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Abstract
Methods to compare two samples of interval-valued data are discussed. In the inter-
val-valued data, observations have the form of intervals and are often read as two-
dimensional vector of lower and upper bounds. We consider four methods, two of 
which are the applications of existing methods for bivariate data, and the other two 
are based on the marginalization (univariate distributional representation) of the 
interval-valued data. We conduct a comprehensive numerical study and analysis of 
real data to understand the performance of four methods.

Keywords  Combined test · Hotelling’s test · Interval-valued data · Two-sample test · 
Univariate marginalization

1  Introduction

Statistical procedures for testing equality of two populations of interval valued data 
are developed in this paper. In interval-valued data, the variable of interest is a uni-
variate random object on a probability space of intervals, and has the form of an 
interval (L, U], with lower and upper bounds L, U satisfying L < U . More precisely, 
the lower and upper bounds L and U of the interval are real-valued random variables 
on the probability space of intervals.

Here, we denote an interval-valued data as a form of a half-open interval but the 
interval could be open, closed, or other form of half-open intervals. In general, the 
interval-valued data can be categorized into two types; min–max (MM) and meas-
urement error (ME) types (Blanco-Fernández and Winker 2016). The MM type 
assumes that lower and upper bounds of each interval-valued observation are the 
minimum and maximum values of object of interest, respectively. In practice, the 
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MM type data is generated when aggregating large datasets to the minimum and 
maximum values or focusing on the range of variation of the variables. The typical 
example of the MM type data is the blood pressure data, where the blood pressure 
usually recorded in minimum and maximum during a heartbeat cycle. On the other 
hand, the ME type assumes that there exists a true value and the true value is not 
observable directly, but only observable as an interval that contains the true value. 
The ME type data is occurred when the exact value is not available due to the con-
fidentiality issues or the use of non-sufficiently accurate measurement device. The 
typical example of the ME type data is the interval-censored data that commonly 
encountered in clinical trials.

While the same notation is used for both the MM-type and ME-type interval-
valued data, the analysis and inference in both types should be different (Blanco-
Fernández and Winker 2016; Grzegorzewski 2018). In the ME type, we deal with 
usual real-valued random variables, but the problem is that the realization is not pre-
cise and obtained as an interval. Thus, the statistical analysis is based on this impre-
cise information about the point data. On the other hand, in the MM type, we focus 
on the random interval itself, not the point value. Thus, the statistical analysis aims 
at developing probabilistic models for the interval itself by considering the models 
of the lower and upper bounds (or the center and half-range) of the interval.

In this paper, we assume that the observed interval-valued data is of MM-type 
and develop statistical procedures to test equality of two populations of the interval-
valued data. Among many statistical procedures, the comparison of two populations 
is one of the most fundamental statistical questions. There are several literatures for 
testing equality of two populations for the ME-type interval-valued data which are 
related to the interval censored data. Most of the existing methods are developed 
by the nonparametric test procedures such as Wilcoxon test (Perolat et  al. 2015; 
Grzegorzewski and Śpiewak 2017), U-statistic (Choi et al. 2019) and the sign test 
(Grzegorzewski and Śpiewak 2019). However, little research has been done in the 
context of the MM-type interval-valued data. The only method we are aware of is 
the combined test (CB) proposed by Grzegorzewski (2018). To develop a more pow-
erful testing procedure, we consider three additional testing procedures. One is, by 
considering the bivariate nature (or bivariate real-valued representation) of interval-
valued data, the Hotelling’s T2 (HT) test. The forementioned two are direct applica-
tions of the existing methods for bivariate data. The other two newly suggested are 
based on the univariate marginalization (or univariate distributional representation) 
of interval-valued data that depends on kernalization. To this end, the uniform ker-
nel method (UK) and Gaussian kernel method (GK) by Jeon et al. (2015) are used 
to estimate the marginal distribution. We suggest using the Kolmogorov–Smirnov 
(KS) distance between the kernel marginal distributions to test the equality of two 
populations. The null distribution of the KS distance is approximated by a permuta-
tion procedure (Præstgaard 1995).

The remainder of the paper is organized as follows. In Sect.  2, we precisely 
describe four methods to compare two-sample interval-valued data. In Sect. 3, we 
compare performance of the four methods in various settings through a comprehen-
sive simulation study. In Sect. 4, we apply the methods to the blood pressure data of 
female students in the US. In Sect. 5, we conclude the paper with a summary.
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2 � Methods

To verify if there is a significant difference between two populations where samples 
are observed by intervals, we study four methods: the CB, HT, UK, and GK tests. 
For the CB and HT test, we transform interval-valued data into a bivariate real-val-
ued vector of center C and (logarithm of) half-range R ( logR ), where C = (L + U)∕2 
and R = (U − L)∕2 , in order to remove the constraint in L and U.

2.1 � Combined (CB) test

Let F
C
 and F

R
 be the cumulative distribution function (c.d.f.) of the center and 

half-range (or log-transformed half-range), respectively, from one population. We 
define G

C
 and G

R
 similarly for another population. Assume that m and n random 

samples are observed from each population and independent of each other, i.e., {
(C1j,R1j), j = 1,… ,m

}
 and 

{
(C2j,R2j), j = 1,… , n

}
 . Grzegorzewski (2018) sug-

gests verifying the equivalence of the two populations by testing the overall hypoth-
esis below

Grzegorzewski (2018) proposes the KS goodness-of-fit test that individually applies 
the usual KS test to the center and half-range, and combines the respective results.

The KS statistics for each hypothesis H0,C ∶ F
C
= G

C
 and H0,R ∶ F

R
= G

R
 are

where F̂m,C(t) = (1∕m)
∑m

j=1
I(C1j ≤ t) , F̂m,R(t) = (1∕m)

∑m

j=1
I(R1j ≤ t) , 

Ĝn,C(t) = (1∕n)
∑n

j=1
I(C2j ≤ t) , and Ĝn,R(t) = (1∕n)

∑n

j=1
I(R2j ≤ t) . The asymp-

totic null distribution of TC (or TR ) is known as Kolomogorov–Smirnov distribution 
(Feller 1948), where, for every fixed z ≥ 0,

as m → ∞ , n → ∞ so that m∕n → a ∈ (0,∞) . In the numerical study and data exam-
ple, we use the permutation method to estimate the distribution of the test statistic 
TC (or TR ) due to finiteness of the sample sizes.

To test the overall hypothesis H0 , Grzegorzewski (2018) exploits the Bonferroni 
procedure when combining p values of H0,C and H0,R . To be specific, let pC and pR 
be the p values related to TC and TR , respectively. Then, the overall p value is set 
as p = 2min(pC, pR) , and we reject H0 if p is small enough, such as p < 𝛼 , where 
� ∈ (0, 1) is the significance level.

H0 ∶ F
C
= G

C
and F

R
= G

R
.

TC =Dm,n(F̂m,C , Ĝn,C) =
(

mn

m + n

)1∕2

sup
t∈ℝ

|F̂m,C(t) − Ĝn,C(t)|,

TR =Dm,n(F̂m,R , Ĝn,R) =
(

mn

m + n

)1∕2

sup
t∈ℝ

|F̂m,R(t) − Ĝn,R(t)|,

P
{
TC ≤ z

}
→ L(z) = 1 − 2

∞∑

j=1

(−1)j−1e−2j
2z,
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2.2 � Hotelling’s T2 (HT) test

Two-sample HT test is one of the most popular procedures to test the equality of two 
mean vectors of the populations. We apply this method to center and log-transformed 
half range by transforming the interval data, which is a two-dimensional problem. 
We assume that the real-valued random variables �i = (C1i, logR1i), i = 1,… ,m 
( �j = (C2j, logR2j), j = 1,… , n , respectively) are independently from the population 
with N2(��,��) ( N2(��,��) , respectively), where N2(�,�) denotes the bivariate nor-
mal distribution with mean vector � and covariance matrix �.

2.2.1 � Equal covariance case

We assume that the covariances of the two populations are equal, �� = �� . Then, the 
null hypothesis H0 ∶ �� = �� can be tested using HTeq:

where � and � are the sample mean vectors of two samples, respectively, and Sp is 
the pooled covariance matrix calculated by

where S� and S� are the sample covariance matrices from �i s and �j s, respectively. 
Under the null hypothesis, we know that

where F(2,m + n − 3) is the F-distribution with parameters 2 and m + n − 3.

2.2.2 � Unequal covariance case

If �� ≠ �� , the HT statistic given by

follows the null distribution below:

where � is an appropriately defined degrees of freedom.

HTeq =
mn

m + n
(� − �)

⊤
S−1
p
(� − �),

Sp =
(m − 1)S� + (n − 1)S�

m + n − 2
,

m + n − 3

2(m + n − 2)
HTeq ∼ F(2,m + n − 3),

HTun = (� − �)
⊤
(
S�

m
+

S�

n

)−1

(� − �)

m + n − 3

2(m + n − 2)
HTun ∼ F(2, �),
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2.3 � Marginalization‑based test

In this section, we propose two-step marginalization-based approaches to test the 
equality of two interval-valued samples. First, we find a univariate distributional 
representation, which we named as marginalization, that attempts to summarize 
the interval-valued sample with single real-valued variables. Then, we adopt a 
procedure to compare two univariate distributions. Here, we should remark that 
the marginalization above is a univariate real-valued representation of an inter-
val, not the typical marginalization of the bivariate real-valued representation of 
the interval, e.g. (L, U) or (C, R).

2.3.1 � Two marginalizations

We first introduce two popular marginalization methods: an empirical histogram 
estimator (also known as a marginal histogram estimator or a kernel estimator 
with the uniform kernel) and a Gaussian kernel estimator. Suppose we observe n 
independent intervals 

{
Ii = (�i, ui], i = 1,… , n

}
 . The estimator with the uniform 

kernel (Bertrand and Goupil 2000) for a univariate density of interval-valued data 
is

The rationale behind (1) is that the value of a univariate representation of Ii is uni-
formly distributed in the interval (�i, ui] . Thus, the marginalization is represented 
as the uniform mixture of n uniform distributions. We refer to this estimator as the 
uniform kernel estimator (UK).

Jeon et al. (2015) improve the uniform kernel estimator by imposing some struc-
tures on the distribution of data. The proposed estimator is a mixture of n univariate 
normal densities. That is,

where h is a bandwidth, 𝜙(⋅|𝜇̂k(h), 𝜎̂k(h)) is the univariate normal density with mean 
𝜇̂k(h) and standard deviation 𝜎̂k(h) computed by

For the given bandwidth h, the local weights wki(h) are determined as follows.
Using the center of intervals, we calculate Euclidean distances between kth and 

ith intervals, say dki(= dik) . Let Rki be the rank of the dki (in increasing order) among {
dk1, dk2,… , dkn

}
 with Rkk = 1 . The weights are determined such that

(1)f UK
n
(g) =

1

n

n∑

i=1

1

ui − �i

I(�i < g ≤ ui).

(2)f GK
n
(g;h) =

1

n

n∑

k=1

𝜙(g|𝜇̂k(h), 𝜎̂k(h)),

𝜇̂k(h) =
1

n

n∑

i=1

wki(h)mi, 𝜎̂2
k
(h) =

1

n

n∑

i=1

wki(h)vi,

mi = (�i + ui)∕2, vi = (ui − �i)
2∕12.
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where K is the standard normal density. Jeon et al. (2015) propose to select h that 
minimizes the Kullback–Leibler loss between the uniform kernel estimator in (1) 
and the Gaussian kernel estimator in (2). Details can be found in Jeon et al. (2015). 
We refer to this estimator (2) as the Gaussian kernel estimator (GK).

2.3.2 � Test statistic

Let us consider two independent random intervals: first sample �1,… ,�m is 
drawn from the population with c.d.f. F(�1, u1) where �1 and u1 indicate the lower 
and upper bound of the interval � , respectively. The second sample �1,… ,�n 
comes from the population with c.d.f. G(�2, u2) where �2 and u2 are defined simi-
larly for � . We check the equality of distributions H0 ∶ F = G by using the uni-
variate marginal estimators introduced previously. In other words, we compare F

M
 

and G
M
 , where F

M
 and G

M
 are the marginal distributions of F(�1, u1) and G(�2, u2) , 

respectively.
We consider two types UK and GK of test statistics based on the UK and GK 

estimators, respectively. For the UK type, the test statistic TUK
M

 is similar to the 
KS statistic and defined as follows:

where F̂UK
M,m

 and ĜUK
M,m

 are the UK estimators of the marginal cumulative distribution 
functions FM and GM based on (�1,..., �m) , and (�1,… ,�n) , respectively. The esti-
mator F̂UK

M,m
 of FM is defined by the estimated density functions f̂ UK

m
 as follows:

where L1i and U1i are the lower and upper bounds of the ith observed interval of �i.
To develop the GK type test statistic, we only adopt the structure of the Gauss-

ian kernel estimator for the interval-valued data proposed in Jeon et al. (2015) and 
define the test statistic TGK

M
 based on the GK estimator as the maximal distance 

between F̂GK
M,m

(t;h) and ĜGK
M,n

(t;h) with respect to t for the given common bandwidth 
h that maximizes supt |F̂GK

M,m
(t;h) − ĜGK

M,n
(t;h)| , where F̂GK

M,m
(⋅;h) and ĜUK

M,n
(⋅;h) are 

the GK estimators of the marginal cumulative distribution functions FM and GM 
for a given common bandwidth h based on (�1,..., �m) , and (�1,… ,�n) , respec-
tively. The estimator F̂GK

M,m
(⋅;h) of FM is obtained by the estimated density function 

f̂ GK
m

(⋅;h) as follows:

wki(h) ∝
1

h
K

(
Rki − 1

h

)
and

n∑

i=1

wki(h) = 1,

(3)TUK
M

= Dm,n(F̂
UK
M,m

, ĜUK
M,n

) =
(

mn

m + n

)1∕2

sup
t∈ℝ

|F̂UK
M,m

(t) − ĜUK
M,n

(t)|,

F̂UK
M,m

(t) = �
t

−∞

f̂ UK
m

(x) dx

=
1

m

m∑

i=1

{I(U1i < t) +
t − L1i

U1i − L1i
I(L1i < t ≤ U1i)},
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where 𝛷(t|𝜇̂i(h), 𝜎̂i(h)) is the cumulative distribution function of the normal distri-
bution with mean 𝜇̂i(h) and variance 𝜎̂2

i
(h) . To be specific, we first choose the com-

mon bandwidth hmax such that

Therefore, the test statistic TGK
M

 for the GK type is defined as follows:

Note that we propose the GK type test with the bandwidth hmax since the GK type 
test with the proposed bandwidth hmax has similar powers for center change and 
larger powers for range change than the GK type test with the bandwidth selection 
by Jeon et al. (2015) in our numerical study (see Appendix 2). However, it is worth 
noting that the proposed bandwidth hmax does not guarantee the better performance 
for density estimation compared to the bandwidth selection by Jeon et  al. (2015). 
In addition, the common bandwidth selection for the GK type test statistic does not 
need the calculation of the cross-validated Kulback–Leibler loss as applied in Jeon 
et  al. (2015) and hence we can considerably reduce the computational cost in the 
evaluation of p value by the permutation procedure while we need to choose the 
optimal bandwidth h for every permutation if the test statistic is defined by the opti-
mal bandwidth chosen by the cross-validation.

2.3.3 � Permutation procedure to approximate the null distribution

We use the permutation method to estimate the sampling distribution of the test 
statistic (3) under the null H0 . The permutation procedure is straightforward and 
briefly described as follows. For the b-th permutation, we combine all the m + n 
observations from both groups together, and then randomly take m observations 
without replacement. This sample constitutes the first group and the remaining n 
observations are set as the second group. We compute the test statistic t

M,b as in (3) 
using these permuted samples and repeat this procedure B many times. The permu-
tation distribution for the test statistic T

M
 is given by the empirical distribution of 

t
M,1,… , t

M,B . Now, let tobs
M

 be the observed test statistic from the original two samples. 
The p value for hypothesis H0 based on permutation is

In the numerical study, since we know the underlying distribution such as normal 
or t distribution, the reference distribution can be better approximated by generating 

F̂GK
M,m

(t;h) = ∫
t

−∞

f̂ GK
m

(x;h) dx =
1

m

n∑

i=1

𝛷(t|𝜇̂i(h), 𝜎̂i(h)),

hmax = argmaxh sup
t∈R

|F̂h
M,m

(t) − Ĝh
M,n

(t)|.

(4)TGK
M

=
(

mn

m + n

)1∕2

sup
t∈ℝ

|F̂GK
M,m

(t;hmax) − ĜGK
M,n

(t;hmax)|.

p =

∑B

b=1
I(t

M,b ≥ tobs
M

)

B
.
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random samples from the known distribution under the null rather than permuting 
observed samples.

3 � Numerical study

In this section, we compare the finite-sample performance of the four meth-
ods described in the previous section. We generate interval variable by generat-
ing a bivariate real-valued random variable (C, logR) under various situations. 
Each situation depends on different factor(s) to induce difference between two 
populations, where the magnitude of difference is controlled by � = 0, 0.5, 1, 1.5 . 
By the setting, the null hypothesis is expressed as H0 ∶ � = 0 for all four tests. 
Thus, when � = 0 , we examine the size of each test, while for 𝛿 > 0 , we assess 
the power of competing tests. For the sample size, we consider following 4 cases: 
(m, n) = (30, 30), (30, 120), (50, 50), (50, 200) . To investigate the effect of correla-
tion between the center and range, we use three values for a correlation parameter 
� = (0, 0.4, 0.8) . All other settings we consider for the study are summarized in 
Table 1. Generative models of each simulation are given in the beginning of each 
subsection.

Table 1   Summary of the settings. At the first column, the left character of the hyphen (-) denotes the 
distribution of (C, logR) : N is for “normal”, T for “T with df 5”, and SN for “skew-normal”. The right 
character represents a source of difference between the two populations: C is for “mean of center”, R for 
“mean of range”, C.S for “mean and skewness of center”, COV for “covariance”, C.V for “mean and 
variance of center”, and R.V for “mean and variance of range”. Each population ( i = 1, 2 ) is denote by 
�

i
 with parameters �

i
 (mean), �

i
 (covariance matrix), and �

i
 (skewness). We define � = (1 � ;� 1)

Case Distribution 
of (C, logR)

�1 �2

�1 �1 �1 �2 �2 �2

(N-C) Normal (0, 0) � (0, 0) (�, 0) � (0, 0)
(N-R) Normal (0, 0) � (0, 0) (0, �) � (0, 0)
(T-C) T with df 5 (0, 0) � (0, 0) (�, 0) � (0, 0)
(T-R) T with df 5 (0, 0) � (0, 0) (0, �) � (0, 0)
(SN-C) Skew normal (0, 0) � (−0.6,−0.1) (�, 0) � (−0.6,−0.1)

(SN-C.S) Skew normal (0, 0) � (0,−0.1) (�, 0) � (−0.4�,−0.1)

(N-COV) Normal (0, 0) � (0, 0) (0, 0) (1 + �)� (0, 0)
(N-C.V1) Normal (0, 0) � (0, 0) (�, 0)

�
1 + 2�

√
1 + 2��√

1 + 2�� 1

�
(0, 0)

(N-C.V2) Normal (0, 0)
(

4 2�
2� 1

)
(0, 0) (�, 0)

�
4 − 2�

√
4 − 2��√

4 − 2�� 1

�
(0, 0)

(N-R.V) Normal (0, 0) � (0, 0) (0, �)
�

1 + 2�
√
1 + 2��√

1 + 2�� 1

�
(0, 0)
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For test statistics TC , TR , and T
M
 , we numerically approximate its null distribution 

by generating m and n samples under the null and calculating corresponding test 
statistics. We repeat this procedure 20, 000 times to get their reference distributions. 
For HTeq and HTun , the simulated distribution is similarly obtained if a setting does 
not meet underlying assumptions of the HT test.

The significance level � is set as 5% . The size and power of each test are evalu-
ated as the rejection rate through 2000 repetitions.

3.1 � Normal distribution with equal covariances

We set a bivariate normal distribution for the center and log-transformed half-range. 
We compare the rejection power of four tests by varying the mean vector value of 
the second population, assuming that the covariances of two populations are equal. 
By denoting the first population as �1 and the second as �2 , the setting is expressed 
as follows:

where mean and variance parameters are

Note that the mean vector in the second population ( �2 ) is set to either (�, 0) or 
(0, �) . The reason for varying mean of center and half-range separately is that they 
differently affect the rejection power, which will be explained later.

We first explain a general trend across methods. When we look at the null case 
where � = 0 in Table 2, the size of each test is well controlled since the rejection rate 
is close to the significance level � = 0.05 in all cases. Under the alternative hypoth-
esis ( 𝛿 > 0 ), it can be seen for every setting that the larger � is, the greater probabil-
ity of rejection is. Similarly, each test becomes more powerful as more samples are 
available.

To summarize the winners based on the case where � = 0 , the HT test shows the 
highest power among the four tests in both cases (N-C) and (N-R). This consequence 
is natural when considering that other methods test the equality of distributions, 
while the HT test only compares mean vectors between two populations. In addition, 
the data generation setting (a bivariate normal distribution with equal covariances) 
satisfies the underlying assumptions of the HT test. Note that in case (N-C), where 
two distributions differ in mean of the center, two marginal tests are comparable to 
the HT, but perform better than the CB. However, in case (N-R), where mean vec-
tors are different at the range, the result is reversed, i.e., the CB performs better than 
the marginal tests.

Looking closely at the properties of each test, in the CB and HT tests, the power 
in case (N-C) is almost the same to the power in (N-R) under the same simulation 

�1 ∶

(
C1

logR1

)
∼ N2(�1,�1), �2 ∶

(
C2

logR2

)
∼ N2(�2,�2),

𝜇1 = (0, 0)⊤, 𝛴1 = 𝛴2 =

(
1 𝜌

𝜌 1

)
,

(N-C) 𝜇2 = (𝛿, 0)⊤, or (N-R) 𝜇2 = (0, 𝛿)⊤.
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parameters. This result is also natural because both tests are designed with the same 
priority for the center and range. On the other hand, in the marginal tests, the power 
in case (N-C) is much higher than the power in case (N-R), especially when � is 
small. This implies that the two marginalization methods, the UK and GK, are more 
sensitive to the change of the center rather than range. In addition, the marginaliza-
tion-based tests show much less powers than those of the CB and HT tests. Thus, 
two-dimensional test procedure is preferable to the marginalization-based tests when 
the difference of two distributions is caused by the difference in the range of the 
interval. However, it is worth noting the performance of the marginalization-based 
tests in case (N-R) with � = 0 . That is, even if the range and center are independent, 
the power of the GK and UK is close to 1 as � grows. It should also be noted that the 
performance of the GK and UK is similar in case (N-C), but the GK performs much 
better than the UK in case (N-R).

Now, we examine the effect of correlation on the power of each test. In general, 
larger correlation results in higher power of each test. This phenomenon can be 
explained using the Mahalanobis distance between the two mean vectors from �1 

and �2 . In case (N-C), for instance, the distance is (�, 0)
(
1 �

� 1

)−1

(�, 0) = �2∕(1 − �2) , 

which increases as � gets larger. Specifically, when � is 0, 0.4, and 0.8, the corre-
sponding distance is �2 , 1.2�2 and 2.8�2 , respectively. Thus, it is evident to see that 
two population distributions are easily distinguished from each other, especially 
when � = 0.8 . However, the effect size of � in power differs from each test. The HT 
test shows the most significant increment in power among the four tests as � 
increases, which could be reasonable considering that the HT statistic is in the form 
of the Mahalanobis distance between two mean vectors. The followings are the UK 
and GK tests showing a similar increase. On the other hand, the power of the CB 
test hardly changes. We, hereafter, would avoid a discussion on � since interpretation 
of its effect is almost same in most of the following settings. Thus, the case of � = 0 
will be mainly discussed.

3.2 � Non‑normal cases

We examine the size and power in terms of tail thickness and skewness of an under-
lying bivariate distribution for the center and log-transformed half-range.

3.2.1 � Thickness of the tail

We use a bivariate t-distribution with the degrees of freedom 5 denoted by t5 , which 
has a thicker tail than the normal distribution. We assume two populations have 
equal covariance matrices. Other details regarding the setup are identical to the nor-
mal case. That is,

where mean and variance parameters are

�1 ∶

(
C1

logR1

)
∼ t5(�1,�1), �2 ∶

(
C2

logR2

)
∼ t5(�2,�2),
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Since the Gaussian assumption is broken, the null distribution of HTeq is calculated 
by the permutation method as mentioned earlier.

First of all, it is noticeable in Table  3 that the testing power decreases overall 
compared to that of the normal distribution. Next, based on the case where � is 0, 
the UK test outperforms the other three tests in case (T-C), while in case (T-R), the 
CB test is most powerful, which is different from the normal case where the HT test 
shows the highest power. Performance degradation of the HT is obvious since the 
Gaussian assumption is not satisfied. Third, in case (T-C), the power of the UK test 
uniformly dominates that of the GK, contrary to their similar performance in the 
normal case (N-C). The less better performance of the GK test is attributed to its 
dependency on the Gaussian kernel. Finally, as in the previous results, in case (T-R), 
the performance of the marginal tests is much worse than that of the two other tests 
except the case with large � = 1.5 . Meanwhile, when center and range are highly 
correlated ( � = 0.8 ), the HT test shows better performance than the others. This is 
because as � gets larger, the increase of power in the HT test is more substantial than 
the other tests, as explained before.

3.2.2 � Skewness

We generate the center and log-transformed half-range from the following bivariate 
skew-normal distribution. We use a centered parameterization to fix the marginal 
parameters at prescribed values (Azzalini and Capitanio 1999). That is,

where (𝛾
C
, 𝛾

R
)⊤ represents skewness of the marginal distribution of the center and 

log-transformed half-range, respectively. For the sake of simplicity, we only con-
sider two cases for sample size (m, n) = (30, 30), (30, 120) , and the case of different 
mean at center. We additionally include the case where skewness and mean of the 
center are varying together, which is motivated from the real data example described 
in the next section.

(SN-C) Mean of the center is different while covariance and skewness are the 
same in two populations: 

(SN-C.S) Skewness of the center as well as mean of the center are different in 
two populations, and two covariances are equal: 

𝜇1 = (0, 0)⊤, 𝛴1 = 𝛴2 =

(
1 𝜌

𝜌 1

)

(T-C) 𝜇2 = (𝛿, 0)⊤, or (T-R) 𝜇2 = (0, 𝛿)⊤.

(
C

logR

)
∼ SN

[
� =

(
�

C

�
R

)
,� =

(
1 �

� 1

)
, � =

(
�
C

�
R

)]
,

𝛱1 ∶ 𝜇1 = (0, 0)⊤, 𝛴1 =

(
1 𝜌

𝜌 1

)
, 𝛾1 = (−0.6,−0.1)⊤

𝛱2 ∶ 𝜇2 = (𝛿, 0)⊤, 𝛴2 = 𝛴1, 𝛾2 = 𝛾1.
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It is shown in Table 4 that the case (SN-C) is similar to the normal case in that 
the HT test shows the best performance and the power of two marginal tests is bet-
ter than that of the CB. In the case (SN-C.S), we control the skewness of the sec-
ond population to gradually increase so that its marginal distribution is more left-
skewed. We find that when correlation is small ( � = 0 ), the UK and GK tests are 
superior to the other two tests, unlike the previous case (SN-C), but under the highly 
correlated structure ( � = 0.8 ), the HT test is the most powerful, as before.

3.3 � Normal distribution with unequal covariances

We also set a bivariate normal distribution for the center and log-transformed 
half-range, but this time we assume that covariances of two populations are not 
equal. We consider the following four cases, one of which represents character-
istics of the real data example. We use two cases for sample size for simplicity: 
(m, n) = (30, 30), (30, 120).

(N-COV) The covariance matrices are unequal while the mean vectors are equal: 

(N-C.V1) The mean and variance of the center are different in two populations. 
In the second population, both the mean and variance of the center increase: 

(N-C.V2) In the second population, the mean of center increases while the vari-
ance of center decreases: 
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(N-R.V) The mean and variance of the range differ in two populations. In the sec-
ond population, both mean and variance of the range increase: 

As mentioned earlier, we give an interpretation to the cases where � = 0 based on 
Table 5. The most interesting result is the case (N-COV), where the marginal tests 
have much higher power than two other tests, and the GK outperforms the UK. This 
result means that the marginal tests, especially the GK test, effectively detect the dif-
ference in covariance over the other tests. On the contrary, the HT test, which tests 
the difference between two mean vectors, is incapable of detecting covariance dif-
ferences between two populations, as it shows the power same to the size. In cases 
of (N-C.V1) and (N-C.V2), where variance of the center in the second population 
varies (increases or decreases) together with the mean change, the marginal tests 
performed best, compared to the case (N-C) where the HT test is the best. Finally, in 
case (N-R.V), where both mean and variance of the range are controlled, the GK test 
shows much higher power than the other tests for � = 0, 0.4 , unlike the poor perfor-
mance in case (N-R). For � = 0.8 , the HT still has the highest powers than the others 
as shown in the case of (N-R). When � = 0.8 , the HT test has the highest power in 
all cases but (N-COV), where there is no difference in the two mean vectors.

We summarize the numerical study in Table  6 that shows the best and worst 
methods in each case. Two major findings we make are as follows. First, when the 
center and range are highly correlated, the HT performs best among all. Second, the 
marginal tests, the UK and GK tests, show higher power than other methods if two 
distributions differ by more than one factor (mean, covariance, and skewness, etc). 
In addition, the marginal tests tend to detect the difference in center better than in 
range. Note that the results of numerical study for the significance levels 1% and 
10% are reported in Tables 10, 11, 12, 13, 14, 15, 16 and 17 in Appendix 1.

4 � Data example

We conduct a real data analysis using the methods discussed in this paper. We use 
the data from National Heart, Lung, and Blood Institute Growth and Health Study 
(NGHS), which is a cohort study to investigate temporal trends of cardiovascular 
risk factors, such as systolic and diastolic blood pressures (SBP, DBP) through up 
to ten annual visits of 2379 African–American and Caucasian girls. The blood pres-
sure (BP) measured at two levels can be an example of the MM-type interval-valued 
data. The goal of our real data analysis is to find the difference in BP distributions 
between African–American and Caucasian girls at the initial points of the study.
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After we removing subjects with missing measurement, the total number of sub-
jects remaining is N = 2256 ( m = 1112 Caucasians and n = 1144 African–Amer-
icans). Table  7 shows descriptive statistics of the BP data by race and results of 
univariate t tests on whether the BP of African–Americans is higher than that of 
Caucasians. Mean value of SBP, DBP, and their center from African–American 
girls is significantly larger than that from Caucasians, but the range shows no sig-
nificant difference between the two groups. The distributions of the center and log-
transformed half-range of African–American are more skewed to the upper-left 
than those of Caucasians (see Fig.  1). Correlation coefficients between the center 
and log-transformed half-range for the two groups are as low as −0.26 and −0.27 , 
respectively. Thus, the data are roughly matched with the simulation setting (SN-
C.S) or (N-C.V2) with small �.

Table 8 shows the results when two-sample comparison methods are applied to 
the BP data. In all tests, the p values are smaller than 0.001, confirming the signifi-
cant difference between the two groups.

Table 6   Summary of the results for the significance level 1%, 5% and 10%. The best and worst tests are 
represented for each case. At the second column, the left character of the hyphen (-) denotes the distribu-
tion of (C,logR) and the right represents the difference between the two populations

Case � = 0 � = 0.4 � = 0.8

Best Worst Best Worst Best Worst

Equal covariances (N-C) HT ( ≈ UK, GK) CB HT CB HT CB
(N-R) HT UK HT UK HT UK
(T-C)a UK HT(≈ CB) UK CB HT CB
(T-R) CB(≈ HT) UK HT(≈ CB) UK HT UK(≈ GK)
(SN-C) HT CB HT CB HT CB
(SN-C.S) UK(≈GK) CB HT(≈UK) CB HT CB

Unequal covariances (N-COV) GK HT GK HT GK HT
(N-C.V1) UK(≈GK) CB(≈ HT) UK CB HT CB
(N-C.V2) UK(≈GK) CB(≈ HT) UK(≈GK) CB HT CB
(N-R.V) GK UK GK UK HT UK

Table 7   Descriptive statistics of 
the BP data by race. The p-value 
is from a univariate t-test on the 
alternative hypothesis that the 
BP of the African-American is 
higher than that of Caucasian

Caucasian African–American p value

Center 78.67 (9.09) 80.13 (8.03) < 0.001

DBP 56.72 (12.19) 58.03 (11.72) 0.005
SBP 100.62 (9.28) 102.23 (8.65) < 0.001

Half-range 21.95 (5.89) 22.10 (6.44) 0.279
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4.1 � Sub‑sampling

Since the sizes of two samples ( m = 1112 , n = 1144 ) are very large compared to the 
typical sample size, the p value of each test is close to 0 and it is difficult to compare 
the performance of four tests. Therefore, considering the original sample as a popu-
lation, we sub-sample m′ and n′ and examine corresponding powers with the signifi-
cance levels 1%, 5% and 10%.

Table  9 summarizes the rejection power depending on the size of sub-samples 
among 2000 replicates. The two marginal tests perform best with similar power, 

Table 8   Two-sample tests for 
the whole BP data

CB HT UK GK

p-value < 0.001 < 0.001 < 0.001 < 0.001

Fig. 1   Contour plots of the two groups of BP data

Table 9   Powers of four two-sample testing methods for different sub-sample sizes with significance lev-
els 1%, 5%, and 10%. Numbers in bold denote the highest power among CB, HT, UK and GK for each 
simulation setting

m′ n′ � = 1% � = 5% � = 10%

CB HT UK GK CB HT UK GK CB HT UK GK

30 30 0.020 0.027 0.033 0.030 0.074 0.082 0.097 0.098 0.114 0.146 0.164 0.166
30 120 0.025 0.038 0.040 0.046 0.084 0.116 0.130 0.132 0.157 0.190 0.217 0.226
50 50 0.025 0.030 0.040 0.040 0.100 0.110 0.143 0.150 0.132 0.170 0.218 0.226
50 200 0.036 0.058 0.074 0.073 0.125 0.162 0.194 0.188 0.208 0.251 0.296 0.300
100 100 0.039 0.050 0.075 0.077 0.146 0.176 0.232 0.238 0.230 0.253 0.332 0.344
100 400 0.084 0.112 0.140 0.148 0.215 0.264 0.320 0.323 0.332 0.389 0.472 0.460
300 300 0.182 0.182 0.308 0.274 0.404 0.436 0.593 0.554 0.574 0.588 0.719 0.660
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followed by the HT and CB tests. This result is consistent with our findings from the 
numerical study, especially for (SN-C.S) and (N-C.V2) with small �.

5 � Conclusion

In this paper, we test equality of two population of MM-type interval samples by test-
ing their real-valued representations. We first consider the Hotelling’s T2 test to exam-
ine the equality of mean vectors of the center and range of interval-valued data. We 
then propose marginalization-based test statistics, TUK

M
 and TGK

M
 , which are based on 

two univariate distributional representation (named as marginalization in this paper) of 
the interval-valued data.

Numerical study and real data analysis show that the marginalization-based tests 
perform better than the existing methods when two population distributions are differ-
ent due to more than one factor, such as mean, covariance, skewness, and so on. This 
implies that the marginal tests can be more suitable for testing real problems of inter-
val-valued data. Further, the power of the GK test is much higher than that of the UK 
when the two populations differ in range and covariance.

However, we need to be cautious when we apply the marginalization-based tests 
since they are only valid for the case that the null hypothesis is rejected. That is, the 
rejection of the equality test using the marginalization implies that two bivariate distri-
butions are unequal. On the other hand, the acceptance of the null hypothesis does not 
imply the equality of two bivariate distributions.

Finally, it is worth remarking that both the marginalization (or univariate real-valued 
representation) and bivariate real-valued representation (e.g. (L, U) or (C, logR) ) are 
induced by the probability measure on intervals, but the converse is not. To be spe-
cific, the interval-valued data is a univariate random object on an appropriately defined 
probability space of intervals. For example, suppose we consider a sample space of 
intervals, say � , equipped with a metric d(�1,�2) for �1,�2 ∈ � . The metric intro-
duces the Borel �−field, say F  , and the probability measure P is defined on F  . In this 
paper, we write the interval-valued data as the form of (L(�),U(�)] , where L(�) and 
U(�) are real-valued random variables on the above probability space and their joint 
distribution, say F(�, u) , is induced by the probability measure P . Thus, in this paper, 
we test equality of two probability measures by testing the equality of “their real-valued 
representations”.

Acknowledgements  Johan Lim and Minjung Kwak was supported by the National Research Foundation 
of Korea (NRF-2017R1A2B2012264, NRF-2016R1D1A1B03931050). Donghyeon Yu’s research was 
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Appendix 1: Additional results of numerical study with ̨ = 0.01, 0.1

See Tables 10, 11, 12, 13, 14, 15, 16 and 17.
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Appendix 2: Power comparison of UK, GK
h
 , and GK

hmax

In this section, we compare the powers of the UK, the GKh and the GKhmax
 tests, 

where GKhmax
 and GKh denote the tests based on the Gaussian kernel estimates 

with the proposed hmax and the optimal bandwidths separately chosen by Jeon 
et al. (2015), respectively.

To be more specific, as described in Jeon et  al. (2015), the Gaussian kernel 
density estimator is a smoothing version of the uniform kernel estimator and 
selects h that minimizes the following Kullback–Leibler loss:

−∫ f UK
n
(x) log fn(x;h)dx,

Table 18   Simulation results 
of UK, GK

h
 and GK

hmax
 for the 

significance level 5%. Power of 
each test is reported when (m,n) 
is (30, 30)

Case � � = 0 � = 0.8

UK GK
h

GK
hmax

UK GK
h

GK
hmax

(N-C) 0.0 0.048 0.046 0.046 0.046 0.041 0.047
0.5 0.402 0.393 0.387 0.520 0.507 0.498
1.0 0.928 0.923 0.916 0.982 0.976 0.979
1.5 0.998 0.999 0.998 1.000 1.000 1.000

(N-R) 0.0 0.048 0.046 0.046 0.046 0.041 0.047
0.5 0.043 0.041 0.071 0.089 0.077 0.083
1.0 0.109 0.115 0.315 0.409 0.314 0.433
1.5 0.537 0.487 0.822 0.952 0.883 0.978

(T-C) 0.0 0.059 0.050 0.049 0.057 0.056 0.055
0.5 0.356 0.299 0.256 0.428 0.395 0.398
1.0 0.870 0.831 0.775 0.940 0.924 0.925
1.5 0.994 0.990 0.979 0.998 0.999 0.998

(T-R) 0.0 0.059 0.050 0.049 0.057 0.056 0.055
0.5 0.044 0.042 0.067 0.083 0.077 0.085
1.0 0.119 0.111 0.214 0.329 0.246 0.316
1.5 0.436 0.340 0.531 0.809 0.667 0.798

(N-COV) 0.0 0.048 0.046 0.046 0.046 0.041 0.047
0.5 0.080 0.084 0.104 0.098 0.100 0.115
1.0 0.155 0.161 0.227 0.217 0.236 0.280
1.5 0.239 0.278 0.408 0.384 0.415 0.496

(N-C.V1) 0.0 0.048 0.046 0.046 0.046 0.041 0.047
0.5 0.420 0.398 0.401 0.402 0.395 0.374
1.0 0.865 0.862 0.837 0.865 0.859 0.841
1.5 0.988 0.977 0.981 0.990 0.981 0.987

(N-R.V) 0.0 0.048 0.046 0.046 0.046 0.041 0.047
0.5 0.067 0.074 0.351 0.166 0.167 0.256
1.0 0.195 0.243 0.886 0.552 0.517 0.859
1.5 0.517 0.540 0.993 0.905 0.863 0.995
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where f UK
n
(x) is the uniform kernel estimator (UK) and fn(x;h) is the Gaussian Kernel 

estimator in Jeon et al. (2015). In the numerical study, we select the optimal band-
width h for each sample and denote the chosen bandwidths for � and � as hX and 
hY , respectively. We reported the results of powers for the case of (m, n) = (30, 30) , 
� = (0.0, 0.8) , and (N-C), (N-R), (T-C), (T-R), (N-COV), (N-C, V1), (N-R.V) in 
Table 18. Note that we have reduced the number of cases of the numerical study 
since the cost of GKh test is expensive due to the fact that it needs to apply the band-
width selection for every permutation to estimate null distribution.

From the result in Table 18, GKh performs very similar to the UK for all cases 
we consider. This is caused by the bandwidth selection procedure choosing h 
that minimizes the Kulback–Leibler loss between the UK and the GK. Thus, as 
described in the numerical study of the main manuscript, GKhmax

 has similar pow-
ers to the GKh for the cases of center change and much larger powers than GKh for 
the cases of range change.
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