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Abstract
In this paper, we consider the statistical inferences for a class of partially linear mod-
els with high dimensional endogenous covariates, when high dimensional instru-
mental variables are also available. A regularized estimation procedure is proposed 
for identifying the optimal instrumental variables, and estimating covariate effects 
of the parametric and nonparametric components. Under some conditions, some the-
oretical properties are studied, such as the consistency of the optimal instrumental 
variable identification and significant covariate selection. Furthermore, some simu-
lation studies and a real data analysis are carried out to examine the finite sample 
performance of the proposed method.

Keywords Partially linear model · High dimensional endogenous covariates · High 
dimensional instrumental variables · Regularized estimation

Mathematics Subject Classification 62G05 · 62G20

1 Introduction

Let Yi be the response variable, and Xi and Ui be the corresponding covariates, then 
the partially linear model has the following structure:

where � = (�1,… , �pn )
T is a pn-dimensional vector of unknown parameters, g(⋅) is 

an unknown nonparametric function, and �i is the model error with E(�i|Xi,Ui) = 0 . 

(1)Yi = XT
i
� + g(Ui) + �i, i = 1,… , n,
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In this paper, we assume the dimension pn can be diverging with the sample size 
n. Model (1) increases the flexibility of linear models by allowing the intercept to 
be a nonparametric function, and this model is one of the most popular semipara-
metric regression models in the literature. Due to the flexibility of model (1), it has 
attracted extensive attentions of many scholars recently, such as Fan and Li (2004), 
Xue and Zhu (2007), Xie and Huang (2009), Huang and Zhao (2017) and Liu et al. 
(2018), among others.

However, some covariates for regression modeling may be endogenous in practice 
(see Newhouse and McClellan 1998; Greenland 2000; Hernan and Robins 2006; Fan 
and Liao 2014). For such case, the estimation methods for model (1) listed above 
will give an endogeneity bias, and can not give a consistent estimator any more. 
For such models with endogenous covariates, the instrumental variable adjustment 
technology can provide a way to obtain a consistent estimation procedure. There-
fore, the semiparametric instrumental variable models with endogenous covariates 
have received a great deal of attention recently, such as Cai and Xiong (2012), Zhao 
and Li (2013), Yang et al. (2017), Yuan et al. (2016), and Huang and Zhao (2018), 
among others. In these studies, an essential assumption is that the covariates and 
instrumental variables are both low-dimensional data with fixed dimension. How-
ever, high dimensional data frequently occur in practice.

For the partially linear model, defined by (1), with high dimensional endogenous 
covariates, Chen et  al. (2016) proposed a penalized GMM estimation procedure 
to perform variable selection for covariates. However, the regularized estimation 
method proposed by Chen et al. (2016) does not exploit the sparsity of the instru-
mental variables, and then is still facing the dimensionality curse of high dimen-
sional instrumental variables. Hence take this issue into account, in this paper, 
we consider the statistical inference for model (1) when some covariates are high 
dimensional endogenous covariates and a high dimensional set of instrumental vari-
ables is available. More specifically, we assume the covariate X in model (1) is an 
endogenous covariate, and satisfies the following structure

where Z = (Z1,… , Zqn )
T is the corresponding qn-dimensional vector of instrumental 

variables, �  is a pn × qn matrix of unknown parameters, and e is the model error 
with E{e|Z,U} = 0 . Furthermore, � and e are assumed to be independent each other, 
and the dimension qn also allows to be diverging with the sample size n.

As discussed above, in the following discussion, we are interested in making 
inference under the high dimensional setting of covariate X and instrumental vari-
able Z. As is typical in high dimensional sparse modeling, we assume models (1) 
and (2) are both sparse in the sense that only a small subset of parameters in � and 
�  are nonzero. Our goal is to identify the optimal instrumental variables, and pro-
pose a regularized estimation procedure for model (1) based on the selected optimal 
instrumental variables.

Recently, penalized methods have a great attraction and proved their efficiency 
for performing variable selection and parameter estimation simultaneously. Some of 
these methods are bridge penalty (see Frank and Friedman 1993), Lasso penalty (see 

(2)X = �Z + e,
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Tibshirani 1996), SCAD penalty (see Fan and Li 2001), MCP penalty (see Zhang 
2010), and among others. In addition, Lee et al. (2019) present a systematic review 
on variable selection for high dimensional regression models. In most of the litera-
ture listed above, however, the data are assumed to be exogenous. For such high 
dimensional model with endogenous covariates, these variable selection procedure 
listed above will give an endogenity bias, and can not give a consistent variable 
selection result any more. Then, compared with existing estimation methods, our 
estimation method has the following improvements. Firstly, the proposed method 
can identify the optimal instrumental variables and important covariates simulta-
neously, and this is an essential improvement of the regularized estimation proce-
dure proposed by Chen et al. (2016). Secondly, our regularized estimation method 
is constructed based on the penalized least absolute deviation estimation procedure. 
Hence, compared with the optimal instrumental variable identification method pro-
posed by Lin et  al. (2015), our regularized estimation is more robust. Lastly, the 
proposed regularized estimation for identifying optimal instrumental variables are 
constructed by using an auxiliary regression model, which is very different from the 
existing identification methods of optimal instrumental variables, such as Lin et al. 
(2015) and Windmeijer et al. (2019).

The rest of this paper is organized as follows. In Sect. 2, we propose an identifi-
cation method of optimal instrumental variables based on the penalized least abso-
lute deviation method and an auxiliary regression model constructed artificially, 
and demonstrate some theoretical properties of the proposed optimal instrumental 
variable identification method. In Sect. 3, we propose a variable selection method of 
significant covariates in model (1) with the selected optimal instrumental variables, 
and derive the estimators of model parametric and nonparametric components. In 
Sect.  4, we propose an iterative algorithm procedure for the proposed regularized 
estimation method based on the local linear approximation method. In Sect. 5, some 
simulation studies and a real data analysis are conducted to assess the performances 
of the proposed method. The technical proofs for all asymptotic results are presented 
in the Appendix.

2  Optimal instrumental variable identification

For the identification of models (1) and (2), similar to Cai and Xiong (2012), we first 
give some regularity conditions for models (1) and (2). More specifically, let Z̃ be a 
vector of true valid instrumental variables, which is a subset of Z = (Z1,… , Zqn )

T . 
Then we assume that the dimensionality of Z̃ is larger than or equal to the dimen-
sionality of X. Furthermore, we assume that the matrix �  is a row full rank matrix. 
Obviously, these regularity conditions ensure that the models (1) and (2) are identifi-
able, and every endogenous variable Xj , 1 ≤ j ≤ pn has at least one valid instrumental 
variable. Because X is an endogenous covariate, and Z is the corresponding instru-
mental variable, we have E(�|X,U) ≠ 0 and E(�|Z,U) = 0 . In addition, note that U 
is an exogenous covariate, we assume that the instrumental variable Z is independ-
ent of U. Let Zk be the kth component of instrumental variable Z = (Z1,… , Zqn )

T , 
then invoking model (1), and some calculations yield
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 Didelez et  al. (2010) point that if Zk is an optimal instrumental variable, then Zk 
should be significantly correlated with endogenous covariate X. That is, if for all 
j ∈ {1,… , pn} , we have Cov(Xj, Zk) = 0 , then Zk is an invalid instrumental variable. 
Hence, (3) implies that if Cov(Y , Zk) ≠ 0 significantly hold, then Zk is an optimal 
instrumental variable. Hence, based on this result, we can identify optimal instru-
mental variable based on the following auxiliary regression model

More specifically, if Zk is an optimal instrumental variable, then the corresponding 
coefficient �k should be significantly nonzero. Hence, to recover the optimal instru-
mental variables, we define the following penalized objective function

where � = (�1,… , �qn )
T is a qn-dimensional parametric vector, p�1n(⋅) is a specified 

penalized function, and �1n is a tuning parameter. In practice, there are many penalty 
functions can be used, such as the Lasso penalty proposed by Tibshirani (1996), the 
SCAD penalty proposed by Fan and Li (2001), and the MCP penalty proposed by 
Zhang (2010), among others.

Let �̂  be the solution of � by minimizing (5), then we next study the asymp-
totic properties of the regularized estimator �̂  . From the assumption of sparsity 
in instrumental variables, we know that only a small subset of components in � 
is nonzero. Then, for convenience and simplicity, we let �0 be the true value of � , 
A1 = {1 ≤ k ≤ qn ∶ �0k ≠ 0} and A2 = {1 ≤ k ≤ qn ∶ �0k = 0} . The corresponding 
optimal instrumental variables and coefficient matrix are denoted as ZA1

 and �A1
 , 

respectively. Then model (2) can also be rewritten as

Next, we demonstrate some asymptotic properties of the resulting estimator �̂  . To 
establish the asymptotic properties, we first assume some regularity conditions as 
follows: 

 (C1) The nonparametric function g(u) is rth continuously differentiable on (0, 1) 
with r ≥ 2.

 (C2) The error � has continuous and symmetric density f (⋅) . Moreover, the density 
function f (⋅) has finite derivatives in any neighborhood of zero.

 (C3) Let c1,… , cK be the interior knots of [0, 1]. Furthermore, we let c0 = 0 , cK+1 = 1 , 
hi = ci − ci−1 . Then, there exists a constant c such that max{hi}∕min{hi} ≤ c 
and max{|hi+1 − hi|} = o(�−1

n
) , where �n is the number of interior knots.

 (C4) There exists a positive constant c such that maxi,j |Xij| < c , maxi,k |Zik| < c in 
probability, where i = 1,… , n , j = 1,… , pn and k = 1,… , qn.

(3)Cov(Y , Zk) =

pn∑
j=1

Cov(Xj, Zk)�j.

(4)Yi = Zi1�1 + Zi2�2 +⋯ + Ziqn�qn + �i, i = 1,… , n.

(5)Qn(�) =
1

n

n∑
i=1

|||Yi − ZT
i
�
||| +

qn∑
k=1

p�1n

(|�k|
)
,

(6)X = �A1
ZA1

+ e.
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 (C5) The dimensions of covariate X and instrumental variable Z satisfy p3
n
∕n → 0 

and q3
n
∕n → 0 as n → ∞.

 (C6) The matrix �A1
 , defined in (6), is a row full rank matrix. In addition, let �n1 and 

�n2 be the smallest and largest eigenvalues of the matrix E(ZZT ) , and �n1 and 
�n2 be the smallest and largest eigenvalues of the matrix �A1

� T
A1

 , respectively. 
Then, there exist constants 0 < 𝜌1 < 𝜌2 < ∞ and 0 < 𝜏1 < 𝜏2 < ∞ such that 
𝜌1 < 𝜌n1 < 𝜌n2 < 𝜌2 and 𝜏1 < 𝜏n1 < 𝜏n2 < 𝜏2.

 (C7) The tuning parameter �1n satisfies �1n → 0 and 
√
n∕qn�1n → ∞ . In addition, 

we assume lim infn→∞ lim inf𝜃k→0+ 𝜆
−1
1n
p�
𝜆1n
(|𝜃k|) > 0.

 (C8) Let an = max
k

{
|p�

�1n
(|�0k|)| ∶ �0k ≠ 0

}
 , bn = max

k

{
|p��

�1n
(|�0k|)| ∶ �0k ≠ 0

}
 , 

then we assume that n1∕2an → 0 and bn → 0 as n → ∞.

Conditions C1 and C2 are common assumptions of nonparametric and semipara-
metric estimation technology. Condition C3 implies that c0,… , cK+1 is a C0-quasi-
uniform sequence of partitions of [0,  1]. The assumptions of high order moment 
conditions in C4–C6 are standard assumptions for high dimensional semiparamet-
ric regression models in the literature, which ensure that the models (1) and (2) are 
identifiable, and the proposed regularized estimation procedure is consistent. Con-
dition C7 and C8 are assumptions on the penalty function, which ensure that the 
proposed variable selection method is consistent, which are widely used in varia-
ble selection literature (see Fan and Li 2001, Li and Liang (2008), and Wang et al. 
(2008)). Under these regularity conditions, the following Theorem 1 shows that the 
resulting regularized estimator �̂  is consistent, and gives the convergence rate of �̂ .

Theorem 1 Suppose the regularity conditions (C1)–(C8) hold. Then we have that

Furthermore, we show that such consistent estimators must possess the sparsity 
property, which is stated in the following Theorem 2.

Theorem 2 Suppose the regularity conditions (C1)–(C8) hold. Then, with probabil-
ity tending to 1, we have that

3  Regularized estimation for model parameters

We denote Z∗ as the vector of selected optimal instrumental variables in Sect.  2. 
Note that Theorem 2 implies that the variable selection for optimal instrumental var-
iables is consistent, then with probability tending to one, we have ZA1

= Z∗ when n 
is large enough. Then, invoking model (6), the moment estimator of �A1

 is defined 
by

‖�̂ − �0‖ = Op(
√
qn∕n).

�̂k = 0, k ∈ A2.
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Therefore, the optimal instrumental variable adjusted covariates is defined by 
X∗ = �̂Z∗ . Next, invoking the adjusted covariate X∗ , we proceed to identify and esti-
mate the nonzero effects of the covariates in model (1). The regularized estimation 
objective function is defined by

Note that g(⋅) is a nonparametric function, Mn(�, g(⋅)) is not ready for optimiza-
tion. Then, invoking B-spline approximation technique (see Schumaker 1981), we 
replace g(⋅) in Mn(�, g(⋅)) by its basis function approximations. More specifically, let 
B(u) = (B1(u),… ,BLn

(u))T be B-spline basis functions with the order of M, where 
L = �n +M , and �n is the number of interior knots. Then, g(u) can be approximated 
by g(u) ≈ B(u)T� , where � = (�1,… , �Ln )

T is a vector of basis functions coefficients. 
Substituting it into Mn(�, g(⋅)) , we can obtain that

where Wi = B(Ui) . Let �̂  and �̂  be the solution by minimizing (8), then �̂  is the opti-
mal instrumental variable based estimator of � , and the estimator of g(u) is given by 
ĝ(u) = B(u)T �̂ .

Remark 1 Although Mn(�, g(⋅)) contains nonparametric function g(⋅) , and cannot be 
minimized directly, we replace g(⋅) by its basis function approximations based on the 
B-spline approximation technique. Then, we can obtain the estimator of paramet-
ric component � and nonparametric component g(⋅) simultaneously. B-spline based 
estimation is a more effective nonparametric estimation method, which is widely 
used in the nonparametric and semiparametric regression literature. In addition, note 
that Mn(�, g(⋅)) contains unknown parametric component � and nonparametric func-
tion g(⋅) simultaneously, then the proposed estimation procedure can be regarded as 
a semiparaemtric regularized estimation procedure.

Next, we study the asymptotic properties of the regularized estimator �̂  and ĝ(u) . 
Similar to conditions (C7) and (C8), we give some conditions for the penalty func-
tion used in (8). 

 (C9) The tuning parameter �2n satisfies �2n → 0 and 
√
n∕pn�2n → ∞ . Furthermore, 

we assume lim infn→∞ lim inf𝛽j→0+ 𝜆
−1
2n
p�
𝜆2n
(|𝛽j|) > 0.

 (C10) a∗
n
= max

j

{
|p�

�2n
(|�0j|)| ∶ �0j ≠ 0

}
 and b∗

n
= max

j

{
|p��

�2n
(|�0j|)| ∶ �0j ≠ 0

}
 , then 

we assume that n1∕2a∗
n
→ 0 and b∗

n
→ 0 as n → ∞.

(7)�̂ =

(
n∑
i=1

XiZ
∗T
i

)(
n∑
i=1

Z∗
i
Z∗T
i

)−1

.

Mn(�, g(⋅)) =
1

n

n∑
i=1

|||||
Yi − X∗T

i
� − g(Ui)

|||||
+

pn∑
j=1

p�2n

(|�j|
)
.

(8)Mn(�, �) =
1

n

n∑
i=1

|||||
Yi − X∗T

i
� −WT

i
�
|||||
+

pn∑
j=1

p�2n

(|�j|
)
,
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In addition, for convenience and simplicity, we let �0 be the true value of � , 
B1 = {1 ≤ j ≤ pn ∶ �0j ≠ 0} and B2 = {1 ≤ j ≤ pn ∶ �0j = 0} . Furthermore, we let 
�0 be the true value of � . The following Theorem 3 shows the resulting estimator �̂  is 
consistent, and �̂  satisfies sparsity.

Theorem 3 Suppose the regularity conditions (C1)–(C10) hold, and the number of 
knots �n satisfies �n = O(n1∕(2r+1)) and �2n∕

√
�n∕n → ∞ . Then we have that

 (i) ‖�̂ − �0‖ = Op(
√
(pn + �n)∕n).

 (ii) �̂j = 0 , j ∈ B2 , with probability tending to 1.

Theorem 3 shows that, under some regularity conditions, the resulting estimator �̂  is 
consistent, and satisfies sparsity. This implies that the proposed regularized estimation 
method for � can be used to select important covariates in model (1). Furthermore, the 
following Theorem 4 shows that the estimator of nonparametric function g(u) is also 
consistent, and achieves the optimal nonparametric convergence rate.

Theorem 4 Suppose the regularity conditions (C1)–(C10) hold, and the number of 
knots �n satisfies �n = O(n1∕(2r+1)) and �2n∕

√
�n∕n → ∞ . Then we have that

where r is defined in condition (C1).

4  Iterative algorithms

In this section, we give an iterative algorithm procedure of the proposed estima-
tion method in Sects. 2 and 3. Similar to Zou and Li (2008), we use the local linear 
approximation method to the penalty function p�1n(⋅) . Then, (5) can be rewritten as

where p�
�1n
(⋅) is the first-order derivative of p�1n(⋅) , and �(0) = (�

(0)

1
,… , �(0)

qn
)T is an 

initial estimator of � , which is computed based on the least absolute deviation esti-
mator without penalty. Furthermore, we construct an augmented data set (Ỹi, Z̃i) with 
i = 1,… , n + qn as follows

where �k is the unit vector with the kth element being 1. Then, (9) can be rewritten 
as

‖ĝ(u) − g(u)‖ = Op(n
−r∕(2r+1)),

(9)Qn(�) =
1

n

n∑
i=1

|||Yi − ZT
i
�
||| +

qn∑
k=1

p�
�1n

(|||�
(0)

k

|||
)
|�k|,

(10)(Ỹi, Z̃i) =

{
(Yi∕n, Zi∕n), 1 ≤ i ≤ n(
0, p�

�1n

(|||�
(0)

k

|||
)
�i−n

)
, i = n + 1,… , n + qn,
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Hence, the penalized least absolute deviation estimator of � can be easily calculated 
by the R package “quantreg” for quantile regression (see Koenker 2005). Similarly, 
we can easily obtain the penalized least absolute deviation estimator of � and � based 
on (8). Then, our regularized algorithm has two stages. In the first stage, we identify 
the optimal instrumental variables. In the second stage, we identify the important 
covariates and estimate model parameters. In addition, it is worth mentioning that, 
as discussed above, both of the two stages can be calculated easily. More specifi-
cally, the two-stage regularized algorithm is as follows:

Stage 1. We identify the optimal instrumental variables based on model (4). Let 
�̂ = (�̂1,… , �̂qn )

T be the solution by minimizing the objective function (5), and 
A∗ = {1 ≤ k ≤ qn ∶ �̂k ≠ 0} . Invoking model (4), we denote the corresponding instru-
mental variables of A∗ as Z∗ . Then based on the argument in Sect. 2, Z∗ is a vector of 
identified optimal instrumental variables.

Stage  2. We define the instrumental variable adjusted covariates as X∗ = �̂Z∗ , 
where �̂  is defined by (7). Then, we identify the important covariates and estimate 
model parameters based on the objective function (8). Let �̂  and �̂  be the solution by 
minimizing (8), then �̂  is the regularized estimator of � , and the estimator of g(u) is 
given by ĝ(u) = B(u)T �̂ .

In addition, in the proposed iterative algorithm, the penalty parameter �1n , �2n and 
the number in interior knots �n should be chosen. Similar to Gao and Huang (2010) 
and Wang et al. (2015), we suggest choosing these parameters by using the Bayesian 
information criterion (BIC). More specifically, we estimate �1n by the following BIC 
function

where d�1n is the number of nonzero coefficients in �̂  , which is obtained by (5). Fur-
thermore, �2n and �n are chosen by using the following BIC function

where d�n is the effective number of parameters in �̂  and �̂  , which are obtained by 
(8). Note that �1n , �2n and �n are all one-dimensional parameters, then we can mini-
mize the BIC criterion by some grid points. More specifically, for parameter �1n , we 
first choose a 100 × 1 uniform grid points vector in the region [0.01, 0.99]. Secondly, 
we calculate the BIC values on each grid point. Then, based on the 100 BIC values, 
we choose the optimal �1n that corresponds to the minimum BIC value. Similarly, 
we can choose the optimal �2n and �n by using the grid search method.

(11)Qn(�) =

n+qn∑
i=1

|||||
Ỹi − Z̃T

i
�
|||||
.

BIC(�1n) = log

(
1

n

n∑
i=1

|||Yi − ZT
i
�̂
|||
)
+ d�1n

log(n)

n
,

BIC(�2n, �n) = log

(
1

n

n∑
i=1

|||Yi − X∗T
i
�̂ −WT

i
�̂
|||
)
+ d�n

log(n)

n
,
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5  Numerical results

In this section, we conduct several simulation experiments to illustrate the finite 
sample performances of the proposed method, and consider a real data set analysis 
for further illustration.

5.1  Simulation studies

In this section, we conduct some Monte Carlo simulations to evaluate finite sample 
performance of the proposed method. The main objective is to evaluate the perfor-
mance of instrumental variable identification, and the effectiveness of instrumental 
variable based covariate adjustment technique. Then, the data are generated from the 
following model

where g(u) = sin(2�u) and � = (2.5, 2, 1.5, 1, 0,… , 0)T is a pn dimensional para-
metric vector. From the definition of � , we can see that Xij , j = 1,… , 4 are impor-
tant covariates, and the others are unimportant covariates. Furthermore, we gen-
erate nonzero entries of the first four columns in �  from the uniform distribution 
U(0.75, 1), and the other columns are all set to zero, and the instrumental variables 
are generated by Zik ∼ N(1, 1.5) , k = 1,… , qn . From the generative mechanism of 
instrumental variables, we can see that Zik , k = 1,… , 4 are optimal instrumental 
variables, and the others are invalid instrumental variables. The exogenous covari-
ate Ui is generated from Ui ∼ U(0, 1) , and the endogenous covariates Xi and the 
response Yi are generated according to the model with � ∼ N(0, 0.5) and � = 0.2 and 
0.8, respectively, to represent different levels of endogeneity of covariates. This set 
up allows the covariate Xi is endogenous, because E(Xi�i) ≠ 0.

In the following simulation, the penalty function is taken as the SCAD penalty, 
Lasso penalty and MCP penalty, respectively. The sample size is taken as n = 200 , 
400 and 600, respectively, the dimensionality of covariate and instrumental variable 
are taken as (pn, qn) = (5⌊n1∕5⌋, 5⌊n1∕4⌋) for each sample size, and for each case, we 
take 1000 simulation runs.

We first evaluate the performance of the proposed optimal instrumental variable 
selection procedure. In this simulation, we present the number of true positive (TP), 
false positive (FP) and the false selection rate (FSR) as the effectiveness of the vari-
able selection procedure, where the TP is the number of true optimal instrumen-
tal variables correctly set to optimal instrumental variables, the FP is the number 
of true invalid instrumental variables incorrectly set to optimal instrumental vari-
ables, and the FSR is defined as FSR = IN/TN , where “IN” is the number of the 
invalid instrumental variables incorrectly set to optimal instrumental variables, and 
“TN” is the total number set to optimal instrumental variables. In fact, FSR rep-
resents the proportion of falsely selected invalid instrumental variables among the 
total variables selected in the variable selection procedure. All these performance 

{
Yi = XT

i
� + g(Ui) + �i

Xi = �Zi + ��i, i = 1,… , n,
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indicators are averaged over all simulation runs. Based on 1000 simulation runs, the 
simulation results are reported in Table 1. From Table 1, we can make the following 
observations: 

 (i) For the given level of endogeneity of covariates, the FP and FSR decrease as 
the sample size n increases, and the TP tends to the true number 4 when the 
size of sample increases. This implies that the proposed identification method 
of optimal instrumental variables is consistent.

 (ii) For given n, the proposed identification method performs similar in terms of 
TP, FP and FSR for both levels of endogeneity of covariates. This indicates 
that the proposed identification method can also select optimal instrumental 
variables when the level of endogeneity is lower.

 (iii) For given size of sample and level of endogeneity of covariates, the simula-
tion results are similar for different penalties, which means that the proposed 
method does not depend sensitively on the choice of penalty functions.

Next, we evaluate the performance of the proposed significant covariate selec-
tion procedure. In this simulation, we also present the number of true positive (TP), 
false positive (FP) and the false selection rate (FSR) as the effectiveness of the var-
iable selection procedure. In addition, to evaluate the consistence of the resulting 
estimator of parametric component � , we define the generalized mean square error 
(GMSE) as follows:

Based on 1000 simulation runs, we can obtain 1000 GMSE values. In the fol-
lowing simulations, we present the median of the 1000 GMSE values. The simu-
lation results are reported in Table  2. From Table  2, we can see that the FP and 
FSR decrease as the sample size n increases, and the TP tends to the true number 4 
when the size of sample increases. In addition, for given n, we also can see that the 

GMSE = (�̂ − �)T

[
1

n

n∑
i=1

X∗
i
X∗T
i

]
(�̂ − �).

Table 1  The identification 
results of optimal instrumental 
variables based on the proposed 
method under different cases

n Method � = 0.2 � = 0.8

TP FP FSR TP FP FSR

200 LAD-SCAD 3.536 0.339 0.087 3.585 0.334 0.085
LAD-Lasso 3.534 0.339 0.088 3.573 0.336 0.086
LAD-MCP 3.538 0.336 0.086 3.564 0.337 0.086

400 LAD-SCAD 3.714 0.118 0.031 3.738 0.113 0.029
LAD-Lasso 3.717 0.117 0.032 3.731 0.116 0.030
LAD-MCP 3.718 0.117 0.031 3.724 0.112 0.029

600 LAD-SCAD 3.997 0.022 0.005 3.984 0.024 0.006
LAD-Lasso 3.992 0.025 0.006 3.998 0.025 0.006
LAD-MCP 3.988 0.025 0.006 3.984 0.027 0.007
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simulation results are similar in terms of TP, FP and FSR under different penalties, 
which implies that the proposed variable selection method for covariates does not 
depend sensitively on the choice of penalty functions.

Lastly, we evaluate the efficiency of the proposed instrumental variable adjust-
ment mechanism. Here, two methods are compared: the instrumental variable 
adjustment based estimation (IVE) method proposed by this paper and the naive 
estimation (NE) method. The latter is neglecting the endogeneity of covariate, and 
minimizing the following objective function to obtain the estimator of � and �.

where � is a vector of basis function coefficients, which satisfies g(u) ≈ B(u)T� , and 
Wi = B(Ui).

For the parametric � , we only present the simulation results of nonzero compo-
nent �1 with SCAD penalty. The simulation results for other nonzero components 
are similar, and then are not shown. Based on 1000 simulation runs, the box-plots 
for 1000 values of absolute biases, defined by |�̂1 − �1| , are presented in Figs. 1 and 

n∑
i=1

|||Yi − XT
i
� −WT

i
�
|||
2

+

pn∑
j=1

p�2n

(|�j|
)
,

Table 2  The variable selection results of significant covariates under different cases

n Method � = 0.2 � = 0.8

GMSE TP FP FSR GMSE TP FP FSR

200 LAD-SCAD 0.184 2.938 0.331 0.101 0.185 2.935 0.334 0.102
LAD-Lasso 0.189 2.934 0.331 0.101 0.186 2.935 0.333 0.102
LAD-MCP 0.185 2.931 0.332 0.102 0.183 2.933 0.335 0.103

400 LAD-SCAD 0.133 3.647 0.219 0.057 0.133 3.632 0.214 0.056
LAD-Lasso 0.137 3.642 0.212 0.055 0.132 3.632 0.216 0.056
LAD-MCP 0.132 3.647 0.216 0.056 0.138 3.635 0.215 0.056

600 LAD-SCAD 0.072 3.986 0.036 0.009 0.076 3.982 0.034 0.008
LAD-Lasso 0.072 3.981 0.033 0.008 0.077 3.983 0.035 0.009
LAD-MCP 0.073 3.987 0.031 0.008 0.073 3.981 0.038 0.009
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Fig. 1  The box-plots of 1000 absolute bias values for the estimator of �
1
 based on the IVE method and 

the NE method under the endogenous level � = 0.2
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2, where Fig. 1 presents the simulation results under the endogenous level � = 0.2 , 
and Fig. 2 presents the simulation results under the endogenous level � = 0.8 . From 
Figs. 1 and 2, we can make the following observations: 

 (i) The absolute bias values, obtained by the proposed IVE method, decease as 
the sample size increases. However, the absolute bias values, obtained by the 
NE method, are still larger even though the sample size increases. This implies 
that the estimator based on the IVE method is consistent, and the estimator 
based on the NE method will give an endogeneity bias.

 (ii) For given n, the IVE estimation procedure performs similar for different levels 
of endogeneity of covariates. This indicates that the proposed IVE estimation 
procedure can attenuate the effect of the endogeneity of covariates.

In addition, the simulation results for the nonparametric component g(u) when 
n = 400 are shown in Fig. 3, where Fig3a presents the results under the endog-
enous level � = 0.2 , Fig.  3b presents the results under the endogenous level 
� = 0.8 . In Fig. 3, the dashed curve means the estimator based on the proposed 
IVE method, the dotted curve means the estimator based on the NE method, and 
the solid curve means the real curve of g(u).

From Fig. 3, we can see that the estimator, obtained by the NE method, is biased, 
and the estimator, obtained by the proposed IVE method, can attenuate the endogenous 
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Fig. 2  The box-plots of 1000 absolute bias values for the estimator of �
1
 based on the IVE method and 

the NE method under the endogenous level � = 0.8
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Fig. 3  The estimator of g(u) under the endogenous levels � = 0.2 (a) and � = 0.8 (b), respectively
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biases. In addition, we also can see that the estimators, obtained by the proposed IVE 
method, are similar for different levels of endogeneity of covariates. This indicates that 
the endogeneity in parametric component still affect the estimation for nonparametric 
components, and the proposed IVE method is also workable for the statistical infer-
ences of the nonparametric component g(u).

5.2  Real data analysis

We analyze a data set from the National Longitudinal Survey of Young Men (NLSYM) 
to illustrate the estimation procedure proposed by this paper. This data set contains 
3010 observations from the NLSYM in 1976, and has been studied by many authors 
(see Card 1995; Zhao and Xue 2013; Huang and Zhao 2018). The objective of the 
study is to evaluate the effects of individual’s education and work experience on indi-
vidual’s wage. More details for this data description and analysis can be seen in Card 
(1995).

Similar to Zhao and Xue (2013), we consider the following partially linear regres-
sion model

where logwage is the log of individual’s hourly wage in cents, educ is the years 
of individual’s schooling, educ2 and educ3 represent the quadratic and cubic 
effects, respectively, exper is the individual’s work experience constructed as 
age − educ − 6 , and black, south, and smsa (Standard Metropolitan Statistical Area) 
are dummy variables whose detailed description can be seen in Card (1995). In 
practice, the years of individual’s schooling may be correlative with some factors 
in model errors, such as individual’s intelligence quotient. Hence, similar to Card 
(1995), we take the variable educ as an endogenous variable, and use the proximity 
to a 4-year college as an instrumental variable for educ.

In addition, in order to demonstrate the performance of the proposed variable 
selection method for optimal instrumental variables, we add 99 invalid instrumental 
variables to have in total qn = 100 instrumental variables. More specifically, we set 
Z = (Z1,… ,Z100)

T , where Z1 is the valid instrumental variable “the proximity to a 
4-year college”, and Z2,… , Z100 are all invalid instrumental variables, which are inde-
pendently sampled from the standard normal distribution N(0, 1). The penalty function 
is taken as the SCAD penalty, Lasso penalty and MCP penalty, respectively.

Since some noise instrument variables are randomly generated, we repeated 
the optimal instrument variable selection procedure 1000 times. The simulation 
results for instrument variable selection are shown in Table 3, where “avg. num.” 
means the average number of selected optimal instrument variables with 1000 

logwage = �1educ + �2educ
2 + �3educ

3 + �4black + �5south + �6smsa + g(exper) + �,

Table 3  Application to NLSYM 
data. The identification of 
optimal instrumental variables 
under different penalties

penalty function LAD-SCAD LAD-Lasso LAD-MCP

avg. num. 1.009 1.012 1.014
selected times 1000 1000 1000
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simulation runs, “selected times” means the times of the true optimal instrumen-
tal variables were selected in the final model over the 1000 simulation runs. From 
Table 3, we can see that average number of selected optimal instrument variables 
is very close to the true number 1 for all penalties, and the true optimal instru-
ment variable can be always selected in all simulation runs. In addition, the simu-
lation results under different penalties are similar in term of the identification of 
optimal instrument variables, which implies that the proposed method is insensi-
tive to the penalty function.

The regularized estimators of parametric component � are shown in Table 4. 
From Table 4, we can see that �2 and �3 are zero, which indicates that the quad-
ratic and cubic effects of educ have no significant impact on individual’s wage. In 
addition, the estimated curves of g(u) are shown in Fig. 4, and the results show 
that these estimated curves are also similar for differen penalties.

Acknowledgements This research is supported by the National Social Science Foundation of China (No. 
18BTJ035).

Table 4  Application to NLSYM 
data. The regularized estimators 
of parametric component � 
based on the proposed method 
under different penalties
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Fig. 4  The estimated curves of g(u) with the SCAD penalty (solid curve), Lasso penalty (dashed curve) 
and MCP penalty (dotted curve), respectively



177

1 3

Journal of the Korean Statistical Society (2021) 50:163–184 

Compliance with ethical standards 

 Conflicts of interest The authors declare that there is no conflict of interests regarding the publication of 
this paper.

Appendix. Proof of theorems

In this Appendix, we provide the proof details of Theorems 1–4 in this paper.

Proof of Theorem 1 Let �n =
√
qn∕n and � = �0 + �nM . We first show that, for any 

given 𝜀 > 0 , there exists a large constant C such that

Let �n(�) = Qn(�) − Qn(�0) , then, invoking �0k = 0 with k ∈ A2 , p�1n(0) = 0 and 
model (4), some simple calculations yield

We first consider In1 . From Knight (1998), we have the following identity:

Hence, we have

From condition (C3), we have E[I(𝜀i > 0) − I(𝜀i < 0)] = 0 . Hence, invoking condi-
tion (C6), we can prove

(12)P

�
inf‖M‖=C Qn(𝜃) > Qn(𝜃0)

�
≥ 1 − 𝜀.

(13)

�n(�) =
1

n

n∑
i=1

|||||
Yi − ZT

i
�
|||||
−

1

n

n∑
i=1

|||||
Yi − ZT

i
�0

|||||
+

qn∑
k=1

[p�1n(|�k|) − p�1n(|�0k|)]

=
1

n

n∑
i=1

|||||
�i − �nZ

T
i
M
|||||
−

1

n

n∑
i=1

|�i| +
qn∑
k=1

[p�1n(|�k|) − p�1n(|�0k|)]

≥1

n

n∑
i=1

[|||||
�i − �nZ

T
i
M
|||||
− |�i|

]
+

∑
k∈A1

[p�1n (|�k|) − p�1n (|�0k|)]

≡In1 + In2.

|a − b| − |a| = −b[I(a > 0) − I(a < 0)] + 2�
b

0

[I(a ≤ s) − I(a ≤ 0)]ds.

(14)

In1 = −
1

n

n∑
i=1

𝛿nZ
T
i
M[I(𝜀i > 0) − I(𝜀i < 0)]

+
2

n

n∑
i=1

�
𝛿nZ

T
i
M

0

[I(𝜀i ≤ s) − I(𝜀i ≤ 0)]ds

≡ In3 + In4.
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Hence by the Markov inequality, we obtain

This implies that

Next we consider In4 . We denote

Then

Note that

Then we obtain

This implies In5 = op(�
2
n
) . In addition, by the dominated convergence theorem, we 

can obtain

E(In3) = −
1

n

n�
i=1

𝛿nE(Zi)
TME[I(𝜀i > 0) − I(𝜀i < 0)] = 0,

Var(In3) =
𝛿2
n

n2

n�
i=1

MTE(ZiZ
T
i
)ME[I(𝜀i > 0) − I(𝜀i < 0)]2 ≤ 𝛿2

n
𝜌2

n
‖M‖2.

P(�In3� ≥ �2
n
‖M‖) ≤ E(I2

n3
)

�4
n
‖M‖2 ≤ �2

n
�2‖M‖2

n�4
n
‖M‖2 → 0.

(15)In3 = op(�
2
n
)‖M‖.

Sni =
2

n �
�nZ

T
i
M

0

[I(�i ≤ s) − I(�i ≤ 0)]ds.

(16)In4 =

n∑
i=1

Sni =

n∑
i=1

[Sni − E(Sni)] +

n∑
i=1

E(Sni) ≡ In5 + In6.

nE(S2
ni
) = n

4

n2
E

⎧
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�
�

�nZ
T
i
M

0
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��nZT
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Next we consider the term In2 . Invoking condition (C8), some calculations yield

Then, by choosing a large C, all terms In2 , In3 and In5 are dominated by In6 with 
‖M‖ = C . Note that In6 is positive, then invoking (13–18), we obtain that (12) holds. 
Furthermore, by the convexity of Qn(⋅) , we have

This implies, with probability at least 1 − � , that there exists a local minimizer �̂  
such that �̂ − �0 = Op(�n) , which completes the proof of Theorem 1.   ◻

Proof of Theorem  2 For convenience and simplicity, let �0 = (�T
A1

, �T
A2

)T with 
�A1

= {�0k ∶ k ∈ A1} and �A2
= {�0k ∶ k ∈ A2} . The corresponding covariate is 

denoted by Zi = (Z
(1)T

i
, Z

(2)T

i
)T . From the proof of Theorem 1, for a sufficiently large 

C, �̂  lies in the ball {�0 + �nM ∶ ‖M‖ ≤ C} with probability converging to 1, where 
�n =

√
qn∕n . We denote �1 = �A1

+ �nM1 and �2 = �A2
+ �nM2 with 

‖M1‖2 + ‖M2‖2 ≤ C2 , and Vn(M1,M2) = Qn(�1, �2) − Qn(�A1
, 0) , then the estimator 

�̂ = (�̂T
1
, �̂T

2
)T can also be obtained by minimizing Vn(M1,M2) , except on an event 

with probability tending to zero. Hence, to prove this theorem, we only need to 
prove that, for any M1 and M2 satisfying ‖M1‖2 + ‖M2‖2 ≤ C2 , if ‖M2‖ > 0 , then 
with probability tending to 1, we have

(17)

In6 = 2E

�
�

�nZ
T
i
M
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Note that

Similar to the proof of Theorem 1, we can obtain

In addition, for k ∈ A2 , we have �0k = 0 . Then invoking p�n(0) = 0 , we can derive

Hence, from (20–22), we have

(19)Vn(M1,M2) − Vn(M1, 0) > 0.

(20)
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By conditions (C7) and (C8), we have 
√
qn∕n∕�n → 0 and p�

𝜆1n
(0)∕𝜆1n > 0 . Hence, 

(23) implies that (19) holds with probability tending to 1. This completes the proof 
of Theorem 2.   ◻

Proof of Theorem 3 Note that Theorem 2 implies that the variable selection for opti-
mal instrumental variables is consistent, then model (6) implies that, with probabil-
ity tending to 1, we have Xi = �A1

Z∗
i
+ ei , i = 1,… , n . In addition, because �̂  is 

the moment estimator of �A1
 , we can prove �̂ = �A1

+ Op(
√
pn∕n) . Hence, invoking 

E(ei) = 0 , a simple calculation yields

Furthermore, we let �0 and �0 be the true values of � and � , respectively, 
and denote R(Ui) = g(Ui) −WT

i
�0 . Then from Schumaker (1981), we have 
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−r
n
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�n∕n) . Hence, invoking (24), some calculations yield

where �n =
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(pn + �n)∕n . Furthermore, we denote �0 = (�T
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with � = �0 + �nM , where M is a (pn + Ln) dimensional vector. Then (25) implies 
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p𝜆2n

��𝛽j�
�

=
1

n

n�
i=1

�����
XT
i
(𝛽0 − 𝛽) +WT

i
(𝛾0 − 𝛾) + 𝜀i

�����
+

pn�
j=1

p𝜆2n

��𝛽j�
�

+ Op

�
‖𝛤 − 𝛤A1

‖ + ‖R(Ui)‖
�

=
1

n

n�
i=1

�����
XT
i
(𝛽0 − 𝛽) +WT

i
(𝛾0 − 𝛾) + 𝜀i

�����
+

pn�
j=1

p𝜆2n

��𝛽j�
�
+ Op(𝛿n),
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and

where �i = (XT
i
,WT

i
)T . Furthermore, we let �n(�, �) = Mn(�, �) −Mn(�0, �0) , then 

from (26) and (27), we have

Hence invoking (28), and using the similar arguments to the proof of (13), we have 
that, for any given 𝜀 > 0 , there exists a large constant C such that

This implies, with probability at least 1 − � , that there exists a local minimizer �̂  and 
�̂  , which satisfy �̂ − �0 = Op(

√
(pn + �n)∕n) and �̂ − �0 = Op(

√
(pn + �n)∕n) . Then, 

we complete the proof of part (i) in Theorem 3.   ◻

In addition, invoking the proof of part (i), and using the same arguments as the 
proof of Theorem 2, we can prove part (ii) in Theorem 3. Then we omit the proof 
procedure of part (ii) in detail.

Proof of Theorem 4 A simple calculation yields

where R(u) = g(u) − BT (u)�0 and H = ∫ 1

0
B(u)BT (u)du . From the proof of Theo-

rem 3, we can obtain ‖�̂ − �0‖ = Op(
√
(pn + �n)∕n) . Then from condition (C7) and 

�n = O(1∕(2r + 1)) , we can prove Op(
√
(pn + �n)∕n) = Op(

√
�n∕n) = Op(n

−r∕(2r+1)) . 
Then, invoking ‖H‖ = O(1) , a simple calculation yields

(26)Mn(�, �) =
1

n

n∑
i=1

|||||
�i − �n�

T
i
M
|||||
+

pn∑
j=1

p�2n

(|�j|
)
+ Op(�n),

(27)Mn(�0, �0) =
1

n

n∑
i=1

|�i| +
pn∑
j=1

p�2n

(|�0j|
)
+ Op(�n),

(28)

�n(�, �) =
1

n

n∑
i=1

[
|�i − �n�

T
i
M| − |�i|

]
+

pn∑
j=1

[
p�2n(|�j|) − p�2n (|�0j|)

]
+ Op(�n).

P

�
inf‖M‖=CMn(𝛽, 𝛾) > Mn(𝛽0, 𝛾0)

�
≥ 1 − 𝜀.

(29)

‖ĝ(u) − g(u)‖2 = �
1

0

{ĝ(u) − g(u)}2du

= �
1

0

{BT (u)�̂ − BT (u)�0 + R(u)}2du

≤2�
1

0

{BT (u)�̂ − BT (u)�0}
2du + 2�

1

0

R(u)2du

= 2(�̂ − �0)
TH(�̂ − �0) + 2�

1

0

R(u)2du,
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In addition, from conditions C1, C4 and Corollary 6.21 in Schumaker (1981), we 
can obtain R(u) = O(�−r

n
) = O(n−r∕(2r+1)) . Then, it is easy to show that

Invoking (29–31), we complete the proof Theorem 4.   ◻
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