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Abstract
This paper describes a moments estimator for a standard state-space model with 
coefficients generated by a random walk. The method calculates the conditional 
expectations of the coefficients, given the observations. A penalized least squares 
estimation is linked to the GLS (Aitken) estimates of the corresponding linear model 
with time-invariant parameters. The estimates are moments estimates. They do not 
require the disturbances to be Gaussian, but if they are, the estimates are asymptoti-
cally equivalent to maximum likelihood estimates. In contrast to Kalman filtering, 
no specification of an initial state or an initial covariance matrix is required. While 
the Kalman filter is one sided, the filter proposed here is two sided and therefore 
uses more of the available information for estimating intermediate states. Further, 
the proposed filter has a clear descriptive interpretation.

Keywords  Time-series analysis · Linear model · State-space estimation · Time-
varying coefficients · Moments estimation. Kalman filtering · Penalized least 
squares · HP-Filter

JEL Classification  C2 · C22 · C32 · C51 · C52

1  Introduction

This paper describes and discusses an estimator for a linear time series model 
with time-varying coefficients. Such a model, the varying coefficients model, or 
“VC model” for short, generalizes the standard linear model. The standard model 
assumes that the coefficients giving the influence of the independent variables on the 
dependent variable remain constant. In the VC model, these coefficients are permit-
ted to change over time.
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The VC model poses the statistical problem of determining the smoothing param-
eters, variances, or splines, that are needed to model the movements of the coeffi-
cients over time. Schlicht (1989) and Schlicht and Ludsteck (2006) have proposed an 
estimation method—the VC method—that is specifically tailored to the case that the 
time-varying coefficients are generated by a random walk with normal disturbances. 
The present paper generalizes this approach to the non-Gaussian case.1

The paper is organized as follows. In Sect. 1, the model is described and some 
motivation is provided by drawing on a discussion in economics. The “criteria” or 
“penalty” approach is explained that permits to estimate the time-paths of the coeffi-
cients in a purely descriptive way. A stochastic formulation is given in Sect. 2 which 
presupposes knowledge of the variances of the disturbances. It is shown that the 
descriptive approach outlined in Sect. 1 can be justified statistically by estimating 
the time averages of the coefficients in the corresponding linear GLS model with 
constant coefficients, again for given variances of the disturbances. Section 3 turns 
to the estimation of these variances. Two closely related estimators are explained: a 
moments estimator and a likelihood estimator. The likelihood estimator presupposes 
Gaussian disturbances while the moments estimator does not require this assump-
tion. The relationship between these estimators is discussed. Section  4 provides 
some illustration of the way the model works and ponders some methodological 
issues. A conclusion follows.

2 � The varying coefficients model in descriptive mode

This section describes the varying coefficients model and discusses the motivation 
for using it, as it emerged in economics (Sect. 1.1). Some features of the proposed 
method will be previewed in Sect. 1.2. The notation is introduced in Sect. 1.3 and 
the “criteria” or “penalty” approach is described that permits to estimate the devel-
opment of the relations between the independent variable and the dependent vari-
ables over time in a purely descriptive way (Sect. 1.4).

2.1 � The linear theoretical model and its empirical application

Consider a theory stating the dependent variable y as a linear function of some inde-
pendent variables x1, x2,… , xn:

The coefficients a1, a2,… , an give the influence of the independent variables.
If we have T observations yt , x1,t , x2,t,..., xn,t with t = 1, 2,… , T  denoting the time 

of an observation, we can try to estimate the theoretical coefficients a1, a2,… , an by 

(1.1)y = a1x1 + a2x2 +⋯ + anxn.

1  The calculations in this paper follow largely the calculations given in two unrefereed discussion papers 
(Schlicht 1989; Schlicht and Ludsteck 2006), for which this author was responsible—including some 
errors. In this paper the calculations have been rearranged, corrected, improved and adapted to cover the 
case that all disturbances are non-Gaussian.
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a standard linear regression. In order to do that, we have to add an error term ut to 
capture discrepancies of the empirical from the theoretical regularity due to meas-
urement errors etc. and obtain

In many cases it appears improbable, however, that outside influences not captured 
in the theoretical model affect only the disturbance term, and not the coefficients 
themselves. In the case of economics, we may think of changes in technology, pref-
erences, market structure, and the composition of aggregates. All change over time 
and may affect the coefficients themselves.

In economics, the problem of possibly time-varying coefficients was the sub-
ject of the famous Keynes–Tinbergen controversy around 1940.2 While Tinbergen 
(1940, 153) defended the use of regression analysis with the argument that in “many 
cases only small changes in structure will occur in the near future”, Keynes (1973, 
294) objected that “the method requires not too short a series whereas it is only in a 
short series, in most cases, that there is a reasonable expectation that the coefficients 
will be fairly constant.”

It appears that both arguments are correct. The VC model takes care of both by 
assuming that the coefficients change slowly over time: They are highly auto-corre-
lated. This is formalized by a random walk (Athans 1974; Cooley and Prescott 1973; 
Schlicht 1973). If ai,t denotes the state of coefficient ai at time t, it is assumed that

with the disturbance term vi,t of expectation zero and with variance �2
i
 . The assump-

tion of expectation zero formalizes the idea that “the coefficients will be fairly 
constant” in the short run, while the variance �2

i
 is a measure of the stability of 

coefficient i and is to be estimated. For �2
i
= 0 for some i,   the case of a constant 

(time-invariant) coefficients is covered as well. As a consequence, the standard lin-
ear model is replaced by

This is the VC model that is presupposed in the following.

2.2 � Properties of the VC method

The VC method that will be developed in this paper estimates the expected time-
paths of the coefficients ai,t for given observations xi,t and yt with i = 1, 2,… , n and 

(1.2)yt = a1x1,t + a2x2,t +⋯ + anxn,t + ut, t = 1, 2,… , T .

(1.3)ai,t+1 =ai,t + vi,t

(1.4)yt =a1,tx1,t + a2,tx2,t +⋯ + an,txn,t + ut, E
{
ut
}
= 0, E{u2

t
} = �2,

(1.5)
ai,t+1 =ai,t + vi,t, E{vi,t} = 0, E{v2

i,t
} = �2

i
, i = 1, 2,… , n, t = 1, 2,… , T .

2  See Tinbergen (1940), Keynes (1939), Keynes (1973, 285–321).
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T = 1, 2,… , T . It can be viewed as a straightforward generalization of the method of 
least squares.

•	 While the method of ordinary least squares selects estimates that mini-
mize the sum of squared disturbances 

∑T

t=1
u2
t
 in the equation, VC selects 

estimates that minimize the sum of squared disturbances in the equa-
tion and a weighted sum of squared disturbances in the coefficients, i.e. ∑T

t=1
u2
t
+ �1

∑T

t=2
v2
1,t

+ �2
∑T

t=2
v2
2,t

+⋯ + �n
∑T

t=2
v2
n,t

 , where the weights for 
the changes in the coefficients �1, �2,… , �n are determined by the inverse variance 
ratios, i.e. �i = �2∕�2

i
 . In other words, it balances the desiderata of a good fit and 

parameter stability over time.
•	 Estimation can proceed by focusing on some selected coefficients and keeping the 

remaining coefficients constant over time. This is done by keeping the correspond-
ing variances �2

i
 close to zero, rather than estimating them. (If all coefficients are 

frozen in this manner, the OLS result is obtained.)
•	 The time-averages of the regression coefficients 1

T

∑
t at are GLS estimates of the 

corresponding regression with fixed coefficients.
•	 The VC method does not require initial values for the initial state and the initial 

variances. Rather all states and variances are estimated in an integrated unified pro-
cedure. This is an advantage over Kalman filtering which is typically quite sensitive 
to the choice of initial values, especially when dealing with shorter time series.

•	 The VC method links the purely descriptive method of employing non-parametric 
splines through penalized least squares with an explicit statistical model with ran-
dom-walk coefficients. This offers the possibility of model-based estimation.

•	 All estimates are moments estimates. It is not necessary to presuppose Gaussian 
disturbances.

•	 For increasing sample sizes T and under the assumption that all disturbances are 
normally distributed, the moments estimates approach the maximum likelihood 
estimates.

2.3 � Notation and basic assumptions

All vectors are conceived as column vectors, and their transposes are indicated 
by an apostrophe. The observations at time t are x�

t
= 
(
x1,t, x2,t,… , xn,t

)
 and yt for 

t = 1, 2,… , T . We write
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We write further

and define

with In denoting the identity matrix of order n and ⊗ indicating the Kronecker prod-
uct operator. Note that p and P are of full rank.

The model is obtained by writing Eqs. (1.4) and (1.5) in matrix form:
The model

Note that the explanatory variables X are taken as predetermined, rather than 
stochastic.

y =

⎛⎜⎜⎜⎜⎝

y1
y2
.

.

yT

⎞⎟⎟⎟⎟⎠
, x =

⎛⎜⎜⎜⎜⎝

x�
1

x�
2

.

.

x�
T

⎞⎟⎟⎟⎟⎠
, X =

⎛⎜⎜⎜⎜⎝

x�
1

0

x�
2

.

.

0 x�
T

⎞⎟⎟⎟⎟⎠
,

order T T × n T × Tn

at =

⎛
⎜⎜⎜⎜⎝

a1,t
a2,t
.

.

an,t

⎞
⎟⎟⎟⎟⎠
, a =

⎛
⎜⎜⎜⎜⎝

a1
a2
.

.

aT

⎞
⎟⎟⎟⎟⎠
, vt =

⎛
⎜⎜⎜⎜⎝

v1,t
v2,t
.

.

vn,t

⎞
⎟⎟⎟⎟⎠
, v =

⎛⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
.

.

vT−1

⎞⎟⎟⎟⎟⎟⎟⎠

,

order n Tn n (T − 1)n

� = diag

⎛⎜⎜⎜⎜⎝

�2
1

�2
2

.

.

�2
n

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

�2
1

0 0

0 �2
2

.

. 0

0 0 �2
n

⎞⎟⎟⎟⎟⎠

order n × n

(1.6)
p =

⎛
⎜⎜⎜⎜⎝

−1 1 0 0

0 − 1 1 0

. .

. . 0

0 0 − 1 1

⎞
⎟⎟⎟⎟⎠
, P = p⊗ In =

⎛
⎜⎜⎜⎜⎝

−In In 0

− In In
. .

. .

0 − In In

⎞⎟⎟⎟⎟⎠

order (T − 1) × T (T − 1)n × Tn

(1.7)y =Xa + u, E{u} = 0, E
{
uu�

}
= �2IT ,

(1.8)Pa =v, E{v} = 0, E
{
vv�

}
= V = IT−1 ⊗𝛴.
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Regarding the observations X and y we assume that a perfect fit of the model to 
the data is not possible:

Assumption 1  Pa = 0 implies y ≠ Xa.

This assumption rules out the (trivial) case that the standard linear model (1.2) 
fits the empirical data perfectly, a case that cannot reasonably be expected to occur 
in practical applications. Further, the assumption implies that the number of obser-
vations exceeds the number of coefficients to be estimated:

2.4 � Least squares

In a descriptive spirit, the time-paths of the coefficients can be determined by fol-
lowing the penalized least squares approach, where some criteria are employed that 
formalize some descriptive desiderata.3 In the case at hand, the desiderata are that 
the model fits the data well and that the coefficients change only slowly over time—
u and v ought to be as small as possible. The sum of the squared errors u′u is taken 
as a criterion for the goodness of fit of Eq. (1.7), the weighted sum of the squared 
changes of the coefficients v′

i
vi over time give criteria for the stability of the coef-

ficients over time. The combination of all these criteria gives an overall criterion 
that combines the desiderata of a good fit and stability of coefficients over time. The 
weights 

(
�1, �2,… , �n

)
 give the relative importance of the stability of the coefficients 

over time, where weight �i relates to coefficient ai . For the time being, these weights 
are taken as given but will later be estimated, too.

Write

and

Adding the sum of squares u′u and the weighted sum of squares v′Gv gives the over-
all criterion

This expression is to be minimized under the constraints given by the model (1.7), 
(1.8) with the observations X and y :

(1.9)T > n.

(1.10)� =diag
(
�1, �2, ., ., �n

)

(1.11)G =IT−1 ⊗ 𝛤 .

(1.12)Q =u�u + v�Gv.

3  For the penalized least squares approach, see Green and Silverman (2000). The approach was intro-
duced by Whittaker (1923), Henderson (1924) and Leser (1961). It has been used also by Hodrick and 
Prescott (1997), and has been further developed by Leser (1963), Schlicht (1981), Schlicht and Pauly 
(1983), Schlicht (1984) and Schlicht (2005a). Other approaches such as Hastie and Tibshirani (1993) and 
Fan and Zhang (1999) make use of splines. This line of argument will not be pursued here.
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This determines the time-paths of the coefficients a that optimize this criterion. 
Hence we can write

The weighted sum of squares Q is the sum of two positive semi-definite quadratic 
forms. Assumption 1 rules out the case that Q can be zero. Hence Q is positive defi-
nite and of full rank. The first order condition for a minimizing a is

and the second order condition is that the Jacobian

is positive definite, which is the case. Solving (1.16) for a and plugging this into 
(1.13) and (1.14) gives the estimates

where the subscript LS stands for “least squares”.

3 � The varying coefficients model in stochastic mode

This section considers the statistical treatment of the VC model under the 
assumption that the variances of the disturbances are known. With the parametri-
zation outlined in Sect. 2.1, the VC model gives rise to a GLS (Aitken) model 
that permits to estimate the time-averages of the coefficients. With these esti-
mates, the conditional expectations for the coefficients ai,t for given observations 
X and y can be determined (Sect.  2.2). If the weights chosen for the descrip-
tive estimation outlined in Sect. 1.4 are equal to the inverse variance ratios, the 
descriptive estimation and the conditional expectation coincide (Sect. 2.3).

(1.13)u =y − Xa,

(1.14)v =Pa.

(1.15)Q =(y − Xa)�(y − Xa) + a�P�GPa.

(1.16)
�Q

�a
= − 2Xy + 2

(
X�X + P�GP

)
a = 0

(1.17)�2Q

�a�a�
=2

(
X�X + P�GP

)

(1.18)aLS =
(
X�X + P�GP

)−1
X�y

(1.19)uLS =
(
IT − X

(
X�X + P�GP

)−1
X�
)
y

(1.20)vLS =P
(
X�X + P�GP

)−1
X�y
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3.1 � Orthogonal parametrization

For purposes of estimation we need a model that explains the observation y as a 
function of the observations X and the random variables u and v. This would per-
mit calculating the probability distribution of the observations y contingent on the 
parameters of the distributions of u and v, viz �2 and � . The true model does not 
permit such an inference, though, because the matrix P is of rank (T − 1)n rather 
than of rank Tn and cannot be inverted. Hence v does not determine a unique a but 
rather the set of solutions

with � as a shift parameter,

as the right-hand pseudo-inverse of P given in (1.6) of order Tn × (T − 1)n , and the 
matrix

of order Tn × n . It is orthogonal to P:

with the square matrix 
(
P′, Z

)
 of full rank. For any v we have a ∈ A ⇔ Pa = v . 

Hence Eq.  (1.7) and the set (2.1) give equivalent descriptions of the relationship 
between a and v.

Note that

Regarding the matrices P, P̃ , and Z we have

In view of (2.1), any solution a to Pa = v can be written as

for some � ∈ ℝ
n . Equation (1.7) can be re-written as

(2.1)A∶=
{
a = P̃v + Z𝛽||𝛽 ∈ ℝ

n
}

(2.2)P̃∶= P�
(
PP�

)−1

(2.3)Z∶=

⎛⎜⎜⎜⎝

In
In
.

In

⎞⎟⎟⎟⎠

PZ =0

(2.4)Z�Z = T ⋅ In, P�
(
PP�

)−1
P + ZZ� = ITn.

(2.5)
PP̃ = P̃�P� = I(T−1)n
P̃P = P�P̃� = ITn − ZZ�

Z�P̃ = P̃�Z = 0.

(2.6)a = P̃v + Z 𝛽

(2.7)y = u + XP̃v + XZ𝛽.
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The model (2.6), (2.7) will be referred to as the equivalent orthogonally parameter-
ized model. It implies the true model (1.7), (1.8). It implies, in particular, that at is a 
random walk even though at depends, according to (2.6), on past and future realiza-
tions of vt.

The formal parameter � has a straightforward interpretation. Pre-multiplying (2.6) 
by Z′ gives

and therefore

Hence � gives the averages of the coefficients ai,t over time.
Equation  (2.7) permits calculating the density of y dependent upon the param-

eters of the distributions of u and v and the formal parameters � . In a second step, 
all these parameters—�2 , � , and �—can be determined by moments estimators that 
will be derived in Sect. 3.1.

The orthogonal parametrization (proposed in Schlicht 1985, Sec. 4.3.3 in another 
context) entails some advantages with respect to symmetry and mathematical trans-
parency, as compared to more usual procedures, such as parametrization by initial 
values. It permits to derive our moments estimator that does not require normally 
distributed disturbances, and to write down an explicit likelihood function for the 
case of normally distributed disturbances that permits estimation of all relevant 
parameters in a unified one-shot procedure.

The formal parameter vector � relates directly to the coefficient estimates of a 
standard generalized least squares (GLS, Aitken) regression. Equation (2.7) can be 
interpreted as a standard regression for this parameter vector with the matrix x = XZ 
giving the explanatory variables:

and the disturbance

It has expectation zero

and covariance

The Aitken estimate �A satisfies

or

Z�a =Z�Z� = T�

(2.8)� =
1

T

T∑
t=1

at.

(2.9)y = x� + w

(2.10)w =XP̃v + u.

(2.11)E{w} =0

(2.12)W∶=E
{
ww�

}
= XP̃VP̃�X� + 𝜎2IT .

(2.13)x�W−1
(
y − x�A

)
= 0
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where the subscript A stands for “Aitken”. As x = XZ and W = XP̃VP̃�X� + 𝜎2IT , 
Eqs. (2.13) and (2.14) can be written as

and Eq. (2.14) gives rise to

3.2 � The filter

This section derives the VC filter which gives the expectation of the coefficients 
a for given observations X and y, a given shift parameter � , and given variances 
�2 and �.

For given � and X, the vectors y and a can be viewed as realizations of ran-
dom variables determined jointly by the system (2.6), (2.9) as brought about by 
the disturbances u and v:

The covariance is

The marginal distribution of y is as given by (2.9) and (2.12). On this basis, we take 
our estimate of a as

which is the expectation of a for the case that u and v are Gaussian and y, � , �2 , and 
� are given. (It will turn out later on that aA is the expectation of a for non-Gaussian 
disturbances as well, see Eq. (2.27) below.)

Note that the variance-covariance matrix of w, as given in Eq.  (2.12), tends 
to �2IT if the the variances �2

i
 go to zero, and Eq. (2.7) approaches the standard 

unweighted linear regression. In this sense, the OLS regression model is covered 
as a special limiting case by the model discussed here.

(2.14)�A =
(
x�W−1x

)−1
x�W−1y.

(2.15)Z�X�
(
XP̃VP̃�X� + 𝜎2IT

)−1(
y − XZ𝛽A

)
=0

(2.16)𝛽A =
(
Z�X�

(
XP̃VP̃�X� + 𝜎2IT

)−1
XZ

)−1

Z�X�
(
XP̃VP̃�X� + 𝜎2IT

)−1
y.

(
a

y

)
=

(
Z

XZ

)
𝛽 +

(
P̃ 0

XP̃ IT

)(
v

u

)
.

E

{(
a

y

)(
a� y�

)}
=

(
P̃ 0

XP̃ IT

)(
V 0

0 𝜎2IT

)(
P̃� P̃�X�

0 IT

)

=

(
P̃VP̃� P̃VP̃�X�

XP̃VP̃� XP̃VP̃�X� + 𝜎2IT

)
.

(2.17)aA = Z𝛽A + P̃VP̃�X�
(
XP̃VP̃�X� + 𝜎2IT

)−1(
y − XZ𝛽A

)
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3.3 � Least squares and aitken

The following theorem states that the least squares estimator aLS and the Aitken estima-
tor aA coincide if the weights are given by the variance ratios.

Claim 1  G = �2V−1 implies aLS = aA.

Proof  Consider first the necessary conditions for a minimum of (1.12). The first-
order condition (1.16) defines aLS with weights G = �2V−1 uniquely and can be writ-
ten as

It will be shown that (2.17) implies

which will establish the proposition.
Pre-multiplication of (2.17) by 

(
X�X + �2P�V−1P

)
 gives

Because of PZ = 0 this can be written as

Adding and subtracting 𝜎2X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)
 and using 

P�P̃� =
(
ITn − ZZ�

)
 results in

which reduces to

(2.18)
(
X�X + �2P�V−1P

)
aLS = X�y.

(2.19)
(
X�X + �2P�V−1P

)
aA = X�y,

(
X�X + 𝜎2P�V−1P

)
aA =

(
X�X + 𝜎2P�V−1P

)
Z𝛽A

+
(
X�X + 𝜎2P�V−1P

)
P̃VP̃�X�

×
(
XP̃VP̃�X + 𝜎2IT

)−1
⋅

(
y − XZ𝛽A

)
.

(
X�X + 𝜎2P�V−1P

)
aA =X�XZ𝛽A

+ X�XP̃VP̃�X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)

+ 𝜎2P�P̃�X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)
.

(
X�X + 𝜎2P�V−1P

)
aA = X�XZ𝛽A

+ X�
(
XP̃VP̃�X� + 𝜎2IT

)(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)

− 𝜎2X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)

+ 𝜎2
(
ITn − ZZ�

)
X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)
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According to (2.15), the last term is zero and we obtain

This shows that the least squares estimator aLS and the Aitken estimator aA coincide. 	
� ◻

As a consequence of Claim 1, the least-squares estimates for u, v, and w and 
their Aitken counterparts coincide for G = �2V−1 . We need not distinguish them 
and denote all our estimates by circumflex:

For the sake of completeness and later use, the following observation is added:

Claim 2  G = �2V−1 implies Q̂ = 𝜎2ŵ�W−1ŵ. In other words: the sum of squared 
deviations weighted by the variance ratios �

2

�2
1

,
�2

�2
2

,… ,
�2

�2
n

 equals the weighted sum of 
squares (the squared Mahalanobis distance) in the Aitken regression.

Proof  As ŵ = XP̃v̂ + û , we have

With (2.5), (2.9), (2.12), and (2.20) this gives

(
X�X + 𝜎2P�V−1P

)
aA =X�XZ𝛽A + X�

(
y − XZ𝛽A

)

− 𝜎2X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)

+ 𝜎2X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)

− 𝜎2ZZ�X�
(
XP̃VP̃�X + 𝜎2IT

)−1(
y − XZ𝛽A

)
.

(
X�X + �2P�V−1P

)
aA =X�y.

(2.20)aA =aLS = â = Z𝛽 + P̃VP̃�X�
(
XP̃VP̃�X� + 𝜎2IT

)−1(
y − XZ𝛽

)

(2.21)uA =uLS = û =
(
IT − X

(
X�X + 𝜎2P�V−1P

)−1
X�
)
y

(2.22)vA =vLS = v̂ = P
(
X�X + P�𝜎2P�V−1P

)−1
X�y

(2.23)wA =wLS = ŵ = XP̃v̂ + û.

Q̂ =û�û + 𝜎2v̂�V−1v̂

=û�
(
ŵ − XP̃v̂

)
+ 𝜎2v̂�V−1v̂

=û�ŵ − û�XP̃v̂ + 𝜎2v̂�V−1v̂

=û�ŵ −
(
û�XP̃ − 𝜎2v̂�V−1

)
v̂

=û�ŵ −
(
û�XP̃ − 𝜎2v̂�V−1

)
Pâ.
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and finally

Hence the weighted sum of squares Q equals the squared Mahalanobis distance. 	� ◻

Consider now the distribution of â . The matrix 
(
X�X + �2P�V−1P

)
 , henceforth 

referred to as the “system matrix”, will be denoted by M:

With this, the normal equation (2.19), that defines the solution for the vector of the 
coefficients â can be written as

With (1.7) and (2.24) we obtain

Given a realization of the time-path of the coefficients a, the estimator â is distrib-
uted with mean

and covariance

which reduces to

Q̂ =û�ŵ −
(
û�XP̃ − 𝜎2v̂�V−1

)
P
(
Z𝛽 + P̃VP̃�X�W−1ŵ

)

=û�ŵ −
(
û�XP̃ − 𝜎2v̂�V−1

)
PP̃VP̃�X�W−1ŵ

=û�ŵ −
(
û�XP̃ − 𝜎2v̂�V−1

)
VP̃�X�W−1ŵ

=û�ŵ −
(
û�XP̃VP̃�X� − 𝜎2v̂�P̃�X�

)
W−1ŵ

=û�ŵ − û�XP̃VP̃�X�W−1ŵ + 𝜎2v̂�P̃�X�W−1ŵ

=û�ŵ − û�
(
XP̃VP̃�X� + 𝜎2IT − 𝜎2IT

)
W−1ŵ + 𝜎2v̂�P̃�X�W−1ŵ

=û�ŵ − û�
(
XP̃VP̃�X� + 𝜎2IT

)
W−1ŵ + 𝜎2û�W−1ŵ + 𝜎2v̂�P̃�X�W−1ŵ

=û�ŵ − û�ŵ + 𝜎2û�W−1ŵ + 𝜎2v̂�P̃�X�W−1ŵ

=𝜎2
(
û� + v̂�P̃�X�

)
W−1ŵ

Q̂ =𝜎2ŵ�W−1ŵ.

(2.24)M =
(
X�X + �2P�V−1P

)
.

(2.25)M â =X�y.

(2.26)

â =M−1X�(Xa + u)

=M−1
(
X�Xa + X�u + 𝜎2P�V−1Pa − 𝜎2P�V−1Pa

)

=a +M−1
(
X�u − 𝜎2P�V−1v

)
.

(2.27)E{â|a} =a

E
{
(a − â)(a − â)�

}
= M−1

(
X� −𝜎2P�V−1

)( 𝜎2IT 0

0 V

)(
X

−𝜎2V−1P

)
M−1,

E
{
(a − â)(a − â)�

}
= M−1

(
𝜎2X�X +𝜎4P�V−1P

)
M−1
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and finally to

The system matrix (2.24) is determined by the observations X, the variance �2 and 
the variances � . Equation (2.28) gives the precision of our estimate which is directly 
related to the system matrix M. The next step is to determine the variance �2 and the 
variances �.

4 � Variance estimation

This section turns to estimating the variances. In Sect. 3.1 the proposed moments esti-
mators will be derived and in Sect. 3.2 a maximum likelihood criterion CLwill be given 
that is based on the parameterized model described in Sect. 2. In Sect. 3.4 a moments 
criterion CM will be given that generates, upon minimization, the moments estimators 
and it will be argued that, for large T, both criteria approach each other. As a conse-
quence, the theoretical appeal of the likelihood estimator for large samples carries over 
to the moments estimator in the Gaussian case.

4.1 � Moments estimation

The moments estimator that will be developed in this section has, for any sample size, a 
straightforward interpretation: It is defined by the property that the variances of the dis-
turbances in the estimated coefficients equal their expectations. It has, thus, a straight-
forward connotation even in shorter time series and does not presuppose that the per-
turbations u and v are normally distributed. It will be shown later that the moments 
estimators approach the respective maximum likelihood estimators in large samples if 
the disturbances are normally distributed.

In the following we denote the estimated coefficients by â and the estimated per-
turbations by û and v̂ . For some variances �2 and 

∑
= diag

�
�2
1
, �2

2
, . . ., �2

n

�
 , the 

estimated coefficients â along with the estimated disturbances û and v̂ are random 
variables brought about by realizations of the random variables u and v. Consider 
û = y − Xâ = X(a − â) + u first. With (2.26) we obtain

Regarding v̂ , consider the vectors v̂�
i
=
(
v̂2
i,1
, v̂2

i,3
, . .. , v̂2

i,T−1

)
 for i = 1, 2,… , n , that 

is, the disturbances in the coefficients âi for each coefficient separately. These are 
obtained as follows.

Denote by ei ∈ ℝ
n the n-th column of an n × n identity matrix and define the 

(T − 1) × (T − 1)n-matrix

(2.28)E
{
(a − â)(a − â)�

}
= 𝜎2M−1.

û = − X
(
M−1

(
X�u − 𝜎2P�V−1v

))
+ u

=
(
IT − XM−1X�

)
u + 𝜎2XM−1P�V−1v.

(3.1)Ei∶=IT−1 ⊗ e�
i
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that picks the time-path of the i− th disturbance vi =
(
vi,1, vi,3,… , vi,T−1

)� from the 
disturbance vector v:

Note that, from (1.8),

Pre-multiplying (2.26) with the matrices Ei yields

Thus û and v̂i are linear functions of the random variables u and v, and their expected 
squared errors can be calculated.

Claim 3  For given observations X and y and given variances �2and � , the expected 
squared deviations of û and v̂i , i = 1, 2,… , n are

This implies that the expected sum of squares is

Proof  The expectation of the squared estimated error û is

vi∶=Eiv.

(3.2)
n∑
i=1

�2
i
E�
i
Ei =V .

v̂i = Ei

(
I(T−1)n − 𝜎2PM−1P�V−1

)
v + EiPM

−1X�u.

(3.3)E
{
û�û

}
=𝜎2

(
T − tr

(
XM−1X�

))
.

(3.4)E
{
v̂�
i
v̂i
}
=(T − 1)𝜎2

i
− 𝜎2tr

(
EiPM

−1P�E�
i

)
.

(3.5)E
{
Q̂
}
=𝜎2(T − n).
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and hence

In a similar way, the expectation of the squared estimated disturbance in the i-th 
coefficient v̂i is evaluated as

E
{
û�û

}
=E

{(
u�
(
IT + XM−1X�

)
+ 𝜎2v�V−1PM−1X�

)

⋅

((
IT − XM−1X�

)
u + 𝜎2XM−1P�V−1v

)}

=E
{
u�
(
IT − XM−1X�

)(
IT − XM−1X�

)
u
}

+ 𝜎4E
{
v�V−1PM−1X�XM−1P�V−1v

}

=tr
(
E
{
u�
(
IT − XM−1X�

)(
IT − XM−1X�

)
u
})

+ 𝜎4tr
(
E
{
v�V−1PM−1X�XM−1P�V−1v

})

=tr
(
E
{(

IT − XM−1X�
)
uu�

(
IT − XM−1X�

)})

+ 𝜎4tr
(
E
{
XM−1P�V−1vv�V−1PM−1X�

})

=tr
(
𝜎2
(
IT − XM−1X�

)(
IT − XM−1X�

))

+ tr
(
𝜎4XM−1P�V−1PM−1X�

)

=𝜎2tr
((
IT − XM−1X�

)(
IT − XM−1X�

)
+ 𝜎2XM−1P�V−1PM−1X�

)

=𝜎2tr
(
I − 2XM−1X� + XM−1X�XM−1X� + 𝜎2XM−1P�V−1PM−1X�

)

=𝜎2tr
(
IT − 2XM−1X� + XM−1

(
X�X + 𝜎2P�V−1P

)
M−1X�

)

=𝜎2tr
(
IT − XM−1X�

)
= 𝜎2

(
T − trXM−1X�

)
.

(3.6)E
{
û�û

}
= 𝜎2

(
T − tr

(
XM−1X�

))
.
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and hence

Regarding Q̂ we note that

and obtain

E
{
v̂�
i
v̂i
}
=E

{(
u�XM−1P�E�

i
+ v�

(
I(T−1)n − 𝜎2V−1PM−1P�

)
E�
i

)

⋅

(
EiPM

−1X�u + Ei

(
I(T−1)n − 𝜎2PM−1P�V−1

)
v
)}

=E
{
u�XM−1P�E�

i
EiPM

−1X�u + v�
(
I(T−1)n − 𝜎2V−1PM−1P�

)
E�
i
Ei

×
(
I(T−1)n − 𝜎2PM−1P�V−1

)
v
}
= E

{
tr
(
u�XM−1P�E�

i
EiPM

−1X�u

+ v�
(
I(T−1)n − 𝜎2V−1PM−1P�

)
E�
i
Ei

(
I(T−1)n − 𝜎2PM−1P�V−1

)
v
)}

=E
{
tr
(
EiPM

−1X�uu�XM−1P�E�
i
+ Ei

(
I(T−1)n − 𝜎2PM−1P�V−1

)
vv�

×
(
I(T−1)n − 𝜎2V−1PM−1P�

)
E�
i

)}
= tr

(
𝜎2EiPM

−1X�XM−1P�E�
i

)

+ tr
(
Ei

(
I(T−1)n − 𝜎2PM−1P�V−1

)
V
(
I(T−1)n − 𝜎2V−1PM−1P�

)
E�
i

)

=tr
(
𝜎2EiPM

−1X�XM−1P�E�
i

)
+ tr

(
Ei

(
V − 𝜎2PM−1P�

)

×
(
I(T−1)n − 𝜎2V−1PM−1P�

)
E�
i

)
= tr

(
𝜎2EiPM

−1X�XM−1P�E�
i

)

+ tr
(
Ei

(
V − 𝜎2PM−1P�

)
E�
i
− 𝜎2Ei

(
V − 𝜎2PM−1P�

)
V−1PM−1P�E�

i

)

=tr
(
𝜎2EiPM

−1X�XM−1P�E�
i

)
+ tr

(
Ei

(
V − 𝜎2PM−1P� − 𝜎2PM−1P�

+𝜎4PM−1P�V−1PM−1P�
)
E�
i

)
= tr

(
𝜎2EiPM

−1X�XM−1P�E�
i

+ Ei

(
V − 𝜎2PM−1P� − 𝜎2PM−1P� + 𝜎4PM−1P�V−1PM−1P�

)
E�
i

)

=tr
(
Ei

((
𝜎2PM−1

(
X�X + 𝜎2P�V−1P

)
M−1P�

)
+ V − 2𝜎2PM−1P�

)
E�
i

)

=tr
(
Ei

(
V − 𝜎2PM−1P�

)
E�
i

)
= tr

(
EiVE

�
i
− 𝜎2EiPM

−1P�E�
i

)

=tr
((
IT−1 ⊗ e�

i

)(
IT−1 ⊗𝛴

)(
IT−1 ⊗ ei

)
− 𝜎2EiPM

−1P�E�
i

)

=tr
(
IT−1 ⊗ e�

i
𝛴ei

)
− 𝜎2tr

(
EiPM

−1P�E�
i

)

(3.7)E
{
v̂�
i
v̂i
}
= (T − 1)𝜎2

i
− 𝜎2tr

(
EiPM

−1P�E�
i

)
.

X�X + �2P�V−1P =X�X + �2

n∑
i=1

1

�2
i

EiPP
�E�

i
= M
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and hence

	�  ◻

The moments estimators are obtained by selecting variances �2 and 
�2
i
, i = 1, 2,… , n such that the expected moments E

{
û′û

}
 and E

{
v̂�
i
v̂i
}
, i = 1, 2,… , n 

given in (3.6) and (3.7) are equalized to the estimated moments û′û and 
v̂�
i
v̂i, i = 1, 2,… , n . As both the expected moments and the estimated moments 

are functions of the variances, the moments estimators, denoted by 𝜎̂2 and 
𝜎̂2
i
, i = 1, 2,… , n , respectively, are defined as a fix point of the system

Alternatively, the moments estimators can be equivalently defined as a fix point of 
the system:

The implementations by Schlicht (2005b, 2021) use the latter alternative and employ 
a gradient process to find the solution of the equation system

This can be written as

E
{
Q̂
}
=𝜎2

(
T − tr

(
XM−1X�

))
+

n∑
i=1

𝜎2

𝜎2
i

(
(T − 1)𝜎2

i
− 𝜎2tr

(
EiPM

−1P�E�
i

))

=𝜎2

(
T − tr

(
XM−1X�

)
+

n∑
i=1

(T − 1) −

n∑
i=1

𝜎2

𝜎2
i

tr
(
EiPM

−1P�E�
i

))

=𝜎2

(
T + n(T − 1) − tr

(
XM−1X�

)
− tr

(
n∑
i=1

𝜎2

𝜎2
i

EiPM
−1P�E�

i

))

=𝜎2

(
Tn − T − n − tr

(
M−1X�X

)
− tr

(
M−1

n∑
i=1

𝜎2

𝜎2
i

P�E�
i
EiP

))

=𝜎2

(
Tn − T − n − tr

(
M−1X�X

)
− tr

(
M−1

n∑
i=1

𝜎2P�V−1P

))

=𝜎2
(
Tn − T − n − tr

(
M−1

(
X�X − 𝜎2P�V−1P

)))

=𝜎2
(
Tn − T − n − tr

(
InT

))

E
{
Q̂
}
= 𝜎2(T − n).

û�û =𝜎2
(
T − tr

(
XM−1X�

))

v̂�
i
v̂i =(T − 1)𝜎2

i
− 𝜎2tr

(
EiPM

−1P�E�
i

)
.

v̂�
i
v̂i =(T − 1)𝜎2

i
− 𝜎2tr

(
EiPM

−1P�E�
i

)

Q̂ =𝜎2(T − n).

v̂�
i
v̂i =(T − 1)𝜎̂2

i
− 𝜎̂2tr

(
EiPM̂

−1P�E�
i

)

Q̂ =𝜎̂2(T − n).
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Iteration starts with some variance ratios �i =
�2

�2
i

. This permits to determine the 
right-hand sides of Eqs. (3.8) and (3.9). The variance ratios at the left-hand side of 
(3.8) and the variance at the left hand side of (3.9) are used for a new iteration, and 
this continues until convergence is reached, delivering the fix-point values 𝛾̂i =

𝜎̂2

𝜎i
2 

and 𝜎̂2 and the corresponding variances 𝜎̂2
i
=

𝜎̂2

𝛾̂i
 . (If this process does not converge, 

another solution procedure is available that will be discussed in Sect. 3.3 below.)

4.2 � Likelihood estimation

This section derives a maximum-likelihood estimator for the variances under the 
additional assumption that the disturbances u and v are normally distributed.

Using Eqs. (1.8) and (2.10)–(2.14) together with the identity x = XZ , the con-
centrated log-likelihood function for the Aitken regression (2.9) can be written as

with

By maximizing (3.10) with respect to �, �2 and � , the maximum likelihood esti-
mates for the variances are obtained and the corresponding expectation for the 
parameter a is given in analogy to (2.20) as

with a caron denoting the maximum likelihood estimates and V̌ =
(
IT−1 ⊗ 𝛴̌

)
.

The maximum likelihood estimator can be characterized in another way. This 
will be explained in the following. In order to do so, the following lemma is 
needed.

Claim 4 

(3.8)
𝜎̂2
i

𝜎̂2
=

(
v̂�
i
v̂i

Q̂
(T − n) − tr

(
EiPM̂

−1P�E�
i

)) 1

T − 1

(3.9)𝜎̂2 =
1

T − n
Q̂.

(3.10)
L
(
�2,�

)
= −

1

2
(T(log 2 + log�) + log detW) −

1

2
(y − XZ�)�W−1(y − XZ�)

W =XP̃
(
IT−1 ⊗𝛴

)
P̃�X� + 𝜎2IT .

ǎ =Z𝛽 + P̃V̌P̃�X�
(
XP̃V̌P̃�X� + 𝜎̌2IT

)−1(
y − XZ𝛽

)

(3.11)
log detW = log det

(
PMP�

)
+ (T − 1)

n∑
i=1

log �2
i

− ((T − 1)n − T) log �2 − 2 log det
(
PP�

)
.
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Proof 
Hence the result

is obtained. 	�  ◻

Claim 5  Minimizing the criterion

is equivalent to maximizing the likelihood function (3.10).

Proof  With (3.11) we have

As, according to Claim 2, w�W−1w = (y − XZ�)�W−1(y − XZ�) equals 
1

�2
u�u + v�V−1v and log det

(
PP′

)
 and T(log 2 + log�) are independent of the vari-

ances, we can write

detW = det
(
XP̃VP̃�X� + 𝜎2IT

)

=
(
𝜎2
)T

det
(
1

𝜎2
XP̃V

1

2V
1

2 P̃�X� + IT

)

=
(
𝜎2
)T

det
(
1

𝜎2
V

1

2 P̃�X�XP̃V
1

2 + I(T−1)n

)

=
(
𝜎2
)T

det
(
V

1

2

(
1

𝜎2
P̃�X�XP̃ + V−1

)
V

1

2

)

=
(
𝜎2
)T

det
(
V
(
1

𝜎2

(
PP�

)−1
PX�XP�

(
PP�

)−1
+ V−1

))

=
(
𝜎2
)T

det
(
1

𝜎2
V
(
PP�

)−1
P
(
X�X + 𝜎2P�V−1P

)
P�
(
PP�

)−1)

=
(
𝜎2
)T

det
(
1

𝜎2
V
)
det

(
PP�

)−1
det

(
PMP�

)
det

(
PP�

)−1

=
(
𝜎2
)T
(

n∏
i=1

𝜎2
i

𝜎2

)(T−1)

det
(
PP�

)−2
det

(
PMP�

)
.

log detW = log det
(
PMP�

)
+ (T − 1)

n∑
i=1

log �2
i

− ((T − 1)n − T) log �2 − 2 log det
(
PP�

)

(3.12)
CL = log det

(
PMP�

)
+ (T − 1)

n∑
i=1

log �2
i
− ((T − 1)n − T) log �2

+
1

�2
u�u + v�V−1v

CL + 2L
(
�2,�

)
=

1

�2
u�u + v�V−1v − w�W−1w + 2 log det

(
PP�

)

− T(log 2 + log�).

CL = − 2L
(
�2,�

)
+ constant
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where “ constant ” is independent of the variances and maximization of L  with 
regard to the variances is equivalent to minimization of CL. 	�  ◻

4.3 � Another representation of the moments estimators

The relationship between the likelihood estimator and the moments estimator can 
be elucidated with the aid of a criterion that is very similar to the likelihood crite-
rion (3.12). This criterion function is

Claim 6  Minimization of the criterion function (3.13) with respect to the distur-
bances u and v and the variances �2 and � yields the moments estimators as defined 
in (3.3) and (3.4).

Proof  Note that the envelope theorem together with (3.2) implies

In view of (3.2) we obtain further

By definition (2.24) we have

and hence

With this, Eq. (3.16) can be written as

(3.13)

CM

(
�2, �

)
= log detM + log detPP� + (T − 1)

n∑
i=1

log �2
i
− T(n − 1) log �2

+
1

�2
u�u + v�V−1v.

(3.14)
𝜕

𝜕𝜎2

(
1

𝜎2
û�û + v̂�V−1v̂

)
= −

1

𝜎4
û�û

(3.15)
𝜕

𝜕𝜎2
i

(
1

𝜎2
û�û + v̂�V−1v̂

)
= −

𝜎2

𝜎4
i

v̂i
�v̂i.

(3.16)
� log detM

��2
=tr

(
M−1P�V−1P

)
.

M−1
(
X�X + �2P�V−1P

)
=I

M−1P�V−1P =
1

�2

(
I −M−1X�X

)
.
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and we find

which gives

These first-order conditions are equivalent to Eqs.  (3.3), (3.4) that define the 
moments estimator. 	�  ◻

Johannes Ludsteck’s (2004, 2018) Mathematica packages for VC proceed by 
minimizing the criterion function (3.13). This permits very clean and transparent 
programming. As Claim 6 is confined to moments and does not require any assump-
tion about the normality of the disturbances, Ludsteck’s estimators are moments 
estimators as well.

4.4 � The relationship between the likelihood and the moments estimator

The likelihood estimates minimize, according to Claim 5, the criterion CL and the 
moments estimates minimize, according to Claim 6, the criterion CM . It is claimed in 
the following that, for increasing T and bounded X, both estimates tend to coincide. 
To show that, the following lemma is needed.

Claim 7  For sufficiently large T and bounded explanatory variables X, the following 
holds true approximately:

Proof  Define the Tn × Tn matrix

� log detM

��2
=tr

(
1

�2

(
ITn −M−1X�X

))

=
1

�2

(
tr
(
ITn

)
− tr

(
M−1X�X

))

=
Tn

�2
−

1

�2
tr
(
XM−1X�

)
.

� log detM

��2
i

= −
�2

�4
i

tr
(
M−1P�E�

i
EiP

)

(3.17)
𝜕CM

𝜕𝜎2
=
Tn

𝜎2
−

1

𝜎2
tr
(
XM−1X�

)
−

T(n − 1)

𝜎2
−

1

𝜎4
û�û = 0

(3.18)
𝜕CM

𝜕𝜎2
i

= −
𝜎2

𝜎4
i

tr
(
P�E�

i
EiPM

−1
)
+ (T − 1)

1

𝜎2
i

−
𝜎2

𝜎4
i

v̂i
�v̂i = 0

(3.19)û�û =𝜎2
(
T − 𝜎2tr

(
XM−1X�

))

(3.20)v̂i
�v̂i =(T − 1)𝜎2

i
− 𝜎2tr

(
P�E�

i
EiPM

−1
)
.

detPMP� ≈ detM det
(
PP�

)
.
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and consider the matrix ℙMℙ
′. One way to calculate it is as follows:

This implies

For increasing T and bounded x, 1
T
xx′ tends to zero and 

(
IT −

1

T
xx�

)
 tends to IT . 

Hence detℙMℙ
′ tends to detPMP′ and we can write

for large T. Another way to evaluate det (ℙMℙ) is the following:

As

is obtained. Combining (3.21) and (3.22) gives the result. 	�  ◻

Claim 8  For increasing T and with bounded explanatory variables X, the moments 
criterion and the likelihood criterion coincide.

ℙ =

(
P

T
−

1

2 Z�

)

ℙMℙ
� =

(
P

T
−

1

2 Z�

)
M
(
P� T

−
1

2 Z

)

=

(
PMP� T

−
1

2PMZ

T
−

1

2 Z�MP� T−1Z�Z

)

=

(
PMP� T

−
1

2PX�XZ

T
−

1

2 Z�X�XP� In

)
.

detℙMℙ
� = det In det

(
PMP� −

1

T
PX�XZZ�X�XP�

)

= det
(
PMP� −

1

T
PX�xx�XP�

)

= det
(
P
(
M −

1

T
X�xx�X

)
P�
)

= det
(
P
(
X�
(
IT −

1

T
xx�

)
X + �2P�V−1P

)
P�
)
.

(3.21)detℙMℙ
� ≈ detPMP�

detℙMℙ
� = det

(
Mℙ

�
ℙ
)

= detM det
(
ℙ
�
ℙ
)

= detM det
(
ℙℙ

�
)

(3.22)
det

(
ℙℙ

�
)
= det

(
PP� 0

0 In

)
= det

(
PP�

)
,

detℙMℙ
� = detM det

(
PP�
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Proof  For increasing T and in view Claim 7, CM tends to CL . 	�  ◻

Hence the minimization of both criteria with respect to the variances will gen-
erate in the limit the same result.4 In consequence, the descriptive appeal of the 
moments estimator carries over to the likelihood estimator, and the theoretical 
appeal of the likelihood estimator carries over to the moments estimator.

5 � Miscellaneous notes

The following offers remarks on computation (Sect. 4.1), comments on some appli-
cations of the VC method in economics that illustrate aspects of the VC method of 
potential interest in other fields (Sect.  4.2). Some illustration provided by simula-
tion studies is given (Sect. 4.3). Section 4.4 discusses the problem of artifacts. Some 
methodological concerns are raised in Sect. 4.5.

5.1 � Notes on computation

The VC method has been embodied in some freely available software packages 
(Ludsteck 2004, 2018; Schlicht 2005b, 2021). Although these have been developed 
under the assumption that all disturbances are Gaussian, the numerical routines, 
briefly sketched at the end of Sects.  3.1 and 3.3, remain appropriate for the non-
Gaussian case.

Schlicht and Ludsteck (2006, Sec. 11) have compared the performance of the 
moments estimator with that of the Kalman filter in the EViews (2005) implementa-
tion for the Gaussian case and conclude that “both estimators perform very simi-
lar—with the caveat that the Eviews estimates have been calculated by using the 
theoretical values as starting values. ...The distributions of the estimates for the 
weights are practically indistinguishable.” Given that true variances would be una-
vailable in practical applications and that the the Kalman results appear to be quite 
sensitive to the choice of initial values, that speaks for the VC method in the case 
that the coefficients follow a random walk. Further, the VC method dispenses of 
necessity to specify initial values and offers additional descriptive features, as indi-
cated by Claim 1 and Eq. (2.8).

5.2 � Notes on applications

In spite of its so far insufficient documentation, VC has found a quite a number of 
applications in various settings, mainly dealing with structural change. As any of the 

4  A referee rightly pointed out that, in general, the convergence of functions does not necessarily imply 
the convergence of their maximizers. In this case, this criticism does not seem to apply, because both C

M
 

and C
L
 are smoothly differentiable functions. The minima are characterized by the gradient equations 

(3.17), (3.18), i.e. �CM
��2

= 0 , �CM
��2

i

= 0 and the corresponding equations for the likelihood criterion �CL
��2

= 0 , 
�C

L

��2

i

= 0 . These conditions converge, too.
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authors of these studies will be a better judge regarding the practical performance 
of the VC method than this author (who is neither an applied economist, nor an 
econometrican, nor a statistician), any comments in this regard from my side appear 
unwarranted. Yet it may be appropriate to illustrate possible uses of the VC method 
by means of some examples taken from my field, economics.

In the wake of the financial crisis of 2008, it has been observed that “monetary 
policy rules change gradually, pointing to the importance of applying a time-vary-
ing estimation framework” (Baxa et al. 2014) and that, “by applying the time-var-
ying coefficients method ...it was clear that the past financial crisis caused the cen-
tral bank to be more expansionary in its policy than usual towards financial stress” 
(Madsen 2012). Further, analyses of inflation targeting (IT) in “a time-varying coef-
ficients methodology ...show a clear picture of credibility gains from the adoption of 
IT” (Nogueira 2009). Another application dealt with the recent decoupling of green-
house gas emissions and gross domestic product in the wake of global warming 
where it has been found that “the evidence for decoupling among the richer coun-
tries gets weaker.” (Cohen et al. 2017). Regarding the relationship between unem-
ployment and economic growth, known in economics as “Okun’s Law”, it has been 
contested that the relationship has been static over time (Jalles 2018) and that, actu-
ally, “deregulation in labor and product markets and recessions have strengthened 
the response of unemployment to the business cycle” (Furceri et al. 2019).

Such applications suggest to me that the VC method may offer an additional use-
ful way for dealing with linear models with coefficients that follow a random walk, 
and I hope that similar applications will be found in other fields.

5.3 � Some illustration

To illustrate the practical workings of VC, assume a model with an intercept term at 
and a single explanatory variable xt with coefficient bt5:

Using the simulation tool from Ludsteck (2004; 2018), a time series for the explana-
tory variable was generated with xt ∼ N(0, 100) , t = 1, 2,… , 50 . Further it was 
assumed that ut ∼ N(0, 0.1) , 

(
at − at−1

)
∼ N(0, 0.01) , and 

(
bt − bt−1

)
∼ N(0, 0.001) . 

Typically the optimally computed expectations of the time paths (calculated by 
using the true variances) and the VC estimates lie very close together. Figure 1 illus-
trates a somewhat atypical run with estimated smoothing weights that deviate from 
the true smoothing weights by the order of five. The optimally estimated time-paths 
of the coefficients (based on the true variances) and the estimated time-paths (based 
on the estimated coefficients) move together. This illustrates the general impression 
that the filtering results, especially the qualitative time-patterns, are not extremely 
sensitive with regard to the weights used for filtering.

yt =at + btxt + ut

5  The following is taken from Schlicht and Ludsteck (2006, Sec. 10).
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It is, obviously, never possible to extract the movement of the true coefficients 
from the data, irrespective how long the time series is. (Only the estimation of the 
weights will improve with the length of the time series.) The best that can be done 
is to estimate the expectations of the coefficients. Given the variances, the VC esti-
mate (which is the mean of a random vector) is optimal and cannot be improved 
upon, and the standard of comparison must be the estimates obtained with optimal 
weights, as in Fig. 1.

The distribution of the weights in the above setting is illustrated in Fig. 2. The 
time series for x, u, and v have been generated as described above and the VC 
moments estimation applied 5000 times. The histogram Fig.  2 illustrates that the 
estimates cluster around their theoretical values.

5.4 � Artifacts

Suppose that the data of a particular problem have been generated by the standard 
linear model (1.2). If this is the case, the VC model is misspecified, because a cor-
rect estimation would require that the variances �2

1
, �2

2
,… , �2

n
 of the coefficients are 

zero and the weights �1,�2,… , �n—the inverse variance ratios—are infinite, whereas 
VC implicitly assumes that the weights are finite. As the VC estimates with suf-
ficiently large weights �i are indistinguishable from the OLS estimates, the VC esti-
mation would nevertheless be approximately correct if the estimated weights are 
sufficiently large.6

As VC estimates involve nearly twice as many parameters as OLS, there is more 
room for artifacts in VC. From this point of view, VC ought to be used with caution, 
especially if all parameters are permitted to vary over time, rather just a selected few. 

10 20 30 40 50

0.5
0.75

1.25
1.5

1.75
2

(a) Intercept

10 20 30 40 50

0.5
0.6
0.7
0.8
0.9

1.1
1.2

(b) Slope

Fig. 1   Optimally calculated expectations (thin lines) and VC estimates (thick lines) for intercept (left) 
and slope (right), together with the realizations of the coefficients (x) and the VC confidence bands. The 
example has been selected to visually exhibit differences between the true expectations and the VC esti-
mates; usually the weights are estimated better and the curves lie quite close together. As the estimated 
smoothing weights are considerably smaller than the true weights, the time-paths of the VC estimates 
are less smooth than the true expectations (True weights are �

a
= 10 and �

b
= 100 , while the estimated 

weights are 𝛾̂
a
= 1.60 and 𝛾̂

b
= 14.76 here. The true variances are �2

u
= 0.1 , �2

a
= 0.01 , and �2

b
= 0.001 , 

the estimated variances are 𝜎̂2
u
= 0.04 0, 𝜎̂2

a
= 0.025 , and 𝜎̂2

b
= 0.0029)

6  The option “keep selected coefficients constant” in Schlicht (2005b, 2021) is implemented with 
�2

i
= 10

−10 for those coefficients that are kept constant.
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To illustrate, consider a linear model yt = a + bxt + ut with a = 1, b = 2 , xt drawn 
from a Normal distribution with mean zero and variance 5, and ut normally distrib-
uted with mean zero and variance �2

u
= 0.1 . The histogram of the lowest estimated 

weights is given in Fig. 3. In 99% of the cases, the minimum weight is above 7.97, 
and in 95% of the cases, the minimum weight is above 34.6. The corresponding VC 

0
1

2

3

1

2

2.5
3

0

50

100

-1

1.5

Fig. 2   Histogram of estimates for the log10 weights. The theoretical values are log10 �a = 1 and 
log10 �b = 2 . The distribution of estimates clusters around this peak. ( T = 50 , 5000 trials)

Fig. 3   Histogram of lowest weights �min = min
{
�1, �2

}
 of VC estimates for a linear model with time-

invariant coefficients. ( T = 50 , 1000 trials)
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estimates are given in Fig. 4. In the 1% case, the estimate of the time paths involve 
severe artifacts. In the 5% case, artifacts are still there, but in the majority of cases, 
VC estimates conform to OLS estimates. Further, VC does not reject the hypothesis 
of time-invariant parameters in 99 per cent. of the cases. This observation suggests 
that VC may be used to check the linear specification of a time-series model. 

With higher/lower noise, the problem of artifacts becomes more/less severe.7 Still 
the problem has to be kept in mind when interpreting VC results.

5.5 � Aggregate data, Pyrrho’s lemma, and the VC philosophy

Almost all economic models deal with aggregate data. Employment comprises 
women and men, different age groups and various occupations in sundry industries 
scattered over many regions. The wage level summarizes the earnings of all these 
people. Similarly, production comprises a multitude of goods and services, and the 
price level is just an index of thousands of the attached prices. The structures of 
these aggregates are not rigid but change over time in response to changing technol-
ogies, shifting tastes, and volatile business conditions. To assume that time-invariant 
laws govern the interaction of time series of such aggregates seem preposterous to 
me. Some researchers tried to cope with the problem by using weighted regres-
sion—giving higher weights to more recent observations (Gilchrist 1967, Rouhi-
ainen 1978). This seems to me to be an inferior alternative to VC.

The reason for developing VC was my desire to show that a Marshallian view 
of economics, that involves time-varying structures, does not render quantitative 

0 10 20 30 40 50
0.0

0.5
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2.0
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3.0

(a) 1%
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0.0

0.5

1.0

1.5
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2.5

3.0

(b) 10%

Fig. 4   VC estimates at the 1% quantile (a) and the 5% quantile (b) of Fig. 3. The dashed lines give the 
confidence band for ± two standard deviations. The red lines indicate the OLS estimates of the coeffi-
cients. The true coefficients are 1 and 2. As the OLS estimates fit into the confidence bands, VC does not 
reject the case of constant coefficients

7  Even in the rather ill-conditioned case of �2

u
= 1 VC does not reject the hypothesis that the coefficients 

may be time-invariant in 90 per cent. of the cases. The interested reader may explore the programming 
underlying Figs. 3 and 4 as well as further cases by consulting the Mathematica Notebook given in the 
accompanying material. Other cases of interest may be explored by running the notebook with alterna-
tive parameter settings.
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economics impossible. Estimation can be done by using Kalman filtering, or the VC 
method described in this paper, or perhaps other methods. I advocated estimating 
time-varying structures with Kalman filtering in Schlicht (1977, Appendix B), but 
without any resonance. This puzzled me. Was this really such a bad idea?

Maybe it wasn’t, but the puzzle remains. What were the reasons for the decade-
long resistance to dealing with time-varying coefficients? And why has this some-
what changed over the past fifteen years?

One reason may have been that structures changing over time cannot represent 
the ’true model’ economists were chasing during the heydays of ’dynamic stochas-
tic general equilibrium’ macroeconomics. The existence of such a ’true model’ was 
simply postulated (Lucas 1976, 24). I think that this is, in the context of aggregate 
models dealing with long-run time series, a red herring, distracting from consider-
ing seriously what aggregate models represent.8

Another reason, I submit, was the reductionist bent of economists. If a structure 
changes over time, this warrants explanation. Hence there was a tendency to add 
additional explanatory variables as ’controls’ in order to explain the change. While 
this may be sensible in certain cases, it is unnecessary and even obfuscating if the 
changes brought about by such outside forces are slow and independent of the rela-
tionships under study.9 Further, the introduction of such controls seems, statistically 
speaking, problematic because of the following theorem that has been provided by 
Theo Dijkstra (1995, 122).

Pyrrho’s Lemma: For every collection of vectors, consisting of observations 
on a regressand and regressors, it is possible to get any set of coefficients as 
well as any set of predictions with variances as small as one desires, just by 
adding one additional vector from a continuum of vectors.

In other words: There exists a time series xn+1 that, if added to the explanatory vari-
ables x1,x2,… , xn in the standard linear model (1.2), will deliver arbitrarily prede-
termined coefficients and variances as estimates. This should make us reluctant to 
seek to explain too much by inserting additional controls which, taken together, span 
an entire set of such additional time series. Further, the procedure can generate the 
mirage of a ’true model’ in cases when such a model actually does not exist. Using 
VC reduces the necessity for adding further controls and mitigates, therefore, Pyr-
rho’s problem.

Let me add another remark. The VC model (1.4), (1.5) can easily be generalized 
in many ways. A possibility would be, for instance, to replace ai,t+1 = ai,t + vi,t by 
ai,t+1 = 𝜃i

(
ai,t − āi

)
+ vi,t . Such generalizations (and many more) can be handled by 

Kalman filtering. So why not allow for more general specifications?
My objection would be that such generalizations would impinge on the descrip-

tive transparency of the VC method which is, to me, a major concern—trumping 
more technical statistical considerations.

8  My view if aggregation is outlined in Schlicht (1977, 1985, 1990).
9  This is formally stated by the “Moving Equilibrium Theorem” (Schlicht 1978, 1997).



1193

1 3

Journal of the Korean Statistical Society (2021) 50:1164–1196	

An estimation method, such as VC, can be viewed as a filter that seeks to iden-
tify certain patterns in clouds of data. In doing so, such a filter gives preference to 
certain patterns rather than others. The patterns preferred by the VC method con-
form to the desiderata underlying the descriptive account (Sect. 1.4). These are that 
the coefficients remain as time-invariant as possible and that a good fit is obtained. 
This makes sure that all estimated variability over time is driven by the data, rather 
than by another preference of the model, as would be the case in auto-regressive 
specifications.

Unfortunately the determination of weights used in VC is descriptively less 
transparent than the desiderata of stable coefficients and a good fit, but it carries 
nevertheless some descriptive meaning; in this regard, at least, there is room for 
improvement.

6 � Conclusion

The VC method outlined in this paper addresses linear models with coefficients that 
are generated by a random walk. This is a rather special case, as it does not cover 
models with coefficients that presuppose more general stochastic processes. Yet it 
is a case that has received special attention in the literature, at least in economics. 
Focussing on this somewhat narrow class of models offers some benefits, however. 
Non-Gaussian disturbances can be admitted. The researcher is not required to pos-
tulate initial values that are typically unknown. Further, the time-averages of the 
estimated coefficients can be linked to the coefficients of an associated linear GLS 
(Aitken) model with constant coefficients. Further, the VC method permits an easy 
treatment of the case that only a subset of the coefficients varies over time while the 
rest of them remains constant. In all this, it allows for a more satisfactory treatment 
than would be possible within more general approaches, such as Kalman filtering.

Regarding further developments, and being confined to the rather narrow per-
spective of an economist, I would find it appropriate to conceive a way for dealing 
with missing observations in an appropriate way.10 Further, moments estimators for 
simultaneous equations, again with a clear descriptive interpretation, appear desir-
able. Yet any attempt in this direction definitely exceeds my capabilities.
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