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Abstract
We consider modeling of Fourier coefficients, known as a spectral density func-
tion to represent spatial dependence of a stationary spatial random field and use it 
for spatial regression under a Bayesian framework. Especially, we switch from the 
space domain to the frequency domain and introduce a Gaussian process prior to 
the log spectral density. As we do not impose any further assumption on log spectral 
density, resulting covariance function is not of a parametric form and/or isotropic 
assumption. Simulation study supports that our approach is robust over various para-
metric covariance models. Also, our approach gives comparable or better prediction 
results over conventional spatial prediction under most parametric covariance mod-
els that we considered. Even though we need to estimate spectral density at all Fou-
rier frequencies during the Bayesian procedure, our approach does not lose much 
computational efficiency compared to estimating only a few parameters in the para-
metric covariance models. We also compare our approach with some other existing 
spatial prediction approaches using two datasets of Korean ozone concentration. Our 
approach performs reasonably good in terms of mean absolute error and root mean 
squared error.

Keywords Spatial regression · Spectral density · Periodogram · Gaussian process 
prior

1 Introduction

When considering a spatial process, dependence of the process is typically modeled 
by its covariance as a function of spatial locations and stationarity is often further 
assumed, which indicates that the covariance is a function of the difference between 
two spatial locations. The dependence structure of the spatial process affects esti-
mation in spatial regression and spatial prediction. Statistical methods to analyze 
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spatial data have enabled us not only to make statistical inference about the spatial 
distribution, but also to predict values of a variable of interest at unmonitored loca-
tions (Cressie 1993; Gelfand et al. 2010; Stein 1999), which requires a covariance 
estimate in either parametric or non-parametric way. An empirical covariance func-
tion at different lags by non-parametric estimates can be used to construct the covar-
iance matrix, but positive definiteness could fail depending on an estimation method 
(Cressie 1993). Instead, one can consider a parametric structure of a covariance 
function such as spherical, Matérn, or powered exponential covariance functions 
and use the least square methods or maximum likelihood estimation for estimating 
their unknown parameters. However, this approach still has a possibility of model 
misspecification of the covariance structure, which may cause inaccurate infer-
ence for regression coefficients or poor prediction of a variable of interest. Also, it 
requires computation of a matrix inversion which causes great computational burden 
for high-dimensional spatial data as the spatial covariance matrix is a dense matrix 
(Aune et al. 2014; Gelfand et al. 2010). Furthermore, typical isotropy assumption is 
rather limited as it is frequently violated in many real world applications.

Recently developed methodologies have made great progress in fitting a compli-
cated shape of spatial distribution and handling large spatial data. Low-rank approx-
imation approach approximate the spatial process as a linear combination using a set 
of a priori designed basis functions that is fixed in number (Cressie and Johannesson 
2008; Katzfuss and Cressie 2011; Stein 2008). Lattice Kriging considers multireso-
lution radial basis functions, which results in faster computation (Nychka et al. 2002, 
2015). Predictive process approach (Banerjee et  al. 2008; Finley et  al. 2009) uses 
a set of knot locations on which the process is approximated in the form of basis 
functions representation under a Bayesian framework. Multiresolution approxima-
tions (Katzfuss 2017; Katzfuss and Gong 2017) also uses basis function represen-
tation with compactly supported basis functions at different resolutions, which can 
be adapted to any given covariance function. Stochastic partial differential equation 
approaches (Lindgren et  al. 2011) approximate a Gaussian process with a Matérn 
covariance function with a Markov random field, which bring an efficient calcula-
tion of a likelihood.

Different from the approaches which make use of a basis function representation 
of a spatial process in some way, covariance tapering creates a sparse covariance 
matrix by multiplying compactly supported covariance function to increase com-
putational efficiency and such approximation is theoretically investigated in Furrer 
et al. (2006), Kaufman et al. (2008) and Du et al. (2009). Spatial partitioning also 
creates a sparse covariance matrix by assuming independence between observations 
across partitioned subregions and various options for partitioning are suggested in 
Sang et al. (2011), Kim et al. (2005), Heaton et al. (2017) and Konomi et al. (2014). 
Nearest neighbor Gaussian process uses conditional specification of spatial pro-
cesses to model a sparse structure of a covariance matrix which enables efficient 
computation (Datta et al. 2016).

On the other hand, there are algorithmic approaches in handling spatial data. 
Metakriging (Guhaniyogi and Banerjee 2018) is an approximate Bayesian method 
that introduces a combined posterior by subset posteriors from partitioned locations. 
The gapfill method (Gerber et al. 2018) is purely algorithmic and distribution-free. 
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The approach chooses a subset in a neighborhood and prediction is based on sorting 
algorithms and quantile regression. Local approximation Gaussian process approach 
(Gramacy and Apley 2015) focuses on prediction by training a Gaussian process 
predictor using the values nearby the prediction location based on a criterion related 
to mean squared prediction error. The algorithm allows adaptive selection of the 
number of the neighbors for training.

An alternative way to study spatially structured processes is the spectral repre-
sentation approach. Note that any stationary process can be represented as a super-
position of random harmonic oscillations, i.e. it can be represented by some modi-
fication of the conventional Fourier integral (Whittle 1954; Yaglom 1987). Spectral 
analysis is a study of the spectral measure or spectral density function, which is 
a Fourier coefficient for the sinusoidal component of a covariance (Gelfand et  al. 
2010). Once we define a spectral density function for a covariance function in a 
space domain, spatial dependency can be also modeled by spectral density because 
of one-to-one correspondence between them. In time series analysis, spectral meth-
ods are widely studied and the related theories are well-established (Brillinger 2001; 
Priestley 1981). Especially, several studies for spectral density estimation and its 
application in time series regression have been already presented (Carter and Kohn 
1997; Choudhuri et al. 2004; Dey et al. 2018). Once we regard a temporal structure 
as a one-dimensional spatial structure, several aspects of spectral methods in time 
series analysis can be generalized into the process with more than one-dimension. 
Also, there are wide applications whose data are available on a grid so that a spec-
tral method can be applied naturally.

Royle and Wikle (2005) and Paciorek (2007) consider representation of a spa-
tial process using a spectral process so that the corresponding covariance matrix is 
decomposed into the orthogonal matrix with Fourier basis functions and the diago-
nal matrix with the values of the spectral density. This construction helps more effi-
cient computation but it is under parametric modeling of spectral density. Reich and 
Fuentes (2012) used a Dirichlet process prior for spectral density so that the result-
ing covariance function is flexible. Guinness and Fuentes (2017) considers discrete 
spectral approximation of a covariance function so that the approximated covariance 
matrix has a nested block circulant structure which is computationally efficient and 
circulant embedding can be done in a smaller size compared to Stroud et al. (2017). 
However, the approach is under parametric modeling of the spectral density. Guin-
ness (2019) proposes an iterative imputation approach to estimate spectral density 
non-parametrically from incomplete lattice data. This work has been extended to 
multivariate and spatial-temporal data (Guinness 2018).

We introduce non-parametric modeling of a spectral density under a Bayesian 
framework by considering a Gaussian process prior on log spectral density which 
leads estimation of a spatial covariance matrix more flexible. Prediction is made 
concurrently during Bayesian inference. Our work is an extension of Carter and 
Kohn (1997) and Dey et al. (2018) in that we consider a spatial process. In addition, 
we extend the method to handle incomplete lattice data. Given the Gaussian process 
prior, we expect that our approach produces robust prediction results regardless of 
a covariance structure as we do not assume any parametric nor isotropic model on 
the covariance function. The works by Guinness (2019, 2018) are comparable to 
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our approach as the spectral density is estimated non-parametrically on incomplete 
lattice data but it has a different flavor as we handle estimation under the Bayesian 
framework. The work by Reich and Fuentes (2012) is a Bayesian approach and pro-
poses a flexible modeling for spectral density but it can be computationally demand-
ing due to the nature of posterior sampling with a Dirichlet process prior.

In the empirical results section, we compare our approach with a parametric 
Bayesian approach in the simulation study and found that our approach performs 
well for smooth processes. We then compare our approach with some other methods 
in terms of prediction using two real datasets. Our approach performs reasonably 
good in terms of mean absolute error and root mean squared error.

The rest of the paper is organized as follows: Sect. 2 introduces spectral methods 
and model description in detail. Section  3 provides simulation results for estima-
tion and prediction for various scenarios, and real data analysis with two Korean 
ozone exposure studies. Section 4 provides a conclusion and some related discus-
sion. The codes for implementing the proposed method is available at https:// github. 
com/ junpe ea/ NSBSR.

2  Models and methods

2.1  Preliminaries

A spatially distributed variable is typically modeled as a continuously indexed sto-
chastic process, {Y(s) ∶ s ∈ D ⊂ Rd} , where D is a study region of interest, s rep-
resents a point of coordinate in D. Under a common regression structure, we con-
sider Y(s) = �(s;X) + �(s) , where �(s;X) is a deterministic mean function including 
explanatory variables X with its popular choice �(s;X) = X(s)� and �(s) is a zero 
mean stationary spatial process with a spatial dependence structure. We can fur-
ther decompose �(s) = ��e(s) , where �2

�
= Var(�(s)) is a marginal variance and 

e(s) is a normalized process characterized by a correlation function c(⋅) such that 
Cov(e(s), e(t)) = c(s − t) , which is a common assumption for spatial data. In other 
words, we consider the following model.

In addition, we assume that Y is a Gaussian process which is well accepted for trac-
table modeling.

We defined e(⋅) in (1) as a zero mean stationary Gaussian process in Rd with a 
correlation function c(⋅) . With additional assumption of mean squared continuity, 
the correlation function can be represented in the following Fourier integral form

where F is a positive finite measure called a spectral measure. We further assume 
that F is absolutely continuous so that it has a Radon–Nikodym derivative with 

(1)Y(s) = X(s)� + 𝜎𝜖e(s;c), s ∈ D ⊂ Rd.

(2)c(s) = ∫Rd

exp(�wts)F(dw),

https://github.com/junpeea/NSBSR
https://github.com/junpeea/NSBSR
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respect to Lebesgue measure, f = dF

dw
 , which is called a spectral density. The spectral 

density can be recovered by inverse Fourier transformation from c(⋅):

The periodogram is a well-known non-parametric estimate of the spectral density 
using the data observed on regularly spaced lattice. For two dimensional space 
domain ( d = 2 ), assume that observed data are located at n1 × n2 regular grid over a 
rectangular study region D ⊂ R2 . Let � = (�1, �2) be the spacing between neighbor-
ing observations in each direction. Then, periodogram is defined as follows:

where

for w = (w1,w2) ∈ W2
�
= [−�∕�1,�∕�1) × [−�∕�2,�∕�2).

In1n2
(w) are exponentially distributed with mean 

f�1�2 (w) =
∑

Q1∈Z

∑
Q2∈Z

f
�
w1 +

2�Q1

�1
,w2 +

2�Q2

�2

�
 , where Z is the set of integers and 

they are asymptotically independent at distinct Fourier frequencies. These properties 
can be obtained by the same arguments used for a time series and Gaussian assumption 
(Brillinger 2001) since we consider a spatial process on a lattice, where � is fixed and 
the observation domain is increasing as the sample size is increasing. Similar results for 
a spatial lattice process when the spacing is decreasing while the observation domain is 
fixed are introduced in Lim and Stein (2008). Also, In1n2 is symmetric around the half 
of the Fourier frequencies, i.e. In1n2(w1,w2) = In1n2

(
2�

�1
− w1,

2�

�2
− w2

)
 for w ∈ W2

�
.

2.2  Proposed model

Assuming n1 × n2 regular grid over a rectangular study region D ⊂ R2 , let |D1| be the 
length of D in x-axis, |D2| be the length of D in y-axis, and N = n1n2 be the sample 
size. We denote a complete set of regularly spaced locations 
S�
com

= {sjk = (sj, sk) = (j�1, k�2);j = 0, 1,… , (n1 − 1), k = 0, 1,… , (n2 − 1)} , where 
�1 =

|D1|
n1

, �2 =
|D2|
n2

 . We first consider completely observed samples 
(Y,X) = {(Yjk,Xjk) = (Y(sjk),X1(sjk),… ,Xp(sjk));∀sjk ∈ S�

com
} , where p is the number 

of covariates. Then, the model (1) using the data becomes 
Yjk =

∑p

r=1
Xrjk�r + ��ejk, for j = 0, 1,… , (n1 − 1), k = 0, 1,… , (n2 − 1) and its 

matrix form is

where � = (�1,… , �p)
t and e = (e1,… , eN)

t.

(3)f (w) =
1

(2�)d ∫Rd

exp(−�wts)c(s)ds.

(4)In1n2
(w1,w2) =

1

4�2n1n2

|||Dn1n2
(w1,w2)

|||
2

,

(5)Dn1n2
(w1,w2) =

n1−1∑
j=0

n2−1∑
k=0

e(j�1, k�2) exp[−�(w1j�1 + w2k�2)]

Y = X� + ��e,
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Given e , we can obtain the periodogram In1n2 at the Fourier frequencies. Due to 
the symmetry, we only need the first half of them. Recall that In1n2 are exponen-
tially distributed and asymptotically independent at distinct Fourier frequencies. 
The exponential density expression for In1n2 can be viewed as a Whittle likelihood 
by considering it as an approximation of the Gaussian density for e (Whittle 1954). 
Carter and Kohn (1997) introduced a five-component mixture Gaussian distribution 
as approximation of the distribution of the logarithm of an exponential distribution 
so that we use Carter and Kohn (1997)’s approximation for log In1n2 . That is,

with � having distribution �(�) such that

where �v(⋅ − �) is a normal density function with mean � and variance v2 . The 
weights (pl) , means ( �l ) and standard deviations ( vl ) of the five components in the 
mixture Gaussian distribution to match the density of the logarithm of an exponen-
tial distribution are provided in Carter and Kohn (1997) and we also provide them in 
the Appendix.

Let � be a latent variable that indicates a component in (7), � be a vector of 
log In1n2(w) and � be a vector of log f�1�2(w) . We pursue a hierarchical model and 
Bayesian inference by considering a Gaussian process prior (GP) for log f�1�2(w) 
with mean function �(⋅) and covariance function �(⋅, ⋅) , and appropriate priors for 
hyper-parameters. The model and prior specifications are summarized as follows: 

1. Data model:
  (a) Y = X� + ��e (space domain)
  (b) � = � + � (frequency domain)
2. Process model:
  � ∼ GP(�(⋅), �(⋅, ⋅)) with �(w) ≡ 0 and
  �(w1,w2) = �−1

�
exp(−��1 |w11 − w21| − ��2 |w12 − w22|) ,  wi = (wi1,wi2) for 

i = 1, 2.
3. Parameter models:
  � ∼ N(��1, �

2
�
I),

  P(� = l) = pl , for l = 1,… , 5 ; ��1 , ��2 ∼ Unif (0, �0) for some 𝜌0 > 0 , 
�� = 1∕�2

�
∼ G(a, b) , �� ∼ G(c, d),

  where G(a, b) is the Gamma distribution with mean ab.

We consider a Gibbs sampler from the above hierarchical structure by obtaining 
conditional posterior distribution of each parameter given the data and other param-
eters. The detail construction of conditional distributions is given in the Appendix.

Once we obtain R Gibbs samples, we predict Y over a given study 
region D at unmonitored locations. In Bayesian framework, prediction of 
Y is based on conditional expectation E(Y|Yobs) given the observed data, 

(6)log In1n2 (w) = log f�1�2 (w) + �(w)

(7)�(�) =

5∑
l=1

pl�vl
(� − �l),
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Yobs . Given Gibbs samples, prediction of Y(s0) at an unmonitored loca-
tion s0 ∈ D is given as Ŷ(s0) =

1

R

∑R

r=1
E(Y(s0)�Yobs;�̂ (r)

, 𝜎𝜖
(r), �̂

(r)
) with 

E(Y(s0)|Yobs;�̂�, 𝜎𝜖 , �̂�) = X(s0)�̂� + ĥ
t
𝜞

−1
(Yobs − X�̂�) , where ĥ = �Cov(e, e(s0)) and 

�̃ = �Cov(e) (Cressie 1993). The prediction error variance of Y is similarly obtained.
To obtain Gibbs samples and prediction results, we need to compute a matrix-

vector multiplication involving 𝜞
−1 . If the sites at S�

com
 are ordered from top to bot-

tom and from left to right, the Eq. (5) leads to the covariance matrix 𝛤  being n2 × n2 
block circulant matrix, where each block is also circulant of the size n1 × n1 . We 
adopt the approach by Anitescu et al. (2012) which makes use of this block-circulant 
of circulant blocks (BCCB) structure for efficient computation of 𝜞

−1
ĥ . The detail 

explanation is given in the Appendix.
The computation of ĥ requires an additional technique. The covariance estimates 

retrieved by the estimated spectral density are only at lags in the form of (j�1, k�2) 
and this is not enough to reconstruct ĥ since it requires covariance estimates at a 
finer resolution. However, an interpolation of the estimated spectral density, analo-
gous to the approach by Dey et al. (2018) is no longer applicable due to an aliasing 
effect of the spectrum of sample observations (Gelfand et al. 2010). To resolve this 
issue, we consider an interpolation of covariance estimates at a coarser resolution 
to get the covariance estimates at a finer resolution so that we can construct ĥ . For 
example, ĉ(0.5𝛿1, 0.5𝛿2) is obtained by bilinear interpolation with four neighboring 
values, ĉ(0, 0) , ĉ(𝛿1, 0) , ĉ(0, 𝛿2) , ĉ(𝛿1, 𝛿2).

Our approach requires to sample � , logarithm of the spectral density at the Fou-
rier frequencies per Gibbs iteration, which can be time consuming. However, we 
argue that it does not lose much computational efficiency compared to a conven-
tional Bayesian spatial regression method under a parametric set-up. This is partly 
due to the fact that we used discrete Fourier transform (DFT) by taking advantage of 
fast Fourier transform (FFT) algorithm (Bracewell 1986; Cooley and Tukey 1965), 
whose computation cost is O(n1n2 log(n1n2)) . Also, due to symmetry of the spectral 
density and the periodogram about the origin, we only need to consider the first half 
of Fourier frequencies. If we permit to impose more restriction on the true spectral 
density such as isotropy, we can further improve computation speed and save memo-
ries by considering about one fourth of the frequencies.

2.3  Proposed model for observations on an incomplete grid

Let �jk be a variable for indicating if Y is observed at sjk ∈ S�
com

 . That is, �jk = 1 if 
Y(sjk) is observed and �jk = 0 if it is missing. Now we consider a complete set which 
includes observations as well as missing values with indicators:

Recall that the matrix form of the model using the data is

(Y, � ,X) =
{
(Yjk, �jk,Xjk) = (Y(sjk), �(sjk),X1(sjk),… ,Xp(sjk))

}
.

Y = X� + ��e.



615

1 3

Journal of the Korean Statistical Society (2022) 51:608–631 

Suppose that both X and Yobs are observed but Ymis is missing at random given 
observations, where Yobs is an observed part and Ymis is a missing part of Y . Let 
� = (� t, �� ,�

t,� , �� , ��1 , ��2)
t be a vector of the entire model parameters. In Bayes-

ian inference, it is common to treat Ymis as a vector of latent variables. Then, we 
can augment missing observations by sampling from the conditional probabilities of 
missing observations, hmis = P(Ymis|Yobs, � ,�) in the MCMC procedure described 
in Sect. 2.2.

With Gaussian assumption of Y , we can easily show that hmis follows a multivari-
ate normal distribution. Note that

so that the conditional distribution of Ymis given Yobs and � is

where �mis|obs = Xmis� +�21�
−1
11

(
Yobs − Xobs�

)
 and �mis|obs = �22 −�21�

−1
11
�12 . 

�11 , �12 , �21 and �22 are to be recovered from our model parameters. Then, Bayes 
formula gives

When we assume the missingness of Y occurs at random conditioning on both 
observed data and model parameters, i.e. P(�|Y,�) = P(�|Yobs,�) , then the com-
ponent is nothing but a constant with respect to the unknown quantities Ymis given 
Yobs , and � (Kim and Shao 2013). Therefore, we can get the samples from hmis by 
sampling from �(Ymis|Yobs,�) within the proposed Gibbs sampler.

3  Empirical results

3.1  Simulation study

In this section, we show performance of the proposed approach in terms of esti-
mation and prediction. Then, we compare with a parametric Bayesian approach 
under various simulation settings. We consider a regular grid over a rectangular 
study region D, denoted by S�,n , in which the distance between neighboring obser-
vations in each direction is � and the length of each direction is n. In other words, 
S�,n = {sjk = (sj, sk) = (j�, k�), j, k = 0,… , ⌊(n − 1)∕�⌋} , where ⌊x⌋ is the great-
est integer less than equal to x. We consider two covariates X1 and X2 in addition 
to a constant term. X1 is generated from a mixture of two normal distributions, 
i.e. X1 = p�1 + (1 − p)

√
5�2; p ∼ Ber(0.5), �1, �2 ∼ N(0, 1) , and X2 is generated 

from a standard exponential distribution. The regression coefficients, � , is set to 
� = (�0, �1, �2)

t = (0.01, 0.02, 0.03)t.

(
Yobs

Ymis

)
∼ N

((
Xobs�

Xmis�

)
,

[
�11 �12

�21 �22

])

Ymis|(Yobs,�) ∼ N
(
�mis|obs,�mis|obs

)
,

hmis = P(Ymis|Yobs, � ,�) =
�(Ymis|Yobs,�)P(�|Y,�)

∫ �(Ymis|Yobs,�)P(�|Y,�)dYmis

.
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For Bayesian inference, we choose the values of hyper-parameters such that 
�� = 0 , �2

�
= 100 , a = 100 , b = 10 , c = 100 , d = 100 and �0 = 0.001 . The small 

value of �0 implies weak dependence of the covariance kernel, ��1,�2
 , for the prior of 

� . The choices of a, b, c and d are to make variability of the prior distributions large. 
We also did some sensitivity analysis (not shown) for the choice of a, b, c, d and 
found that the prediction results are not much different. Three chains with 10,000 
iterations each with 9000 burn-in are obtained. We call our proposed approach, the 
non-parametric spectral density Bayesian spatial regression as NSBSR and usual 
parametric Bayesian spatial regression as PBSR in short.

First, we consider simulated datasets with two different grid sizes ( S1,16 and S1,32 ) 
and assuming an exponential covariance model, �2e−‖Ah‖∕� with �2 = 1 and � = 10 
to investigate the estimation result of spectral density by comparing with the true 

spectral density. Two choices of A are considered: A =

(
1 0

0 1

)
 (isotropy) and 

A =

(
1 0

0 1∕2

)
 (anisotropy). The anisotropic choice of A implies that the x-direction 

is stretched twice compared to the y-direction. Figure  1 shows the estimated log-
scale spectral densities in three-dimensional visualization. The first row is the true 
spectral density and the second row is the NSBSR-estimated log-scale spectral den-
sity. Compared to the true spectral densities, estimated spectral densities tend to 
over-estimate at boundaries but they try to capture anisotropic patterns. Note that 

S1,16 S1,32

Isotropy Anisotropy Isotropy Anisotropy
TRUE SPECTRAL DENSITY

NSBSR-ESTIMATED

Fig. 1  Estimated log-scale spectral densities assuming an exponential covariance model with �2
e
−‖Ah‖∕� , 

�2 = 1 , � = 10 , A =

(
1 0

0 1

)
 (isotropy), and A =

(
1 0

0 1∕2

)
 (anisotropy). First row corresponds to the true 

log-scale spectral densities while the second row corresponds to the estimated log-scale spectral densities 
using the proposed method
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this is one example dataset so that the result could vary by a different simulated 
dataset.

Next, we consider simulated datasets on S1,32 and assuming a Matérn covariance 
model, c(h;�2,�, �) = �2 21−�

� (�)

�‖Ah‖
�

��

K�

�‖Ah‖
�

�
 at various smoothing levels � to 

investigate prediction performance. We set �2 = 1 and � = 10 as before. For this 

simulation, we consider A =

(
1 0

0 1

)
 (isotropy) and A =

�
1
�√

2 0

0 1
�
(2
√
2)

�
 (anisot-

ropy). The anisotropy choice of A implies that x-direction is stretched twice com-
pared to the y-direction while the norm is scaled to 1∕

√
2 . We then fit the model 

using the data only on S2,32 , which is a subsample of the data on S1,32 with neighbor-
ing distance in each direction being twice large. The prediction is made on S1,32 and 
compared with the generated data on S1,32 . Figure 2 shows prediction results from 
our NSBSR approach with observed values (simulated values). We can see that our 
approach tries to capture observed patterns for both isotropic and anisotropic cases. 
Again, note that this is one example dataset so that the result could vary by a differ-
ent simulated dataset.

AnisotropyIsotropy
True-simulated Predicted True-simulated Predicted

Matérn (0.1)

Matérn (0.5)

Matérn (2.0)

Fig. 2  True simulated Y (left) and NSBSR predicted Y (right) in isotropic and anisotropic Matérn covari-
ance models. Each row corresponds to a different smoothness parameter, � = 0.1, 0.5, 2.0 , respectively
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Now, we investigate several covariance models: (1) pure nugget (i.i.d.), (2) 
Bumpy Matérn ( � = 0.1 ), (3) Matérn ( � = 0.5 ), (4) Smooth Matérn ( � = 2.0 ), (5) 
Bumpy Powered Exponential ( � = 0.5 ), (6) Smooth Powered Exponential 
( � = 1.5 ) and (7) Gaussian. Note that the form of Matérn covariance function is 
introduced earlier and Matérn covariance model with � = 0.5 corresponds to the 
exponential covariance model. The powered exponential covariance function is 
c(h;�2, �) = �2 exp (−‖Ah‖�) . We set �2 = 1 and � = 10 as well. In addition to 

isotropic cases, we investigate anisotropic models with A =

(
1 0

0 1∕4

)
 , which 

implies that the x-direction is stretched four times compared to the y-direction. 
We simulate 100 datasets for each covariance setting with isotropy and anisot-
ropy. Similar to the second simulation case that produces Fig. 2, we first generate 
the data on S1,32 and use the data on S2,32 to fit the model. The prediction is made 
on S1,32 and compared with the generated data on S1,32.

Figure  3 shows prediction performance results of NSBSR (red) and PBSR 
with Matérn model with different degrees of fixed smoothness parameter � = 0.1 
(green), � = 0.5 (blue), � = 2.0 (purple), and unfixed smoothness parameter � 
(yellow) for each simulation setting. In addition, we also compared with universal 
kriging (gray) with maximum likelihood estimates, where the smoothness param-
eter � is also estimated. We call this approach UK. A fixed smoothness parameter 
means that we estimate other parameters except the smoothness parameter. An 
unfixed smoothness parameter means we estimate it as well. These are boxplots 
of root mean squared prediction errors (RMSPE) between observations and pre-
dicted values over 100 datasets. RMSPE is averaged over locations for each data 
set. From the left block (divided by the dotted vertical lines), the covariance mod-
els for data generation are, in turn, pure nugget (i.i.d.), Bumpy Matérn ( � = 0.1 ), 
exponential, Bumpy powered exponential ( � = 0.5 ), Smooth powered exponential 
( � = 1.5 ), smooth Matérn and Gaussian. RMSPEs for NSBSR are overall com-
parable to those for PBSR and UK in the case of lower degree of smoothness 
(first four blocks) and lower in the case of higher degree of smoothness (last three 
blocks). Sample visualization results for NSBSR in Fig. 2 also imply that the pre-
dicted values for a smoother covariance model is relatively less biased than those 
for a bumpy covariance model. RMSPEs for NSBSR are quite robust compared 
to those for the PBSR and UK with various covariance models. Note that unfixed 
Matérn model results of PBSR are not impressive, although it is more flexible 
than the fixed Matérn model. The results by UK, non-Bayesian approach show 
less variability overall. Results for anisotropic cases are also similar, although the 
difference in prediction performance at smooth covariance models is reduced.

Table 1 shows additional prediction performance measure and estimation per-
formance for each regression coefficient. The row with R2 shows the average of 
coefficient of determination between observations and predicted values over 100 
datasets. The rows with �0, �1, �2 show root mean squared error (RMSE) of regres-
sion coefficients. These results are for the simulated data (isotropy case) used in 
Fig. 3. R2 s are not large enough for all approaches when the data are independent 
or less smooth processes while it is getting larger when the processes are getting 
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smoother. For both prediction and estimation, the proposed NSBSR approach and 
other parametric approaches are overall comparable in these measures.

We also compare NSBSR with PBSR when the data are on an incomplete 
grid. We generate three exemplary datasets from Matérn covariance models with 
� = 0.1, 0.5, 2.0 , respectively on the complete grid S1,32 . Then, we consider the 
data only on S2,16 for fitting but we randomly remove grid points according to 
the missing ratio (MR, %). Then, our approach, NSBSR, is compared to PBSR 

Isotropy
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1.00

Indep Matern(0,1) Exponential Pow.Exp(0.5) Pow.Exp(1.5) Matern(2,0) Gauss

m
sp

e

NSBSR
PBSR(a unfixed)

PBSR(a=0.1)
PBSR(a=0.5)

PBSR(a=2.0)
UK(a unfixed)
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m
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PBSR(a unfixed)
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PBSR(a=2.0)
UK(a unfixed)

Fig. 3  Box plots of RMSPE: isotropic case is the first row and anisotropic case is the second row. Box-
plots over 100 datasets using averages of root mean squared prediction errors over locations. Each block 
in the figure represents a different covariance model for data generation: pure nugget, Bumpy Matérn 
( � = 0.1), exponential, Bumpy powered exponential ( � = 0.5), Smooth Powered exponential ( � = 1.5), 
smooth Matérn ( � = 2.0), and Gaussian. In each block, boxplots are ordered by estimation models: 
NSBSR (red), Bumpy PBSR ( � fixed to 0.1; green), exponential PBSR ( � fixed to 0.5; blue), smooth 
PBSR ( � fixed to 2.0; purple), general PBSR with � unfixed (yellow), and UK with � unfixed (gray)
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Table 1  Prediction and estimation results

True model indicates a covariance model for data generation. NSBSR is the proposed approach for fit-
ting. PBSR is a parametric Bayesian approach with a Matérn covariance function at various fixed 
smoothness parameters. The column with “(� unfixed)” is the result when a smoothness parameter is 
estimated as well. R2 is the average of coefficient of determination between observations and predicted 
values over 100 datasets. The rows corresponding to �0, �1, �2 show RMSE for regression coefficients

True model Fitted model

NSBSR PBSR ( � unfixed) PBSR ( � = 0.1) PBSR ( � = 0.5) PBSR ( � = 2.0)

Independent
  R2 0.125 0.241 0.255 0.180 0.100
  �0 0.090 0.091 0.089 0.090 0.142
  �1 0.016 0.016 0.016 0.016 0.020
  �2 0.059 0.058 0.059 0.059 0.071

Matérn(0.1)
  R2 0.430 0.432 0.489 0.465 0.398
  �0 0.535 0.532 0.508 0.532 0.527
  �1 0.015 0.012 0.012 0.013 0.014
  �2 0.047 0.043 0.042 0.043 0.048

Exponential
 R2 0.918 0.922 0.899 0.925 0.920
  �0 0.763 0.735 0.700 0.670 0.749
  �1 0.007 0.004 0.005 0.004 0.005
  �2 0.032 0.015 0.017 0.015 0.015

Pow.Exp(0.5)
  R2 0.666 0.650 0.677 0.677 0.648
  �0 0.707 0.702 0.674 0.699 0.697
  �1 0.014 0.009 0.009 0.010 0.009
  �2 0.038 0.031 0.030 0.031 0.032

Pow.Exp(1.5)
 R2 0.980 0.986 0.972 0.988 0.986
  �0 0.808 0.747 0.713 0.649 0.788
  �1 0.007 0.002 0.003 0.002 0.002
  �2 0.013 0.006 0.009 0.006 0.006

Matérn(2.0)
  R2 0.992 0.998 0.994 0.996 0.998
  �0 0.866 0.701 0.783 0.718 0.711
  �1 0.006 0.000 0.001 0.000 0.000
  �2 0.011 0.000 0.004 0.001 0.000

Gaussian
  R2 0.992 1.000 0.996 0.996 1.000
  �0 0.815 0.891 0.724 0.663 0.879
  �1 0.006 0.000 0.001 0.000 0.000
  �2 0.002 0.000 0.004 0.001 0.000
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with Matérn models with � = 0.1 (P01), � = 0.5 (P05), � = 2.0 (P20) and unfixed 
� (P00). Table 2 shows mean squared prediction error (MSPE) and R2 between 
observations and predicted values. Note that MSPE in this simulation study is the 
average over locations. The results in Table 2 show that MSPEs of NSBSR tend 
to get increased as MR increases but the increase is comparable to those of PBSR. 
Likewise, the R2 of NSBSR get decreased as MR increases but the decrease is 
comparable to those of PBSR. For example, with the data from the Matérn covar-
iance model with � = 0.1 , MSPE of NSBSR approach is 0.814 while PBSR with 
Matérn covariance model fixed at � = 0.1 (P01) is 0.820 when MR is 10%. The 
missing ratio does not affect much on the estimation of regression coefficients for 
both NSBSR and PBSR as well (results are not shown for brevity). However, we 
need longer MCMC chains when the missing ratio gets higher for convergence. 
Although the impact of missing rates is not apparent for this particular simula-
tion study, convergence can be an issue in conditional simulation for imputing the 
missing data as discussed in Guinness and Fuentes (2017).

For implementation, we used software R (www.r- proje ct. org). When we fit the 
model using one dataset on S2,16 , NSBSR took only additional 0.25 min per 1000 
iteration with three chains for one data set compared to PBSR with computer 
specification of CPU Intel(R) Core(TM) i5-4690 with RAM 8.00 GB.

Table 2  Mean squared prediction error (MSPE) and R squares ( R2 ) between observations and predicted 
values under various missing ratios (MR)

 The first column shows a smoothness parameter setting of Matérn covariance for data generation. 
NSBSR is the proposed approach. P00, P01, P05 and P20 are results from PBSR by considering Matérn 
covariance for model fitting. A smoothness parameter for PBSR is unfixed (P00), fixed at 0.1 (P01), fixed 
at 0.5 (P05), and fixed at 2.0 (P20), respectively

Matérn MR(%) MSPE R
2

NSBSR P00 P01 P05 P20 NSBSR P00 P01 P05 P20

� = 0.1 0 0.691 0.691 0.693 0.690 0.694 0.56 0.56 0.56 0.56 0.56
10 0.814 0.815 0.820 0.813 0.816 0.54 0.54 0.54 0.54 0.53
25 0.810 0.808 0.823 0.805 0.808 0.50 0.50 0.51 0.51 0.50
50 0.778 0.775 0.775 0.777 0.773 0.44 0.45 0.45 0.45 0.45

� = 0.5 0 0.187 0.187 0.187 0.187 0.186 0.96 0.96 0.96 0.96 0.96
10 0.226 0.227 0228 0228 0.227 0.86 0.86 0.86 0.86 0.86
25 0.230 0.229 0.233 0.232 0.229 0.84 0.84 0.84 0.84 0.84
50 0.279 0.276 0.280 0.280 0.276 0.74 0.74 0.74 0.74 0.74

� = 2.0 0 0.042 0.116 0.127 0.125 0.119 1.00 1.00 1.00 1.00 1.00
10 0.133 0.172 0.166 0.210 0.170 1.00 1.00 1.00 1.00 1.00
25 0.196 0.196 0.203 0.247 0.196 0.99 0.99 0.99 0.99 0.99
50 0.252 0.209 0.220 0.265 0.209 0.80 0.82 0.81 0.82 0.82

http://www.r-project.org


622 Journal of the Korean Statistical Society (2022) 51:608–631

1 3

3.2  Real data analysis

In this section, we apply our approach to two ozone datasets. One is from Moder-
ate Resolution Imaging Spectroradiometer (MODIS) Terra Level-3 Aerosol Cloud 
Water Vapor Ozone Daily Global product (MOD08D3) (https:// ladsw eb. modaps. 
eosdis. nasa. gov/ search/). The other is from AURA (EOS CH-1) which is a multi-
national NASA scientific research satellite studying the Earth’s ozone layer, air qual-
ity, and climate (https:// disc. gsfc. nasa. gov/ datas ets? keywo rds= aura& page=1).

3.2.1  MODIS application

MOD08D3 contains daily-averaged values of atmospheric parameters related to 
aerosol particle properties, cloud optical and physical properties, atmospheric water 
vapor, atmospheric profile and stability indices, and total ozone burden on a 1◦ × 1◦ 
grid. Among them, we obtained quality controlled ozone exposure measurements 
and the missing values were left untreated. To properly impose a Gaussian assump-
tion, log-transformed ozone exposure is used as a response variable Y. We focus on 
a neighborhood of the Korea peninsula, i.e. longitude ranged from 112 to 141◦ , lati-
tude from 24 to 53◦ . The daily average on February 5, 2019 was used for analysis as 
an example to deal with a forecast of a short-term ambient exposure. For covariates, 
we used the world geodetic system (WGS 84) information so that X1 refers to longi-
tude, and X2 refers to latitude.

MOD08D3 is a rectangular image pixels with 1◦ resolution as we mentioned 
above. We take a subset of the pixels with 2◦ resolution for model fitting. We then 
predict the values with 1◦ resolution. The missing rate is 13.0% for the original 
dataset. Both sample size and missing rate are moderate. As our approach assumes 
stationarity, we checked the data with a stationarity test introduced by Taylor et al. 
(2014), which is designed for testing stationarity of random fields on a regular lat-
tice. The test is available as a R function (TOS2D) in LS2Wstat package. As it 
requires a complete set of data on a grid, we imputed the data by ordinary krig-
ing with an exponential correlation function before applying the test. The p-value 
is 0.851, which indicates that we can not reject stationarity assumption of the data. 
Predicted values of ozone concentration can be used for exposure assessment to 
acquire valuable scientific meanings such as health effect estimation of ambient air 
pollution on mortality/morbidity in general epidemiological studies (Kim and Song 
2017; Laden et al. 2006).

First, we compare prediction result with a parametric approach by prediction 
map and computing MSPE and R2 between observations and predicted values. Fig-
ure  4 shows prediction results for the ozone data. The first plot shows the origi-
nal dataset, which we can see some missing values. The second plot shows the data 
we used to fit the model. The third and fourth plots are prediction maps from our 
approach (NSBSR) and parametric approach (PBSR). For PBSR, we consider a 
Matérn covariance model with unfixed smoothness parameter for model fitting. We 
can see that the prediction map from our approach shows similarity to the original 
data. Compared with the result by PBSR, R2 of NSBSR ( R2 = 0.54 ) is higher than 

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://disc.gsfc.nasa.gov/datasets?keywords=aura&page=1
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R2 for PBSR ( R2 = 0.46 ). MSPE of NSBSR (0.0793) is lower than MSPE of PBSR 
(0.0903).

Second, we compare prediction results with the methods reviewed in Heaton 
et al. (2019). Table 3 is the list of methods that we compare with and their abbre-
viations. A brief summary of each method is given in the Introduction section. For 
implementation, we basically used the codes available from Heaton et al. (2019) and 
some R packages when they are available. We used default settings if there are any 
tuning parameters. Thus, we would like to point out that the results in this section 
may not be the best for each method. Given the use of available codes, we omit two 
approaches: Metakriging and Multiresolution approximation in comparison. The 
computation time was rather long for Metakriging and we were not successful to 
implement the code for Multiresolution approximation.

Table 4 shows performance results for the MODIS data. We provide mean abso-
lute error (MAE), root mean squared error (RMSE), the average length of 95% 
confidence intervals (for Non-Bayesian approaches)/credible interval (for Bayesian 

Original Training NSBSR PBSR

Fig. 4  MODIS result: the first plot is the MODIS dataset ( 1◦ resolution) (original). The second plot is a 
training set ( 2◦ resolution) (training). The third plot is prediction result from NSBSR and the fourth plot 
is prediction result from PBSR with a Matérn covariance function. The smoothness parameter in PBSR 
was estimated as well. (Longitude: 112◦ ∼ 141◦ ; Latitude: 24◦ ∼ 53◦ ; 30 × 30 pixels; Time: February 5, 
2019)

Table 3  List of spatial 
prediction methods in Heaton 
et al. (2019) we compared with 
for prediction performance

Abbreviation Method

NNGP Nearest neighbor Gaussian process
PP Predictive process
Tapering Covariance tapering
Gapfill Gapfill
Partition Spatial partitioning
FRK Fixed rank kriging
SPDE Stochastic partial differential equations
Periodic Periodic embedding
LK Lattice kriging
LAGP Local approximate Gaussian processes
NSBSR The proposed Bayesian spectral method
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approaches) (INT) and prediction coverage (PC) as a ratio of cases that 95% pre-
diction intervals contain the observed values over the lattice grids of the study 
regions. The results are sorted in ascending order by MAE. Although most methods 
are comparable as the values of MAE and RMSE are similar, NSBSR provides the 
best result in terms of MAE (tied with NNGP) and the second best result in terms 
of RMSE. NSBSR has relatively large INT, though. It is interesting that values of 
INT are widely different among the methods compared to MAE and RMSE, which 
indicates that interval estimation is more challenging. For the prediction coverage, 
NSBSR shows good performance as it is the closest to 95%.

3.2.2  AURA application

The second dataset is total column ozone data from TOMS-Like Ozone and 
Radiative Cloud Fraction L3 1 day 0.25◦ × 0.25◦ V3 (DOI: 10.5067/Aura/OMI/
DATA3002) by the Ozone Monitoring Instrument (OMI) onboard the AURA sat-
ellite. We consider the following covariates which can affect the level of ozone 
concentration as the ozone is a secondary pollutant: (1) Radiative cloud fraction 
(DOI: 10.5067/Aura/OMI/DATA3002); (2) solar Zenith angle (DOI: 10.5067/
Aura/OMI/DATA3002); (3) total column of nitrogen dioxide (DOI: 10.5067/Aura/
OMI/DATA3007); (4) total column of formaldehyde (DOI: 10.5067/Aura/OMI/
DATA2016); (5) ultra violet aerosol index (DOI: 10.5067/Aura/OMI/DATA2025); 
(6) total column of sulfar dioxide (DOI: 10.5067/Aura/OMI/DATA2025). (3) and 
(4) are log-transformed for better interpretability. The achieved OMI/AURA dataset 
has global coverage with 0.25◦ × 0.25◦ resolution. We again focus on a neighbor-
hood of the Korea peninsula, i.e. longitude ranged from 112 to 141◦ , latitude from 
24 to 53◦ . For this time, we consider the averaged data between June 1 to August 
31, 2019. Note that there were missing values in hourly data due to satellite’s orbits 
and other random sources but we averaged the data wherever available. As a result, 
there is no missing value for ozone concentration while some covariates still have 
some missing values. In this case, we imputed those missing values by the ordinary 

Table 4  Prediction results for 
the MODIS data from various 
methods based on mean 
absolute error (MAE), root 
mean squared error (RMSE), 
confidence/credible interval 
length (INT), and prediction 
coverage (PC)

The results are sorted in ascending order by MAE

Name MAE RMSE INT PC

NNGP 0.2105 0.2392 0.8515 0.9656
NSBSR 0.2105 0.2395 1.3775 0.9512
LAGP 0.2135 0.2430 0.1614 0.9522
SPDE 0.2139 0.2439 0.0705 1.0000
Partition 0.2144 0.2436 0.2284 0.9389
LK 0.2146 0.2425 0.1257 0.9322
Gapfill 0.2147 0.2447 0.1347 0.7700
FRK 0.2150 0.2409 0.4133 0.8256
Periodic 0.2168 0.2457 0.4321 0.7578
PP 0.2505 0.3033 1.2204 0.7144
Tapering 0.2519 0.2926 2.8318 1.0000



625

1 3

Journal of the Korean Statistical Society (2022) 51:608–631 

kriging. Stationarity for the AURA data is also tested by the method used for the 
MODIS data. The corresponding p value is 0.672. So, we can not reject the non-sta-
tionarity for the AURA data based on this test as well. However, p value is smaller 
compared to the case of the MODIS data.

For the AURA data, we further randomly removed 20% of the data to see the 
impact of missing values. Then, we took a subset at 0.5◦ resolution for fitting each 
method and prediction is made at 0.25◦ resolution. Table 5 shows the prediction per-
formance. Similar to Table  4, the results are sorted in ascending order by MAE. 
RMSE, INT and PC are provided as well. NSBSR provides the fifth best result 
in terms of MAE and RMSE at this time. The ranks among the methods are not 
the same compared to the results for the MODIS data. For example, NNGP which 
show the best result for the MODIS data places the eighth for the AURA data. The 
MAE and RMSE of first six methods are relatively small compared to those of the 
remaining methods. The results for our approach are not as good as the ones for the 
MODIS data. However, it shows reasonable performance given that our approach 
is under stationary assumption while several methods allow more flexible non-sta-
tionarity. The values of INT vary more among the methods compared to MAE and 
RMSE, which is same as the MODIS data. Note that LK is best in terms of MAE 
and RMASE but INT is largest. The results of prediction coverage also vary but our 
approach still shows reasonable performance.

4  Discussion

We have proposed Bayesian spatial regression with non-parametric modeling of spec-
tral density derived from Fourier Transform. Our approach, NSBSR has achieved rea-
sonable computational efficiency in terms of storage and speed by using the Whittle 
likelihood approximation and the Fast Fourier Transform algorithm, even though there 
are more parameters to estimate compared to parametric covariance models. Simula-
tion studies show that NSBSR is relatively robust compared to parametric covariance 

Table 5  Prediction results for 
the AURA data from various 
methods based on mean 
absolute error (MAE), root 
mean squared error (RMSE), 
confidence/credible interval 
length (INT), and prediction 
coverage(PC)

The results are sorted in ascending order by MAE

Name MAE RMSE INT PC

LK 0.937 1.303 34.868 0.9473
SPDE 1.059 1.720 6.784 0.9803
FRK 1.117 1.620 7.365 0.9875
LAGP 1.305 1.841 5.315 0.8303
NSBSR 1.502 1.901 13.344 0.9853
Partition 1.642 2.898 3.352 0.3964
Gapfill 2.454 4.192 4.419 0.5708
NNGP 5.330 6.743 26.258 0.9531
PP 5.883 7.130 7.431 0.7025
Periodic 5.894 8.100 26.393 0.5742
Tapering 7.713 9.560 6.348 0.4001
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models and/or isotropic assumption. Also, NSBSR shows better prediction results in a 
sense that RMSPE is lower than those of parametric covariance models for smoother 
processes. Our approach requires stationary assumption, which is rather limited given 
that several methods to handle non-stationary spatial data are available. However, com-
parison analysis (see Tables 4, 5) using two ozone concentration datasets show that our 
approach can provide reasonable prediction given the variation in prediction perfor-
mance among methods for different datasets. Thus, NSBSR is a good alternative to the 
existing prediction approaches in spatial data analysis.

Our approach could be used as a baseline for capturing a more complicated spa-
tial dependence structure than that of stationary Gaussian fields. We can consider 
the marginal variance �� in the Eq. (1) to be ��(s) so that it is spatially varying. The 
resulting process becomes non-stationary. We could apply our approach to a station-
ary error process component, e(s) , so that we can handle a class of non-stationary 
processes.

Estimated spectral densities are not as good as the prediction results. It could 
be due to the DFT approximation or Whittle likelihood approximation with further 
approximation using a five-component mixture Gaussian. Yaglom (1987) pointed 
out that DFT approximation rather than the exact Fourier transform could cause 
accuracy issue on the covariance estimation. In addition, insufficient sample size or 
truncated study region could possibly have a negative effect on the spectral density 
estimation. A possible remedy would be a different likelihood approximation than 
the Whittle likelihood so that we can avoid using periodogram itself but it requires 
theoretical justification. An empirical choice of hyperparameters such as �0 for ��1 , 
��2 might be beneficial to enhance prediction accuracy, as well. However, these are 
rather subjective and we tried usual practice of vague priors in our analysis.

The proposed method requires the observations on a spatial lattice. We intro-
duced a way to handle when the observations are on an incomplete lattice, which 
can be viewed as irregularly spaced data as well. For completely random observa-
tion locations not on a spatial lattice, one can consider an idea by Fuentes (2007) 
when the sample size is large. Fuentes (2007) proposed to aggregate the data points 
within each grid and treated them as observations of an integrated process on a spa-
tial lattice. This can be a future direction to extend our approach.

Appendix A: Conditional posterior distributions

Conditional posterior distributions of the parameters for Gibbs samplers are 
described below.

Posterior of � With a Gaussian prior � ∼ N(��1, �
2
�
I) , we have

where 𝜞  is the covariance matrix of the data and it is constructed by following. Let

𝜷 | … ∼ N(𝝁⋆,T⋆),

T⋆ = Xt𝜞
−1
X + 𝜎−2

𝛽
Ip,

𝝁⋆ = T−1
⋆

(
Xt𝜞

−1
Y + 𝜎−2

𝛽
𝜇𝛽I

)
,
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for wj = −
�

�1
+

2�

�1

j

n1
 , wk = −

�

�2
+

2�

�2

k

n2
 . We construct the circulant matrix 

B̃(k)
n1

= Circulant(P̃(k)
n1n2

), where P̃(k)
n1n2

 is the kth column vector of P̃n1n2
 . Then,

Instead of computing 𝜞
−1 , we actually need to compute 𝜞

−1
X and 𝜞

−1
Y . We adopt 

the method by Anitescu et al. (2012) so that we can reduce the computation of both 
𝜞

−1
X and 𝜞

−1
Y to O(n1n2log(n1n2)) . The approach by Anitescu et al. (2012) is as 

follows. Since 𝜞  is a n1n2 × n1n2 block circulant of circulant block (BCCB) matrix, 
it can be diagonalized by the Kronecker product of 2D FFT matrices of appropriate 
orders. Let each block B̃(k)

n1
 be diagonalized as

where Fn1
 is a FFT-matrix such that (Fn1

)jk = (w�1)
jk∕

√
n1 with w�1 = �∕�1 , F⋆

n1
 is 

its conjugate, and �(k)
n1

 are its eigenvalues. Fn2 is similarly defined. Then, the matrix 
inverse-vector multiplication 𝜞

−1
q with generic vector q is computed by

where

Since the elements of �n1n2
 are modelled from the MCMC procedure, we can evalu-

ate (9) during Gibbs iterations by first computing an 2D FFT on q , then dividing the 
resulting vector by the eigenvalues, and performing an inverse 2D FFT on the result-
ing vector.

Posterior of �� Let r = Y − X� . With a Gamma prior for �� we have

where a⋆ = a +
n1n2

2
 , b⋆ = b +

1

2
rt𝜞

−1
r.

Posterior of � Let the normalized residual r⋆ = 𝜏
1∕2
𝜖 (Y − X�) . Given r⋆ , we 

compute � by (4). Let �  be a covariance kernel matrix of the process � . With a 
Gaussian process prior of � , we obtain

P̃n1n2
(u1, u2) =

n1−1∑
j=0

n2−1∑
k=0

f𝛥(wj,wk) exp(𝜄(wju1 + wku2))

𝜞 =

⎡⎢⎢⎢⎢⎣

B̃(1)
n1

B̃(2)
n1

… B̃
(n2)
n1

B̃
(n2)
n1

B̃(1)
n1

… B̃
(n2−1)
n1

⋮ ⋱ ⋱ ⋮

B̃(2)
n1

… B̃
(n2)
n1

B̃(1)
n1

⎤⎥⎥⎥⎥⎦
.

(8)Fn1
B̃(k)
n1
F⋆
n1
= 𝛬(k)

n1
, k = 0,… , n2 − 1

(9)𝜞
−1
q = (Fn2

⊗ Fn1
)⋆
[
𝛬−1

n1n2

(
(Fn2

⊗ Fn1
)q
)]
,

�n1n2
= diag

(
n2−1∑
i=0

�(i)
n1
,

n2−1∑
i=0

wi
�1
�(i)

n1
,⋯ ,

n2−1∑
i=0

w
(n2−1)i

�1
�(i)

n1

)
.

𝜏𝜖 | … ∼ G(a⋆, b⋆),
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where V� = diag{v2
�0
,… , v2

�nh
} , and �� = (��0

,… , ��nh
)
� for the assigned nh Fourier 

frequencies. The dimension of �∗ is nh × nh , where nh is the total number of Fourier 
frequencies we considered. i.e. nh = ⌈N

2
⌉ , where ⌈x⌉ is the smallest integer greater 

than or equal to x and N is the sample size in one direction. This is due to the sym-
metry of Periodogram I = e� . Thus the dimension is lower than that of the data 
covariance matrix, which is N × N . Calculation of � ⋆ = (� −1 + V−1

𝜓
)−1 is done in 

a more effective way by the Woodbury’s formula, i.e. 
� ⋆ = (� −1 + V−1

𝜓
)−1 = � − � (� + V𝜓 )

−1�  . However, this part is still relatively 
expensive compared to the other parts of the algorithm.

Posterior of � Given the prior P(� = l) = pl , for l = 1,… , 5,

for s = 1, 2,… , nh.
Posterior of ��

where c⋆ = c +
nh

2
 and d⋆ = d +

1

2
(�− �)t� −1(�− �).

Posterior of ��1 , ��2
We use a “grid-search” method to sample ��1 and ��2 , respectively. That is, for 

j = 1, 2 , we sample ��j among its candidates { �(1)
�j

 , �(2)
�j
,… , �

(M)

�j
 } with probability 

weights �(�(l)
�j
)
�∑M

m=1
�(�

(m)

�j
) , satisfying

where | ⋅ | is a determinant and � −1

(�
(l)

�j
,��−j )

 is a covariance kernel matrix with range 

parameters �(l)
�j

 and ��−j for j = 1, 2 . We used M(= 10) equi-spaced values in (0, �0) as 
the set of candidates.

Appendix B: Specification of a five‑component mixture Gaussian 
distribution

A five-component mixture Gaussian distribution as approximation of the distribu-
tion of the logarithm of an exponential distribution in Carter and Kohn (1997) is 
given by

� | ⋯ ∼ N(�⋆,� ⋆),

� ⋆ = (� −1 + V−1
𝜓
)−1,

�⋆ = � ⋆V
−1
𝜓
(� − �𝜓 − �) + �

P(�s = l | …) = pl�vl
(�s − �s − �l),

𝜏𝜃 | … ∼ G(c⋆, d⋆),

�(�
(l)

�j
) ∝ exp

(
−
1

2
log

|||�
−1

(�
(l)

�j
,��−j )

||| −
1

2
(�− �)t� −1

(�
(l)

�j
,��−j )

(�− �)

)
,
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where �v(⋅ − �) is a normal density function with mean � and variance v2 . 
The weights (pl) , means ( �l ) and standard deviations ( vl ) of the five compo-
nents in the mixture Gaussian distribution are as follows: If a Fourier fre-
quency w is on the boundary, (p1, p2, p3, p4, p5) = (0.13, 0.16, 0.23, 0.22, 0.25) ; 
(�1, �2, �3, �4, �5) = (4.63,−2.87,−1.44,−0.33, 0.76)  ; 
(v1, v2, v3, v4, v5) = (8.75, 1.95, 0.88, 0.45, 0.41) . Other-
wise, (p1, p2, p3, p4, p5) = (0.19, 0.11, 0.27, 0.25, 0.18) ; 
(�1, �2, �3, �4, �5) = (2.20,−0.80,−0.55,−0.035, 0.48)  ; 
(v1, v2, v3, v4, v5) = (1.93, 1.01, 0.69, 0.60, 0.29).
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