to propose a novel 
graphical procedure for prior elicitation that tries to address these drawbacks. The 
resulting procedure promotes good practice by enforcing the elicitation process as 
a synergistic whole. Stage 1 of the Garthwaite program (setup) is done via the Ror-
schach procedure described in Sect. 3. For stage 2 (elicitation), rather than having 
the expert specify summaries directly, they make a series of specifications concern-
ing the relative likelihood of observing two datasets illustrated by graphics chosen 
to be familiar to the expert, e.g. bar charts, histograms, or Kaplan–Meier curves. In 
stage  3 (fitting), the expert’s specifications are converted into the parameter(s) of 
the prior model by fitting the model to the parameters used to create the datasets the 
expert selected in stage 2, which were proposed in such a way to enable such estima-
tion. Stage 4 (assessment) is enforced throughout by the selection of the graphics; it 
is also supported through a graphical review of the process at the end. We call the 
resulting method the phoropter method, a nod to the procedure commonly used by 
eye doctors to assess visual acuity and determine corrective lens power that pro-
cedes through a sequence of binary comparisons (“one or two? two or three? one or 
three?...”).

The process we outline is quite general for univariate data models, but we focus 
our attention on the four classic cases: (1) a Bernoulli data model with a beta prior, 
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(2) a Poisson data model with a gamma prior, (3) a normal data model ( �2 known) 
with a normal prior, and (4) a normal ( �2 unknown) data model with a normal-
inverse-gamma prior. The descriptions used for these can be adapted for more com-
plex modeling scenarios, e.g. regressions. Free web-based Shiny implementations 
for each of the scenarios are provided for free at https:// ccase ment. shiny apps. io/ 
graph icalE licit ation MCMC.

The article proceeds as follows. In Sect. 2 we discuss the prior elicitation process 
in practice: existing methods, advantages and disadvantages, and tools. In Sect. 3 we 
present two graphical procedures developed for statistical inference, the Rorschach 
and line-up, which we draw on for the proposed elicitation method. The proposed 
method follows in Sect.  4, followed by a demonstration of the Shiny app in Sec-
tion 5. Sect. 6 provides probabilistic justification for the inner workings of the proce-
dure. We conclude by summarizing the article in Sect. 7.

2  Prior elicitation in practice

Many prior elicitation methods have been developed. Nearly all of these are ana-
lytical in the sense that experts are asked to provide summaries of a parameter(s), 
and the summaries are converted into the hyperparameters of a predetermined 
prior model. Examples of such methods, which include the mode and percentile 
method, the probability density function method, the cumulative distribution func-
tion method, and the equivalent prior sample method, among others, are detailed in 
Garthwaite et al. (2005), Kahle et al. (2016), and O’Hagan et al. (2006).

To assist with the elicitation process, some of the methods have been imple-
mented in software packages. These tools may perform a range of functions, from 
facilitating the interaction with the expert, e.g. stage  1 or stage  4 components, to 
performing the conversion in stage 3. Examples include SHELF, the Sheffield Elici-
tation Framework, which runs in R (Oakley & O’Hagan, 2010); MATCH, the Mul-
tidisciplinary Assessment of Technology Centre for Healthcare Uncertainty Elici-
tation Tool, a more comprehensive browser-based tool and set of materials from 
the same general team (Morris et  al., 2014); BetaBuster, a Java applet that uses 
the mode/percentile method for eliciting a beta prior (Su, 2006); and Wolfram beta 
elicitation tool (Kahle et al., 2016), a Mathematica based tool that performs a simi-
lar function. Two additional tools, both interactive and graphical, operate in a web-
based Shiny app (Casement & Kahle, 2018) and Microsoft Excel (Jones & Johnson, 
2014).

All but one of these methods and tools have the experts speak directly to the value 
of the parameter. The others, developed by Casement and Kahle (2018), have the 
experts work directly with data. One concern with experts working with the value 
of the parameter is the expert’s ability to accurately quantify summaries that repre-
sent their belief in a parameter. The elicitation method employed may be sensitive 
to changes in the summaries, which could, in turn, undermine the accuracy of an 
analysis, as prior distributions play an important role in determining posteriors. For 
instance, when using the mode and percentile method, small changes in the value 

https://ccasement.shinyapps.io/graphicalElicitationMCMC
https://ccasement.shinyapps.io/graphicalElicitationMCMC
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of a percentile can dramatically alter how informative the resulting prior is (Blair, 
2017).

Undervaluing the elicitation process as a whole is a second and perhaps more 
important concern. The statistician must always ensure the expert is properly trained 
prior to the elicitation stage and that they engage in an observational level with the 
implications of their specifications. Many studies have concluded that people often 
exert overconfidence in their beliefs that directly results in estimates that are overly 
precise (see, for example, Keren, 1991; Lichtenstein et al., 1977; Lichtenstein & Fis-
chhoff, 1977; Oskamp, 1965). Such estimates jeopardize the accuracy of analyses if 
unduly informative priors are used, especially if the corresponding belief is incor-
rect. Of the elicitation tools discussed, only the Shiny app created by Casement and 
Kahle (2018) addresses the full elicitation process.

To address the concerns discussed in this section, we propose elicitation methods 
that not only simplify the process for the expert by allowing them to work with data 
rather than summaries of parameters, but that also treat the elicitation process holis-
tically. While Casement and Kahle (2018) do both as well, their methods rely on 
algorithms that possess a deterministic foundation (as is discussed in Sect. 4), while 
the methods proposed in this article rely on a stochastic foundation, which we detail 
in Sects. 4, 5 and  6.

3  Graphical procedures for statistical inference

We now briefly turn our attention to two graphical procedures for inference: the Ror-
schach and line-up procedures (Buja et  al., 2009; Wickham et  al., 2010). After a 
discussion of both, we draw on them for the graphical elicitation methods proposed 
in Sect. 4.

3.1  Rorschach procedure

The Rorschach procedure is a graphical device used to train an individual to better 
understand the natural variability that exists in a stochastic model. When performing 
the procedure, G datasets of reasonable size are randomly generated from the same 
distribution, called the “null” distribution (Wickham et al., 2010), and graphs of the 
datasets are plotted next to one another. The individual examines and compares the 
graphs, focusing on features they do and do not expect given the particular null dis-
tribution. Those features, both expected and unexpected, can be attributed to the nat-
ural variability of the underlying null distribution for the sample size selected. For a 
fixed sample size, the data model induces a distribution on the set of graphics, and 
the Rorschach procedure allows an expert to learn this distribution through a series 
of observations. So long as the graphing method is sufficiently granular with respect 
to the sample space of the data, the two can be considered equivalent.

The Rorschach procedure is illustrated in Fig. 1 for a Beta(0.5, 0.5) distribution 
and samples of size n = 500 . Natural variability clearly appears in each graph, as 
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none of the sixteen histograms shows a perfectly round bathtub shape. The Ror-
schach procedure thus improves an individual’s ability to understand such vari-
ability for the Beta(0.5, 0.5) distribution and decreases their chance of concluding 
a dataset does not come from that distribution simply because its graph does not 
appear exactly as expected. While the Rorschach procedure involves the inspec-
tion of graphics without any selections made (e.g. best or worst), the next proce-
dure described, the line-up, does. Thus, the Rorschach is a natural precursor to the 
line-up.

3.2  Line‑up procedure

The line-up procedure is a graphical goodness-of-fit test. To test a model using the 
line-up procedure, the model is fit to the data and the resulting distribution treated as 
the null. Next, G − 1 datasets, all of the same size as the initial dataset, are randomly 
generated from the null distribution, and graphs are plotted next to one another, with 
the plot of the real dataset randomly mixed in. The individual is then tasked with 

Fig. 1  Sixteen histograms, each of 500 random observations from the Beta(0.5, 0.5) distribution
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selecting the graph of the real data. If they successfully choose the real dataset, the 
null hypothesis is rejected, suggesting the real data do not come from the null distri-
bution. This is illustrated for assessing the homogeneity of variance assumption in a 
linear model in Fig. 2. For the solution to the example, see footnote.1

The two graphical inference procedures described here—the Rorschach and line-
up—are well suited for the graphical elicitation methods described in the follow-
ing section for two main reasons. First, the procedures are accessible to non-stat-
isticians, as they do not require a strong statistical background. Generally experts 
are familiar with common statistical graphics, and these can be adapted to the con-
text at hand. Second, the line-up—especially after the individual is trained using the 
Rorschach—allows them to visually assess whether a difference between graphics is 
meaningful based on their expertise.

Fig. 2  Fifteen scatterplots of simulated residuals, one of real residuals randomly mixed in

1 Graph 12 displays the real data.
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4  Stochastic graphical elicitation

In this section we describe the proposed method in detail. Before proceeding to 
the full description, however, we provide a colloquial explanation of how the 
method works on a simple paradigmatic example, that of eliciting a beta prior for 
a binomial probability. We then build on this to provide a full description of the 
scheme.

To begin, it is easiest to first understand a similar deterministic method proposed 
by the present authors in Casement and Kahle (2018). To that end, suppose a data 
model f� is assumed and a prior p� on � is desired. In particular, following the para-
digm suppose that f� is a binomial data model and a beta prior distribution p� is 
desired, so � = (�1, �2) = (�, �) . Using the strategy of Casement and Kahle (2018), 
the expert is presented with G = 5 (say) bar charts based on synthetic datasets of 
a fixed sample size N, where each dataset is generated using a different � value 
over a range of such values, and the expert is tasked with selecting the most realis-
tic dataset. After that is selected, another collection of G datasets is generated and 
displayed, and the expert is again tasked with selecting the most realistic. At each 
stage of the procedure the range of � values used is refined so as to hone in on a 
specific value the expert implicitly holds to be the most likely value of � . This value 
is considered to be the mode of the beta prior. Next, the expert is asked to specify 
about how many observations their past experience is based upon; this is under-
stood to be the effective sample size (ESS) of the beta prior (Morita et al., 2008). 
This pair of values can be then converted into the canonical (�, �) parameters of the 
beta model.

In this article we advance a similar method that does not require the expert’s 
specification of the ESS. The basic motivation exchanges the deterministic “hon-
ing in” strategy for randomly proposed values of � that are then accepted or 
rejected probabilistically in a manner similar to the Metropolis algorithm. Instead 
of being presented with G = 5 graphics, the expert is presented with G = 2 graph-
ics, each with the same sample size but generated using a current value of � and 
a proposed one. The expert specifies which is more likely to be observed in prac-
tice and roughly to what extent, and then the expert is presented with another 
such pair of graphics. After many such selections, the system is able to infer the 
expert’s belief distribution from the prior model. Thus, the proposed method 
is a kind of stochastic version of the method described in Casement and Kahle 
(2018).

4.1  Uniparameter data models

Elaborating on the above description, in the first step of the procedure the expert is 
asked to provide a typical observation x for the hypothetical future dataset of size 
N. This value x is converted to �(0) to initialize the algorithm. For example, for a 
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Bernoulli data model the initial parameter �(0) = p(0) is set at x/N, where x repre-
sents a typical number of successes in a trial of size N. For a Poisson or normal data 
model with �2 known, the initial parameter is set at �(0) = x and �(0) = x , respec-
tively. The expert then goes through Rorschach training using the distribution deter-
mined from this value.

After the expert is comfortable, they move on to the graphical generation and 
selection process. A proposed parameter value �prop is drawn from a N

(
�(0), ��

)
 

proposal distribution; this proposal is used for all scenarios in this article but could 
be adapted for different ones. Next, N values u are independently drawn from a 
Unif(0, 1) distribution and converted to observations from the distribution of inter-
est using inverse transform sampling. This results in two datasets: xcurrent = F−1

�(0)
(u) 

and xprop = F−1
�prop

(u) . The conversion is done in this way to allow for a direct com-
parison of the current and proposed parameter values based on a single original 
sample. Graphically, this amounts to the same dataset being either shifted or 
scaled (with possible re-binning for histograms) depending on the parameter of 
interest. Such a choice is used to best maintain the Metropolis foundation seen 
shortly.

Presented with graphical displays of xcurrent and xprop , the expert is tasked with a 
selection from a set of five options: the proposed plot is more likely than the cur-
rent, both plots are equally likely, or three options representing how much more 
likely the current plot is than the proposed plot. If the expert states the proposed 
graphic is more or equally likely, the proposed step is accepted as the new state of 
the sampler. These mimic the transition probabilities of a Metropolis sampler. On 
the other hand, if the expert feels the current graphic is more likely than the pro-
posed, then they must choose how much more likely the graphic is. In the Metrop-
olis algorithm, this value is used to determine the transition probability. Since 
the specification of such a precise number by an expert seems both implausible 
and cumbersome, we restrict this number—the odds of the proposed plot relative 
to the current plot—to one of three values determined via simulation to provide 
optimal results (see Sect.  6): O =

{
3, 25, 106

}
 . The expert’s choice of odds then 

determines the probability with which the proposed value will be accepted, as the 
odds and transition probability � are in one-to-one correspondence through the 
relationship

The expert is asked to make a total of M selections, with M large enough such that 
the algorithm has had sufficient time to provide a stable estimate of � , for instance 
via likelihood estimation. This procedure is summarized in Algorithm 1.

� =
1

Oselected
i

.



68 Journal of the Korean Statistical Society (2023) 52:60–82

1 3

4.2  Multiparameter data models

The procedure as previously described naturally generalizes to any uniparameter 
data model; however, the scenario is more complicated when data models with more 
than one parameter are used. We now discuss the procedure for a multiparameter 
data model, the N

(
�, �2

)
 with both � and �2 unknown.

For data models with only one unknown parameter � , the expert makes M total 
selections pertaining to � . The N

(
�, �2

)
 data model with �2 unknown has two 

unknown parameters � = (�, �2) , and the expert must make M selections for each. 
We chose the conjugate prior for this model, a normal-inverse-gamma(�0, �, �, � ) 
prior on � , as is common practice and as was done for the models discussed pre-
viously. The MLE �̂ = (�̂�0, �̂�, �̂�, 𝛽) of the hyperparameters � = (�0, �, �, �) is then 
computed once the expert has completed their selections.
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The first step of the procedure entails asking the expert for two quantities: a typi-
cal measurement value x for a hypothetical future dataset of size N, and the largest 
possible reasonable value xu for the dataset. Again, these values are only intended 
to calibrate the algorithm; they need not be correct in any conventional sense, and 
their precision is irrelevant. We then obtain initial values for the sampler by set-
ting �(0)

1
= x and �(0)

2
=

xu−x

3
 , the latter of which is used as a rough application of the 

empirical rule.
A proposed mean �prop

1
 is then drawn from a N

(
�
(0)

1
, ��1

)
 proposal distribution. 

Next, a sample u of size N is randomly drawn from a Unif(0,1) distribution and 
inverse-transformed using the normal quantile function with means of �(0)

1
 and �prop

1
 

and a common variance of �(0)
2

 : xcurrent = F−1

�
(0)

1
,�

(0)

2

(u) and xprop = F−1

�
prop

1
,�

(0)

2

(u) . Histo-

grams of xcurrent and xprop are then displayed side-by-side, and the expert must select 
one of five options, the same as those presented for the other data models. If the 
expert selects an option where the proposed and current plots are equally likely or 
where the proposed plot is more likely, then �prop

1
 becomes the new current mean 

step �(1)
1

 in the sampler, otherwise the proposal is accepted with probability 
1∕Oselected

i
 . If �prop

1
 is rejected, �(1)

1
= �

(0)

1
.

After one proposal in the mean parameter, the algorithm next turns its attention to 
the variance parameter, with the mean fixed at �(1)

1
 . A proposed variance �prop

2
 is 

drawn from a N
(
�
(0)

2
, ��2

)
 proposal distribution, and the previous process is repeated: 

xcurrent = F−1

�
(1)

1
,�

(0)

2

(u) and xprop = F−1

�
(1)

1
,�

prop

2

(u) . Histograms of xcurrent and xprop are 

again displayed side-by-side; the expert selects one of the five options; and �(1)
2

 is 
determined based on the option selected. The algorithm then refocuses on the mean 
and the process continues.

The procedure continues to cycle between the mean and variance, allowing 
only one parameter to vary at a time while fixing the other at its current value. 
This kind of movement has one key advantage: it allows the expert to make judg-
ments according to one parameter at a time. If the variables were both proposed 
simultaneously, one might envision a scenario where an expert likes one graph-
ic’s location more but another one’s scale more, and then cannot decide which to 
select.

The algorithm terminates after the expert has made M selections for each param-
eter, at which point hyperparameters are found by computing the MLE of the joint 
prior, resulting in a normal-inverse-gamma(�̂�0, �̂�, �̂�, 𝛽) prior on (�, �2) . The full pro-
cedure is presented in Algorithm 2.
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5  Shiny app

A free Shiny app that implements the methods previously described in R can be 
found at https:// ccase ment. shiny apps. io/ graph icalE licit ation MCMC (Chang et  al., 
2021; R Core Team, 2021). Its source code, which can be used as a template for 
other such apps as well as to check the implementation, can be found on GitHub 
at https:// github. com/ ccase ment/ graph icalE licit ation MCMC. In this section we 

https://ccasement.shinyapps.io/graphicalElicitationMCMC
https://github.com/ccasement/graphicalElicitationMCMC
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demonstrate the elicitation of a beta prior for a Bernoulli proportion through a series 
of screenshots of the app.

Suppose the expert expects x = 67 successes out of a hypothetical future data-
set of size N = 100 . They then proceed to the Rorschach training stage, where they 
are able to inspect randomly-generated datasets from Bernoulli distributions. Fig-
ure 3 displays bar charts of nine datasets of size N = 100 randomly generated from 
a Bernoulli(p = 0.67) distribution, where the proportion of 0.67 corresponds to the 
x∕N = 67∕100 input by the expert. The expert is also able to go through Rorschach 
training for other Bernoulli distributions and can generate new sets of random sam-
ples for further training.

Fig. 3  Before the graphical selection process begins, the expert can go through Rorschach training. Each 
bar chart displays a random sample of size n = 100 from the Bernoulli(p = 0.67) distribution

Fig. 4  At each step of the selection process, two graphics are presented to the expert, along with options 
for choosing between them
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After finishing the Rorschach training the expert moves to the graphical elici-
tation procedure detailed in Sect.  4. Two bar charts—one for a current parameter 
value and another for a proposed parameter value—are presented to the expert as 
displayed in Fig. 4. The expert selects one of the five buttons in blue, and new cur-
rent and proposed datasets are generated and plotted.

The selection process concludes and a prior is computed once the expert has 
made 100 selections (although this number is arbitrary). Figure 5 displays infor-
mation about the prior that is provided to the expert: the elicited prior family and 
the estimated hyperparameters, summaries of the prior, and a density plot. These 
plots and summaries enable the facilitator and expert to assess the adequacy of the 
prior distribution. In fact, additional options are provided to aid in the assessment, 
including one that allows users to view a kernel density estimate of the selec-
tions and another that calculates the probability the proportion is between any two 

Fig. 5  After the expert finishes the selection process, information regarding the elicited prior is presented

Fig. 6  A trace plot of the accepted proportions is also available
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values they specify. The app also provides a trace plot of the chain, as shown in 
Fig. 6. Further, the expert can download a PDF report of the results as well as a 
CSV file containing the chain.

6  Technical considerations

In this section we turn to technical details validating the inferential process run-
ning under the hood of the procedure described above. In particular, we address 
two main concerns: (1) how do we know that the proposed process will produce 
draws from the desired prior?; and (2) why is the odds set selected as it is?

The underlying mechanism that the procedure follows is that of the classic 
Metropolis algorithm, a Markov chain Monte Carlo (MCMC) algorithm [for in-
depth discussions on common MCMC methods, see Robert and Casella (2004)], 
using a Gaussian proposal with one assumption and one twist. The twist is that 
the transition probabilities � associated with the procedure are rounded to those 
dictated by the odds set. We call this algorithm—a Metropolis algorithm with 
rounded transition probabilities—a rigid Metropolis algorithm. Recall that the 
transition probability associated with the Metropolis algorithm is

Here, of course, p(�) is the desired prior distribution representing the expert’s 
knowledge, presumably acquired as the posterior of the expert’s previous experience 
with an uninformative prior. If � is allowed to be as defined above, i.e. if the expert 
could specify their probabilities as precise real values, standard theory dictates that 
the draws we obtain from the process are in fact derived from p(�).

The question we address in this section is how the rounding affects that stand-
ard theory, and in particular, how can the odds set, in this context called the 
rigid set, be selected so as to minimize the effect of the rounding? The answer is 
given by simulation: we simulate the rigid Metropolis algorithm using different 
odds sets and compare the distribution of those draws to the distribution of the 
draws we would have obtained had we not rounded the values. The comparison 
comes in the form of the total variation distance, described next. In brief, the 
answers to the above questions are that we have performed extensive simula-
tions that demonstrate that so long as the odds set is chosen carefully, the dif-
ference between the rigid Metropolis algorithm used in the app and the standard 
Metropolis algorithm is quantifiably small.

Before proceeding, we also need to state the assumption: that the expert is 
able to determine the ratio of prior densities from the two graphics. That is to 
say: that the expert’s specification of how much more likely the first plot is rela-
tive to the second in fact approximates the ratio p(�prop)∕p(�(t)) . This can to some 
extent be made technical. For a fixed � and graphical type (e.g. histogram with 

(1)� = min

(
1,

p(�prop)

p(�(t))

)
.
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specified bin width and boundary), the data model induces a probability measure 
on the space of graphics. For the two graphics provided, the expert’s judgment 
is therefore equivalent to the ratio of likelihoods with respect to that measure. 
In this work we assume that quantity is not materially different than the desired 
quantity p(�prop)∕p(�(t)).

6.1  Total variation distance

To measure the departure of the steady-state distribution from that of the 
Metropolis algorithm, we use the total variation distance (TVD). The TVD is a 
classic metric on the space of probability measures defined on the same meas-
urable space (Ω,B) . For probability measures P and Q on ( Ω,B ), the TVD is 
defined

It is the maximal discrepancy the two measures can ascribe to an event. A remark-
able fact about the TVD between probability distributions that admit densities with 
respect to the Lebesgue measure on ℝ is that it can be easily computed via an inte-
gral involving those densities:

a proof of which can be found in Resnick (2013).
To evaluate this integral, as well as to perform other TVD calculations in 

this article, we use TotalVarDist() from the distrEx R package (Ruck-
deschel et al., 2006). In the cases described, TotalVarDist() typically uses 
R’s stats::integrate() function for numerical integration, which uses an 
adaptive Gauss-Kronrod quadrature scheme.

6.2  Rigid Metropolis algorithm

To understand the simulations some notation is required first. To approximate 
the Metropolis algorithm with a rigid Metropolis one, we round the transition 
probability � to the nearest probability �̂� in a pre-specified vector of r probabili-
ties P =

{
p
rigid

1
, ..., p

rigid
r

}
 that we call the rigid set, resulting in a (100�̂�)% chance 

the proposed step is accepted. The remainder of the algorithm follows that of 
standard Metropolis.

As in any Metropolis procedure, certain tuning parameters need to be set 
before implementing the algorithm. In this article we always use a normal distri-
bution for generating proposals, and thus an appropriate standard deviation must 
be set. However, the rigid aspect of the Metropolis procedure entails two more 

(2)�(P,Q) = sup
A∈B

|P(A) − Q(A)|.

(3)�(P,Q) =
1

2 ∫
ℝ

|p(x) − q(x)|dx,
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selections: the number of probabilities in the rigid set and their distribution in 
(0, 1]. Ideally, for a given number of such probabilities they are determined in 
such a way that the asymptotic distribution of the rigid Metropolis procedure 
is as close as possible to the asymptotic distribution of the standard Metropolis 
procedure. In this article we propose a strategy to obtain near-optimal rigid sets 
of lengths r ≥ 2 and discuss simulation results for scenarios where r = 2 , 3, and 
4.

6.2.1  TVD for rigid Metropolis

When using MCMC procedures in a Bayesian analysis, the target distribution is 
typically the joint posterior distribution of the parameters. To assess the ability of 
rigid Metropolis to accurately approximate these distributions, we consider the TVD 
between the target posterior and that found using the rigid Metropolis procedure.

Suppose a data model f� is assumed with � ∈ � for a dataset y , and an unin-
formative conjugate prior p� with � ∈ H is assumed for � . The dataset y is based 
on the expert’s previous experiences, and the prior p� represents the expert’s beliefs 
about � before such experiences. We first find the target posterior p(�|y) , the asymp-
totic distribution of a chain using standard Metropolis, which is known for all dis-
tributions in this article but more generally could be estimated using the standard 
Metropolis sampler. We then compare this to the distribution p̂(�|y) estimated from 
the draws resulting from the rigid Metropolis process.

In this article we consider three common data models—the Bernoulli(p) , 
Poisson(�) , and N

(
�, �2

)
 with �2 known—and conjugate priors Beta(�, �) , 

Gamma(�, �) , and N
(
�0, �

2
0

)
 . It is worth noting that in the Bernoulli case, for exam-

ple, we assume that the prior is a Beta(1, 1) so that the target posterior is also a 
member of the beta family by conjugacy. Under standard Metropolis, that is also the 
stationary distribution of the chain. Through simulation, this appears to be the case 
for the rigid Metropolis as well, and we consequently used its samples to fit a beta, 
but in general it need not be. This does not present a problem for the algorithm: one 
can simply estimate p(�|y) directly from the data using any standard technique and 
then use p̂(𝜃|y) in the integral formulation of the TVD.

With the posteriors p(�|y) and p̂(𝜃|y) in hand, we can compute the TVD between 
them:

where p(�|y) and p̂(𝜃|y) are the PDFs corresponding to the target and rigid poste-
riors. We elected to use the form of the TVD specified in (4) due to the ease with 
which it can be computed numerically between continuous distributions, a charac-
teristic of all posteriors covered in this article.

(4)𝛿(p, p̂) =
1

2 ∫Θ

|p(𝜃|y) − p̂(𝜃|y)|d𝜃,
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Working with rigid Metropolis, however, requires a pre-specified vector of prob-
abilities P =

{
p
rigid

1
, ..., p

rigid
r

}
 of length r. We now formulate a procedure for deter-

mining an optimal P.

6.2.2  Rigid Metropolis transition probabilities

When determining appropriate rigid probabilities for P =
{
p
rigid

1
, ..., p

rigid
r

}
 , clearly r 

should be at least two, and those should indicate roughly “do not move” or “move”: 
p
rigid

1
= 10−6 and prigidr = 1 , for all lengths r. This smallest probability virtually pre-

vents the rigid Metropolis algorithm from getting stuck in an undesirable part of 
the parameter space. Next, the largest probability in P was fixed at 1. Such is the 
case when comparing proposed and current parameters in standard Metropolis – if 
the proposed step is at least as equally likely as the current step, the proposed is 
accepted with probability one.

With the lowest and highest values in P set, we now turn to finding additional 
probabilities for P . For data model f� , fixed number of probabilities r, and under-
lying parameter value �∗ of � , our initial goal is to find the set of probabilities that 
minimizes the expected total variation distance between p(�|y) and p̂(𝜃|y):

where the expectation is taken with respect to f�∗ . Solving this optimization problem 
exactly for a given �∗ , however, is analytically intractable in general, so computa-
tional methods are used. Accounting for the complexity of the process discussed 
later in this section, while simultaneously ensuring the theoretical MCMC founda-
tion of the process is maintained, we considered prigid

i
∈ {0.02, 0.04, 0.06, ..., 0.98} 

as candidate probabilities for prigid
2

, ..., p
rigid

r−1
∈ P , when r > 2.

To minimize (5) for data model f� , and for a fixed �∗ and rigid set of size 
r ∈ {2, 3, 4, ...} , we run a grid-search style process as follows. First randomly gener-
ate a sample y of size n from f�∗ . Second, find the target posterior p(�|y) for � ; this is 
a simple task since each of the priors used is conjugate. Next, approximate the pos-
terior p̂(𝜃|y) for � based on M iterations of the rigid Metropolis algorithm. In our 
simulations, this is done in a two-stage process: first generate the posterior values 
with the rigid Metropolis algorithm, rounding the true Metropolis transition proba-
bility to the closest in the rigid set, and then use those to fit parameter values �̂ (e.g. 
� and � of the beta distribution if the posterior is known to be beta) using maximum 
likelihood. After approximating p̂(𝜃|y) , calculate the TVD 𝛿

(
p(𝜃|y), p̂(𝜃|y)

)
 between 

the two posteriors according to (4). This is actually quite simple, since the true pos-
terior p(�|y) and p̂(𝜃|y) are both members of the same conjugate family, so they 
simply correspond to two distributions with different parameter values. One is 
known directly from the simulation setup and conjugacy, p(�|y) = p(�|y, �∗) , and 
one is determined through estimation, p̂(𝜃|y) = p(𝜃|y, �̂) . Perform this process T 

(5)P
⋆
(
𝜃∗
)
= argmin

P⊂(0,1],|P|=r
E
[
𝛿
(
p(𝜃|y), p̂(𝜃|y)

)||𝜃
∗,P

]
,
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times and average the total variation distances. Then repeat this entire procedure for 
all c possible combinations of r candidate probabilities in the rigid set, resulting in c 
average total variation distances. With the goal being to minimize 
E

[
𝛿
(
p(𝜃|y), p̂(𝜃|y)

)||𝜃∗,P
]
 , select the P that results in the smallest average total vari-

ation distance 𝛿
(
p(𝜃|y), p̂(𝜃|y)

)
.

With a procedure in place to obtain an optimal P for a given data model f� with 
a fixed parameter value �∗ , we now turn to our ultimate goal of obtaining an opti-
mal P for a given f� . To do so, we explore how P⋆ varies across Θ for a given f� by 
employing the procedure described above for various values of �∗ ∈ Θ . We analyze 
the results of this full process for three data models in Section 6.3.

6.2.3  Rigid Metropolis proposal standard deviations

The choice of a proposal standard deviation �� with data model f� is another impor-
tant consideration when working with MCMC methods. If �� is too small, then the 
sampler will not be very efficient; its values will be highly autocorrelated. As a con-
sequence for our application, the expert will have difficulty distinguishing between 
the proposed and current plots, as the proposed and current parameter values will 
often be close in magnitude. Additionally, far too many selections will be demanded 
of the expert. On the other hand, if �� is too large, many proposed values will be 
rejected, as they represent unrealistic scenarios or, in some cases, will be outside the 
parameter space.

As the expert makes a number of selections in the app that is small relative to 
the number of iterations typically used in practice, the proposal standard deviation 
used is an important choice for the successful elicitation of a prior that represents 
the expert’s beliefs. We found proposal standard deviations of �p = 0.05 , �� =

√
� , 

and �� =
√
� to be reasonable for Bernoulli (p) , Poisson (�) , and N

(
�, �2

)
 with 

�2 known data models, respectively. These standard deviations allow for efficient 
exploration of the parameter space when utilizing rigid Metropolis as well as in the 
graphical elicitation procedures, while being sufficiently large that they enable the 
expert to distinguish between plots in the Shiny app and reduce the need for thin-
ning, maximizing the information gained from every selection.

6.3  Results

We now assess the accuracy of the rigid Metropolis algorithm when used to 
draw samples from the posterior distribution for three data models in this arti-
cle: Bernoulli(p) , Poisson(�) , and N

(
�, �2

)
 with �2 known and priors Beta(�, �) , 

Gamma(�, �) , and N
(
�0, �

2
0

)
 . Since each of these priors is conjugate, the target pos-

terior distribution is known exactly. For each model we computed the average total 
variation distance between p(�|y) and p̂(𝜃|y) for various distributions: Bernoulli 



78 Journal of the Korean Statistical Society (2023) 52:60–82

1 3

with probabilities of 0.1 through 0.9, in increments of 0.1; Poisson with rates of 1, 
5, 10, 25, 50, 100; and N

(
�, �2

)
 with means of 0, 10, 25, 50, 100, and 500, all with 

a variance of 100.2 When doing so, we assumed relatively uninformative priors: 
Beta(1, 1) , Gamma(1, 1) , and N

(
0, 106

)
 , respectively. Additionally, for each scenario 

above, we used acceptance probability vectors of lengths r = 2 , 3, and 4. Further, for 
each case, we used T = 250 total iterations of n = 100 observations, each with M = 
5,000 MCMC iterations.

We first examine the case where r = 2 , for which the resulting vector of rigid 
MCMC transition probabilities is P =

{
10−6, 1

}
 . Summaries of the resulting total 

variation distances between p(�|y) and p̂(𝜃|y) for all cases considered can be found 
in Table  1, with 95% equal-tailed credible intervals displayed in the last column. 
Although the summaries of the total variation distances are reasonably small, we 
consider scenarios with r = 3 transition probabilities with the hope of obtaining 
smaller values.

For the case where r = 3 , P =
{
10−6, p

rigid

2
, 1
}
 . For each distribution and value 

of �∗ , plots were made that illustrated how the average TVD varied over the range 

Table 1  Total variation 
distance summaries for 
Bernoulli(p) , Poisson(�) , 
and N

(
�, �2 = 100

)
 

data models based on 
P =

{
10−6, 1

}
 , indicating 

that merely rounding the 
transition probability in 
the Metropolis algorithm 
yields an average error on 
the order of 10%

Data Model �∗ Mean � SD of � 95% CI for �

0.1 0.1213 0.0083 0.105–0.138
0.2 0.1138 0.0076 0.100–0.128
0.3 0.1094 0.0074 0.096–0.123
0.4 0.1055 0.0081 0.090–0.122

Bernoulli(p) 0.5 0.1060 0.0073 0.091–0.119
0.6 0.1064 0.0074 0.091–0.121
0.7 0.1092 0.0081 0.093–0.124
0.8 0.1134 0.0080 0.098–0.129
0.9 0.1202 0.0082 0.104–0.137
1 0.1243 0.0146 0.096–0.151
5 0.1270 0.0158 0.096–0.159

Poisson(�) 10 0.1268 0.0186 0.092–0.158
25 0.1266 0.0164 0.097–0.159
50 0.1261 0.0163 0.092–0.157
100 0.1246 0.0158 0.094–0.158
0 0.1245 0.0093 0.107–0.143
10 0.1249 0.0098 0.107–0.145

N
(
�, �2 = 100

)
25 0.1242 0.0085 0.109–0.143
50 0.1240 0.0094 0.104–0.143
100 0.1246 0.0092 0.104–0.141
500 0.1238 0.0091 0.105–0.140

2 Additional variances were considered, and the conclusions discussed in the following sections (as well 
as the proposal standard deviation used) are robust across reasonable ranges of �2.
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Table 2  Total variation distance 
summaries for Bernoulli(p) , 
Poisson(�) , and N

(
�, �2 = 100

)
 

data models based on 
P =

{
10−6, p

rigid

2⋆
, 1
}
 , indicat-

ing that three rigid probabilities 
improve on two (simple round-
ing), leaving an average error of 
about 4–5%

Data Model �∗ p
rigid

2⋆
Mean � SD of � 95% CI for �

0.1 0.28 0.0450 0.0094 0.027–0.063
0.2 0.28 0.0389 0.0098 0.021–0.058
0.3 0.30 0.0375 0.0107 0.017–0.057
0.4 0.32 0.0357 0.0098 0.017–0.053

Bernoulli(p) 0.5 0.34 0.0351 0.0101 0.016–0.054
0.6 0.36 0.0359 0.0102 0.017–0.053
0.7 0.36 0.0371 0.0097 0.018–0.055
0.8 0.32 0.0390 0.0097 0.019–0.055
0.9 0.28 0.0449 0.0095 0.026–0.061
1 0.26 0.0476 0.0163 0.014–0.077
5 0.24 0.0480 0.0172 0.014–0.078

Poisson(�) 10 0.26 0.0493 0.0175 0.017–0.086
25 0.26 0.0475 0.0167 0.014–0.079
50 0.24 0.0466 0.0185 0.014–0.083
100 0.20 0.0479 0.0197 0.013–0.085
0 0.26 0.0455 0.0104 0.024–0.064
10 0.32 0.0457 0.0101 0.025–0.065

N(�, 100) 25 0.28 0.0444 0.0104 0.025–0.065
50 0.28 0.0455 0.0103 0.025–0.063
100 0.26 0.0453 0.0112 0.024–0.068
500 0.24 0.0459 0.0111 0.024–0.069

of the new transition probability prigid
2

∈ {0.02, ..., 0.98} . In every case, these illus-
trated the same general pattern: a smooth, near parabolic curve with a clear global 
minimum. More, these minima are constant across the different values of �∗ used. 
These minima are taken to be prigid

2
 in their respective cases. Summaries of the 

total variation distances for r = 3 are presented in Table 2, indicating substantial 
improvements from rigid sets of size 2: adding a third probability significantly 
improved performance.

For the case where r = 4 , P =
{
10−6, p

rigid

2
, p

rigid

3
, 1
}
 , a similar picture was 

observed: regardless of �∗ , the same or substantially similar values of prigid
2

 and 
p
rigid

3
 were found to be optimal, and when these are used we find another sig-

nificant reduction in the average TVD, to around 2 to 3%. This is illustrated in 
Table 3.

Obviously, as r increases, the results of the rigid Metropolis algorithm 
must converge to that of standard Metropolis. Seen another way: computer 
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implementations of the Metropolis algorithm are simply rigid Metropolis with 
a very high r. Having attained a desirably low average TVD, we conclude our 
simulations with r = 4 . For the three uniparameter data models considered in this 
article, we found the rigid set P =

{
10−6, 0.04, 0.34, 1

}
 strikes a suitable balance 

for both the rigid procedure and the Shiny app in achieving the following goals: 
(1) keeping r at a small value, (2) selecting odds experts can reliably attest to, 
(3) maintaining the theoretical foundation of Metropolis, and (4) attaining a suf-
ficiently small average total variation distance.

7  Conclusion

While methods and tools have been developed that enable experts to inject their 
beliefs into a Bayesian analysis through the use of an elicited prior, the methods 
possess certain drawbacks. To this end, we have proposed an interactive graphi-
cal procedure for prior elicitation that promotes best practice by allowing experts 
to work with data rather than parameters, as we believe experts can more reliably 
attest to the former than the latter. We also describe an accompanying free Shiny 

Table 3  Total variation distance 
summaries for Bernoulli(p) , 
Poisson(�) , and N

(
�, �2 = 100

)
 

data models based on 
P =

{
10−6, 0.04, 0.34, 1

}
 , indi-

cating that four rigid probabili-
ties improve on three, leaving an 
average error around 3%

Data Model �∗ Mean � SD of � 95% CI for �

0.1 0.0341 0.0099 0.014–0.052
0.2 0.0284 0.0103 0.009–0.047
0.3 0.0286 0.0110 0.006–0.046
0.4 0.0286 0.0108 0.007–0.048

Bernoulli(p) 0.5 0.0291 0.0114 0.007–0.050
0.6 0.0281 0.0106 0.007–0.048
0.7 0.0285 0.0110 0.006–0.051
0.8 0.0290 0.0098 0.010–0.048
0.9 0.0341 0.0101 0.014–0.052
1 0.0344 0.0156 0.008–0.065
5 0.0348 0.0163 0.006–0.072

Poisson(�) 10 0.0332 0.0181 0.006–0.072
25 0.0356 0.0155 0.007–0.067
50 0.0362 0.0164 0.006–0.069
100 0.0334 0.0159 0.008–0.066
0 0.0294 0.0101 0.010–0.048
10 0.0289 0.0104 0.007–0.051

N(�, 100) 25 0.0304 0.0106 0.011–0.052
50 0.0284 0.0098 0.010–0.045
100 0.0292 0.0098 0.010–0.048
500 0.0300 0.0107 0.006–0.049
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implementation which not only enables experts to use the proposed methods, but 
also leads them through the full elicitation process in a synergistic way, emphasizing 
often undervalued stages such as expert training and post-elicitation verification of 
the elicited prior, rather than focusing solely on the elicitation and fitting stages.

The proposed prior elicitation procedure, which treats an elicited prior as the 
posterior of an expert’s previous experience, is based on rigid Metropolis, a vari-
ation on standard Metropolis where only a finite number of transition probabili-
ties are used. To assess the accuracy of the rigid MCMC process in three cases of 
practical import, we use the total variation metric to measure the distance between 
the target posterior distribution and that found using a rigid MCMC. We have 
found the rigid set P =

{
10−6, 0.04, 0.34, 1

}
 strikes a sensible balance between 

simplicity for the expert in the elicitation process in the app and accuracy.
The procedure opens the door to a new line of research for eliciting priors. 

Additional considerations include developing similar procedures for multivari-
ate data models and theoretically connecting the acceptance probability from the 
Metropolis algorithm to that used in the proposed procedures.
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