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Abstract
We discuss a new kernel type estimator for density function fX (x) with nonnegative
support. Here, we use a type of gamma density as a kernel function and modify
it with expansions of exponential and logarithmic functions. Our modified gamma
kernel density estimator is not only free of the boundary bias, but the variance is
also in smaller orders, which are O(n−1h−1/4) in the interior and O(n−1h−3/4) in
the boundary region. Furthermore, the optimal orders of its mean squared error are
O(n−8/9) in the interior and O(n−8/11) in the boundary region. Simulation results
that demonstrate the proposed method’s performances are also presented.

Keywords Convergence rate · Density function · Exponential expansion · Gamma
density · Kernel method · Logarithmic expansion · Nonparametric · Variance
reduction

Mathematics Subject Classification 62G07 · 62G20

1 Introduction

Nonparametric methods are gradually becoming popular in statistical analysis for
analyzing problems in many fields, such as economics, biology, and actuarial science.
In most cases, this is because of a lack of information on the variables being analyzed.
Smoothing concerning functions, such as density or cumulative distribution, plays
a special role in nonparametric analysis. Knowledge on a density function, or its
estimate, allows one to characterize the data more completely. We can derive other
characteristics of a random variable from an estimate of its density function, such as
the probability itself, hazard rate, mean, and variance value.
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Let X1, X2, ..., Xn be independently and identically distributed random variables
with an absolutely continuous distribution function FX and a density fX . Parzen
(1962) and Rosenblatt (1956) introduced the kernel density estimator (we will call
it the standard one) as a smooth and continuous estimator for density functions. It is
defined as

̂fX (x) = 1

nh

n
∑

i=1

K

(

x − Xi

h

)

, x ∈ R, (1)

where K is a function called a “kernel”, and h > 0 is the bandwidth, which is a param-
eter that controls the smoothness of ̂fX . It is usually assumed that K is a symmetric
(about 0) continuous nonnegative function with

∫ ∞
−∞ K (v)dv = 1, as well as h → 0

and nh → ∞ when n → ∞. It is easy to prove that the standard kernel density
estimator is continuous and satisfies all the properties of a density function.

A typical general measure of the accuracy of ̂fX (x) is the mean integrated squared
error, defined as

MI SE( ̂fX ) = E

[∫ ∞

−∞
{ ̂fX (x) − fX (x)}2w(x)dx

]

, (2)

where w is a weight function. In this article, we consider only w(x) = 1. For point-
wise measures of accuracy, we will use bias, variance, and the mean squared error
MSE[ ̂fX (x)] = E[{ ̂fX (x) − fX (x)}2]. It is well known that the MISE and the MSE
can be computed with

MI SE( ̂fX ) =
∫ ∞

−∞
MSE[ ̂fX (x)]dx, (3)

MSE[ ̂fX (x)] = Bias2[ ̂fX (x)] + Var [ ̂fX (x)]. (4)

Under the condition that fX has a continuous second order derivative f ′′
X , it has been

proved by the above-mentioned authors that, as n → ∞,

Bias[ ̂fX (x)] = h2

2
f ′′
X (x)

∫

u2K (u)du + o(h2),

Var [ ̂fX (x)] = fX (x)

nh

∫

K 2(u)du + o

(

1

nh

)

.

There have been many proposals in the literature for improving the bias prop-
erty of the standard kernel density estimator. Typically, under sufficient smoothness
conditions placed on the underlying density fX , the bias is reduced from O(h2) to
O(h4), and the variance remains in the order of n−1h−1. Those methods that could
potentially have greater impact include bias reduction by geometric extrapolation by
Terrel and Scott (1980), variable bandwidth kernel estimators by Abramson (1982),
variable location estimators by Samiuddin andEl-Sayyad (1990), nonparametric trans-
formation estimators by Ruppert and Cline (1994), and multiplicative bias correction
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estimators by Jones et al. (1995). One also could use, of course, the so-called higher
order kernel functions, but this method has a disadvantage in that negative values
might appear in the density estimates and distribution function estimates.

All of the previous explanations implicitly assume that the true density is supported
on the entire real line. Ifwe dealwith a nonnegative supported distribution, for instance,
the standard kernel density estimator will suffer the so-called boundary bias problem,
and this is the main problem that we are going to overcome. Throughout this paper,
the interval [0, h] is called a “boundary region”, and points greater than h are called
“interior points”.

In the boundary region, the standard kernel density estimator ̂fX (x) usually under-
estimates fX (x). This is because it does not “feel” the boundary, and it puts weights
for the lack of data on the negative axis. To be more precise, if we use a symmetric
kernel supported on [−1, 1], we have

Bias[ ̂fX (x)] =
[∫ c

−1
K (u)du − 1

]

fX (x) − h f ′
X (x)

∫ c

−1
uK (u)du + O(h2)

when x ≤ h, c = x
h . This means that this estimator is not consistent at x = 0 because

lim
n→∞ Bias[ ̂fX (0)] =

[∫ c

−1
K (u)du − 1

]

fX (0) �= 0,

unless fX (0) = 0.
Several ways of removing the boundary bias problem, each with their own advan-

tages and disadvantages, are data reflection (Schuster 1985) simple nonnegative
boundary correction (Jones and Foster 1996), boundary kernels (Muller 1991, 1993;
Muller and Wang 1994), pseudodata generation (Cowling and Hall 1996), a hybrid
method (Hall andWehrly 1991), empirical transformation (Marron andRuppert 1994),
a local linear estimator (Lejeune and Sarda 1992; Jones 1993), data binning and a local
polynomial fitting on the bin counts (Cheng et al. 1997), and others. Most of them
use symmetric kernel functions as usual, and then modify their forms or transform the
data.

Chen (2000) proposed a simple way to circumvent the boundary bias that appears
in the standard kernel density estimation. The remedy consists in replacing symmetric
kernels with asymmetric gamma kernels, which never assign a weight outside of the
support. In addition to satisfactory asymptotic features, Chen (2000) reported good
finite sample performances of this cure through a simulation study.

Let K (y; x, h) be an asymmetric function parameterized by x and h, called an
“asymmetric kernel”. Then, the definition of the asymmetric kernel density estimator
is

̂f (x) = 1

n

n
∑

i=1

K (Xi ; x, h). (5)
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Since the density of Gamma(xh−1 + 1, h),

y
x
h e− y

h

�
( x
h + 1

)

h
x
h +1

, (6)

is an asymmetric function parameterized by x and h, it is natural to use it as an asym-
metric kernel. Hence, Chen (2000) defined his first gamma kernel density estimator
as

̂fC (x) = 1

n

n
∑

i=1

X
x
h
i e

− Xi
h

�
( x
h + 1

)

h
x
h +1

. (7)

The intuitive approach to seeing how Eq. (7) can be used as a consistent estimator is
as follows. Let Y be a Gamma(xh−1 + 1, h) random variable with the pdf stated in
Eq. (6); then,

E[ ̂fC (x)] =
∫ ∞

0
fX (y)K (y; x, h)dy = E[ fX (Y )].

By Taylor expansion,

E[ fX (Y )] = fX (x) + h

[

f ′
X (x) + 1

2
x f ′′

X (x)

]

+ o(h),

which will converge to fX (x) as n → ∞. For a detailed theoretical explanation
regarding the consistency of asymmetric kernels, see Bouezmarni and Scaillet (2005).

The bias and variance of Chen’s first gamma kernel density estimator are

Bias[ ̂fC (x)] =
[

f ′
X (x) + 1

2
x f ′′

X (x)

]

h + o(h), (8)

Var [ ̂fC (x)] =
{ fX (x)

2
√

πxn
√
h
, x

h → ∞,

�(2κ+1) fX (x)
22κ+1�2(κ+1)nh

, x
h → c,

(9)

for some c > 0. Since the result is quite similar, we do not discuss Chen’s second
gamma kernel density estimator in this article; see Chen (2000) for reference.

Chen’s gammakernel density estimator obviously solved the boundary bias problem
because the gamma pdf is a nonnegative supported function, so no weight will be put
on the negative axis. However, it also has some problems; they are:

• The variance depends on a factor x−1/2 in the interior, which means the variance
becomes much larger quickly when x is small,

• Zhang (2010) showed that the MSE is O(n−2/3) when x is close to the boundary
(worse than the standard kernel density estimator).
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In this article, we try to improve Chen’s estimator. Using a similar idea but with
different parameters of gamma density as a kernel function, we intend to reduce
the variance. Then, we strive to reduce the bias by modifying it with expansions
of exponential and logarithmic functions. Hence, our modified gamma kernel density
estimator is not only free of the boundary bias, but the variance also has smaller orders
both in the interior and near the boundary, compared with Chen’s method. As a result,
the optimal orders of the MSE and the MISE are smaller as well. A simulation study
is discussed in Section 3, and detailed proofs can be found in the appendices.

2 New type of gamma kernel density estimator formulation

Before starting our discussion, we need to impose assumptions; they are:

A1. The bandwidth h > 0 satisfies h → 0 and nh → ∞ when n → ∞,
A2. The density fX is three times continuously differentiable, and f (4)

X exists,

A3. The integrals
∫

[

f ′
X (x)
fX (x)

]2
dx ,

∫

x4
[

f ′′
X (x)
fX (x)

]2
dx ,

∫

x2[ f ′′
X (x)]2dx , and

∫

x6[ f ′′′
X (x)]2dx are finite.

The first assumption is the usual assumption for the standard kernel density estimator.
Since we will use exponential and logarithmic expansions, we need A2 to ensure the
validity of our proofs. The last assumption is necessary to make sure we can calculate
the MISE.

As we stated before, the modification of the gamma kernel, done to improve the
performance of Chen’s method, is started by replacing the shape and scale parameters
of the gamma density with suitable functions of x and h, and this kernel is defined
as a new gamma kernel. Our purpose in doing this is to reduce the variance so that it
is smaller than the variance of Chen’s method. After trying several combinations of
functions, we chose the density of Gamma(h−1/2, x

√
h + h), which is

K (y; x, h) = y
1√
h
−1

e
− y

x
√
h+h

�
(

1√
h

)

(x
√
h + h)

1√
h

, (10)

as a kernel, and we define the new gamma kernel density “estimator” as

Ah(x) =
∑n

i=1 X
1√
h
−1

i e
− Xi

x
√
h+h

n�
(

1√
h

)

(x
√
h + h)

1√
h

, (11)

where n is the sample size, and h is the bandwidth.

Remark 2.1 Even though the formula in Eq. (11) can work as a density estimator
properly, it is not our proposed method (that is why we put quotation marks around
the word “estimator”). As we will state later, we need another modification for Eq.
(11) before our proposed estimator is created.
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After this, we need to derive the bias and the variance formulas of Ah(x). Consult
the following theorem.

Theorem 2.2 Assuming A1 and A2, for the function Ah(x) in Eq. (11), its bias and
variance are

Bias[Ah(x)] =
[

f ′
X (x) + 1

2
x2 f ′′

X (x)

] √
h + o(

√
h) (12)

and

Var [Ah(x)] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

R2
(

1√
h
−1

)

fX (x)

2(x+√
h)

√
π(1−√

h)R
(

2√
h
−2

)

nh
1
4

+ O

(

h
1
4

n

)

, x
h → ∞

R2
(

1√
h
−1

)

fX (x)

2(c
√
h+1)

√
π(1−√

h)R
(

2√
h
−2

)

nh
3
4

+ O

(

1

nh
1
4

)

, x
h → c,

(13)

for some positive number c, and

R(z) =
√
2π zz+ 1

2

ez�(z + 1)
. (14)

Remark 2.3 The function R(z) (Brown and Chen 1999) monotonically increases with

limz→∞ R(z) = 1 and R(z) < 1, which means
R2

(

1
h −1

)

R
(

2
h −2

) ≤ 1. From these facts, we

can conclude that Var [Ah(x)] is O(n−1h−1/4) when x is in the interior, and it is
O(n−1h−3/4) when x is near the boundary. Both of these rates of convergence are
faster than the rates of the variance of Chen’s gamma kernel estimator for both cases,
respectively. Furthermore, instead of x−1/2, Var [Ah(x)] depends on (x + √

h)−1,
which means the value of the variance will not speed up to infinity when x approaches
0.

Even though we have succeeded in reducing the order of the variance, we now
encounter a larger bias order. To avoid this problem, we use geometric extrapolation
to change the order of bias back to h.

Theorem 2.4 Let Ah(x) be the function in Eq. (11). Assuming A1 and A2, if we define
Jh(x) = E[Ah(x)], then

[Jh(x)]2[J4h(x)]−1 = fX (x) + O(h). (15)

Remark 2.5 The function J4h(x) is the expectation of the function in Eq. (11) with
4h as the bandwidth. Furthermore, the term after fX (x) in Eq. (15) is in the order h,
which is the same as the order of bias for Chen’s gamma kernel density estimator. This
theorem will lead us to the idea to modify Ah(x). We present the explicit asymptotic
formula of O(h) in the appendices.
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Theorem 2.4 gives us the idea to modify Ah(x) and to define our new estimator.
Hence, we propose

˜fX (x) = [Ah(x)]2[A4h(x)]−1 (16)

as the modified gamma kernel density estimator, our proposed method. This idea is
actually straightforward. It uses the fact that the expectation of the operation of two
statistics is asymptotically equal (in probability) to the operation of the expectation of
each statistic. Though we do not use any concept of convergence in probability in our
proofs, the idea is still applicable when using Taylor expansion.

For the bias of our proposed estimator, we have the following theorem.

Theorem 2.6 Assuming A1 and A2, the bias of the modified gamma kernel density
estimator is

Bias[ ˜fX (x)] = −2

[

b(x) − a(x)

2 fX (x)

]

h + o(h) + O

(

1

nh
1
4

)

, (17)

where

a(x) = f ′
X (x) + 1

2
x2 f ′′

X (x), (18)

b(x) =
(

x + 1

2

)

f ′′
X (x) + x2

(

x

3
+ 1

2

)

f ′′′
X (x). (19)

As expected, the bias’ leading term is actually the same as the explicit form of
O(h) in Theorem 2.4 (see appendices). Its order of convergence changed back to h,
the same as the bias of Chen’s method. This is quite the accomplishment because if
we can keep the order of the variance the same as Var [Ah(x)], we can then conclude
that theMSE of our modified gamma kernel density estimator is smaller than theMSE
of Chen’s gamma kernel estimator. However, before jumping into the calculation of
variance, we need the following theorem.

Theorem 2.7 Assuming A1 and A2, for the function in Eq. (11) with bandwidth h,
Ah(x), and with bandwidth 4h, A4h(x), the covariance of them is equal to

Cov[Ah(x), A4h(x)] =
R

(

1√
h

− 1
)

R
(

1
2
√
h

− 1
)

2
√

πR
(

3
2
√
h

− 2
)

(3x + 5
√
h)

(

3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2 − 2
√
h)

1√
h
− 1

2 (1 − 2
√
h)

1
2
√
h
− 1

2

×
(

x + √
h

3x + 5
√
h

) 1
2
√
h
−1 (

2x + 4
√
h

3x + 5
√
h

) 1√
h
−1

fX (x)

nh
1
4

+ O

(

h
1
4

n

)

,

123



Journal of the Korean Statistical Society (2020) 49:882–900 889

when xh−1 → ∞, and

Cov[Ah(x), A4h(x)] =
R

(

1√
h

− 1
)

R
(

1
2
√
h

− 1
)

2
√

πR
(

3
2
√
h

− 2
)

(3c
√
h + 5)

(

3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2 − 2
√
h)

1√
h
− 1

2 (1 − 2
√
h)

1
2
√
h
− 1

2

×
(

c
√
h + 1

3c
√
h + 5

) 1
2
√
h
−1 (

2c
√
h + 4

3c
√
h + 5

) 1√
h
−1

fX (x)

nh
3
4

+ O

(

1

nh
1
4

)

,

when xh−1 → c > 0.

Theorem 2.8 Assuming A1 and A2, the variance of the modified gamma kernel density
estimator is

V ar [ ˜fX (x)] = 4Var [Ah(x)] + Var [A4h(x)] − 4Cov[Ah(x), A4h(x)] + o

(

1

nh
1
4

)

,

(20)

where its orders of convergence are O(n−1h−1/4) in the interior and O(n−1h−3/4) in
the boundary region.

As a conclusion to Theorems 2.6 and 2.8 , with the identity of MSE, we have

MSE[ ˜fX (x)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

O(h2) + O

(

1

nh
1
4

)

, x
h → ∞,

O(h2) + O

(

1

nh
3
4

)

, x
h → c.

(21)

The theoretical optimum bandwidths are h = O(n−4/9) in the interior and h =
O(n−4/11) in the boundary region. As a result, the optimum orders of convergence are
O(n−8/9) and O(n−8/11), respectively. Both of them are smaller than the optimum
orders of Chen’s estimator, which are O(n−4/5) in the interior and O(n−2/3) in the
boundary region. Furthermore, since the MISE is just the integration of MSE, it is
clear that the orders of convergence of the MISE are the same as of the MSE.

Calculating the explicit formula of MI SE( ˜fX ) is nearly impossible because of
the complexity of the formulas of Bias[ ˜fX (x)] and Var [ ˜fX (x)]. However, there
is one thing we would like to discuss regarding this matter. Using a similar argu-
ment stated by Chen (2000), the boundary region part of Var [ ˜fX (x)] is negligible
while integrating the variance. Thus, instead of computing

∫

boundary V ar [ ˜fX (x)] +
∫

interior V ar [ ˜fX (x)], it is sufficient to just calculate
∫ ∞
0 Var [ ˜fX (x)]dx using the

formula of the variance in the interior. With that, computing

MI SE( ˜fX ) =
∫ ∞

0
Bias2[ ˜fX (x)]dx +

∫ ∞

0
Var [ ˜fX (x)]dx

can be approximated by using numerical methods (assuming fX is known).
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3 Simulation study

In this section, we provide the results of a simulation study we did to show the perfor-
mances of our proposed method and compare them with other estimators’ results. The
measures of error we use in this article are the MISE, the MSE, bias, and variance.
Since we are working under assumptions A1, A2, and A3, the MISE of our proposed
estimator is finite. We calculated the average integrated squared error (AISE), the
average squared error (ASE), simulated bias, and simulated variance, with a sample
size of n = 50 and 10000 repetitions for each case.

We compared four gamma kernel density estimators: Chen’s gamma kernel den-
sity estimator ̂fC (x) in Chen (2000), two nonnegative bias-reduced Chen’s gamma
estimators ̂fK I1(x) and ̂fK I2(x) (Igarashi and Kakizawa 2015, Eq. 10 and 11),
and our modified gamma kernel density estimator ˜fX (x). We generated several
distributions for this study; they are exponential distribution exp(1/2), gamma
distribution Gamma(2, 3), log-normal distribution log.N (0, 1), inverse Gaussian
distribution IG(1, 2), Weibull distribution Weibull(3, 2), and absolute normal dis-
tribution abs.N (0, 1). The least squares cross-validation technique was used to
determine the value of the bandwidths.

Table 1 compares AISEs, representing the general measure of error. As we can
see, the proposed method outperformed the other estimators by giving us the smallest
errors (numbers in bold). Since one of our main concerns is eliminating the boundary
bias problem, it is necessary to take our attention to the values of the measures of error
in the boundary region. Tables 2, 3, and 4 show the ASE, bias, and variance of those
four estimators when x = 0.01. Once again, our estimator had the best results (bold

Table 1 Comparison of the
average integrated squared error
(×105)

Distributions ̂fC (x) ̂fK I1(x) ̂fK I2(x) ˜fX (x)

exp(1/2) 970 1367 1304 831

Gamma(2, 3) 313 2091 1913 196

log.N (0, 1) 342 1845 1688 206

IG(1, 2) 1002 680 660 297

Weibull(3, 2) 7896 4198 4120 1832

abs.N (0, 1) 8211 3785 3719 2905

Table 2 Comparison of the
average squared error (×105)
when x = 0.01

Distributions ̂fC (x) ̂fK I1(x) ̂fK I2(x) ˜fX (x)

exp(1/2) 1600 1547 1553 991

Gamma(2, 3) 207 384 359 168

log.N (0, 1) 36 178 160 34

IG(1, 2) 1006 829 781 422

Weibull(3, 2) 1528 708 643 304

abs.N (0, 1) 2389 2018 1999 721
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Table 3 Comparison of the bias
(×104) when x = 0.01

Distributions ̂fC (x) ̂fK I1(x) ̂fK I2(x) ˜fX (x)

exp(1/2) −1054 −1865 −1904 −858

Gamma(2, 3) 391 583 561 233

log.N (0, 1) 150 417 395 120

IG(1, 2) 961 869 840 386

Weibull(3, 2) 1215 821 780 342

abs.N (0, 1) −1383 303 297 157

Table 4 Comparison of the
variance (×105) when x = 0.01

Distributions ̂fC (x) ̂fK I1(x) ̂fK I2(x) ˜fX (x)

exp(1/2) 490 1465 1469 244

Gamma(2, 3) 54 43 44 11

log.N (0, 1) 39 36 36 35

IG(1, 2) 835 739 753 273

Weibull(3, 2) 532 340 343 184

abs.N (0, 1) 476 1926 1910 211

Fig. 1 Comparison of point-wise bias, variance, and ASE of ˜fX (x), ̂fC (x), ̂fK I1(x), and ̂fK I2(x) for
estimating density of exp(1/2) with sample size n = 150
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Fig. 2 Comparison of the point-wise bias, variance, and ASE of ˜fX (x), ̂fC (x), ̂fK I1(x), and ̂fK I2(x) for
estimating density of Gamma(2, 3) with sample size n = 150

numbers). Though the differences among the values of bias were relatively not big
(Table 3), from Table 4, we can witness how our variance reduction has an effect.

As further illustrations, we also provide graphs of point-wise ASE, bias, squared
bias, and variance to compare our estimator’s performances with those of the others.
We generated exponential, gamma, and absolute normal distributions 1000 times to
produce Figs. 1, 2, and 3 .

In some cases, we found that the bias value of our proposed estimator was away
from 0 more than the other estimators (e.g., Fig. 1a around x = 1, Fig. 2a around
x = 4, and Fig. 3a around x = 0.2). Though this could reflect poorly on the proposed
estimator, from the variance parts (Figs. 1b, 2b, and 3b), we see that our estimator
never failed to give the smallest value of variance, confirming that we succeeded in
reducing variance with our method. Moreover, the result of the variance reduction is
the reduction of point-wise ASE itself, shown in Figs. 1d, 2d, and 3d. One may take
note of Fig. 2dwhen x ∈ [1, 4] because the estimators of Igarashi andKakizawa (2015)
slightly outperformed the proposed method. However, as x got larger, ASE[ ̂fK I1(x)]
and ASE[ ̂fK I2(x)] failed to get closer to 0 (they will when x is large enough), while
ASE[ ˜fX (x)] approached 0 immediately.
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Fig. 3 Comparison of the point-wise bias, variance, and ASE of ˜fX (x), ̂fC (x), ̂fK I1(x), and ̂fK I2(x) for
estimating density of abs.N (0, 1) with sample size n = 150

4 Conclusion

We proposed a new estimator for the density function of nonnegative data. First, we
defined a function as a “pre-estimator” by choosing suitable parameters to reduce the
order of variance and then using geometric extrapolation to reduce the order of conver-
gence of the bias from O(

√
h) to O(h). As a result, the MISE of the proposed method

is smaller than Chen’s gamma kernel estimator. Moreover, the results of a simulation
study revealed the superior performances of our proposed method. Establishing new
estimators using this kernel for other functions such as the distribution function or the
hazard rate function would be a promising study to consider.
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Proof of Theorem 2.2

First, by usual reasoning of i.i.d. random variables, we have

E[Ah(x)] =
∫ ∞

0

w
1√
h
−1

e
− w

x
√
h+h

�
(

1√
h

)

(x
√
h + h)

1√
h

fX (w)dw.

If we define a random variable W ∼ Gamma(h−1/2, x
√
h + h) with mean

μW = h−1/2(x
√
h + h),

Var(W ) = h−1/2(x
√
h+h)2, and E[(W −μW )3] = 2h−1/2(x

√
h+h)3, we can see

the integral as an expectation of fX (W ), and we are then able to use Taylor expansion
twice, first around μW , and next around x . This results in

E[ fX (W )] = E

[

fX (μW ) + f ′
X (μW )(W − μW ) + f ′′

X (μW )

2
(W − μW )2 + ...

]

= fX (x + √
h) + 1

2
f ′′
X (x + √

h)
1√
h

(x
√
h + h)2 + ...

= fX (x) +
[

f ′
X (x) + 1

2
x2 f ′′

X (x)

] √
h + o(

√
h).

Hence, we have

Bias[Ah(x)] =
[

f ′
X (x) + 1

2
x2 f ′′

X (x)

] √
h + o(

√
h),

which is in the order of
√
h.

Next, we derive the formula of the variance, which is

Var [Ah(x)] = n−1E[K 2(X1; x, h)] + O(n−1).

First, we take a look at the expectation part,

E[K 2(X1; x, h)] =
∫ ∞
0

v
2√
h
−2

e
− 2v

x
√
h+h

�2
(

1√
h

)

(x
√
h + h)

2√
h

fX (v)dv

=
�

(

2√
h

− 1
) (

x
√
h+h
2

)
2√
h
−1

�2
(

1√
h

)

(x
√
h + h)

2√
h

∫ ∞
0

v

(

2√
h
−1

)

−1
e
− 2v

x
√
h+h

�
(

2√
h

− 1
) (

x
√
h+h
2

)
2√
h
−1

fX (v)dv

= B(x, h)E[ fX (V )],
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where V is a Gamma(2h−1/2 −1, (x
√
h+h)/2) random variable, B(x, h) is a factor

outside the integral, and the integral itself can be considered as E[ fX (V )]. Similar as
before, the random variable V has mean μV = (2h−1/2 − 1)(x

√
h + h/2) and

Var(V ) = (2h−1/2 − 1)(x
√
h + h)2/4.

In the same fashion as in E[ fX (W )] before, we have

E[ fX (V )] = fX

(

x + √
h − x

√
h + h

2

)

+ 1

2
f ′′
X

(

x + √
h − x

√
h + h

2

)

×
(

2√
h

− 1

)

(

x
√
h + h

2

)2

+ ...

= fX (x) + O(
√
h).

Now, let R(z) =
√
2π zz+

1
2

ez�(z+1) ; then, B(x, h) can be rewritten to become

B(x, h) =
√
2π

(

2√
h

− 2
) 2√

h
− 3

2

e
2√
h
−2

R
(

2√
h

− 2
)

e
2√
h
−2

R2
(

1√
h

− 1
)

2π
(

1√
h

− 1
) 2√

h
−1

1

2
2√
h
−1

(x
√
h + h)

=
R2

(

1√
h

− 1
)

2(x + √
h)

√

π(1 − √
h)R

(

2√
h

− 2
)

h
1
4

.

Thus, we obtain Eq. 13, and the proof is completed.

Proof of Theorem 2.4

We have already expanded Jh(x) until the
√
h term. Now, extending it until the h term

results in

Jh(x) = fX (x) + √
h f ′

X (x) + o(
√
h) + 1

2
(x2

√
h + 2xh + h

√
h)

×[ f ′′
X (x) + √

h f ′′′
X (x) + o(

√
h)] + ...

= fX (x)

[

1 +
{

f ′
X (x) + 1

2
x2 f ′′

X (x)

}
√
h

fX (x)

+
{(

x + 1

2

)

f ′′
X (x) + x2

(

x

3
+ 1

2

)

f ′′′
X (x)

}

h

fX (x)
+ o(h)

]

= fX (x)

[

1 + a(x)

fX (x)

√
h + b(x)

fX (x)
h + o(h)

]

,
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where a(x) = f ′
X (x) + 1

2 x
2 f ′′

X (x), and b(x) = (

x + 1
2

)

f ′′
X (x) + x2

( x
3 + 1

2

)

f ′′′
X (x).

By taking the natural logarithm and using its expansion, we have

log Jh(x) = log fX (x) +
∞
∑

k=1

(−1)k−1

k

[

a(x)

fX (x)

√
h + b(x)

fX (x)
h + o(h)

]k

= log fX (x) + a(x)

fX (x)

√
h + b(x)

fX (x)
h + o(h) − 1

2

[

a(x)

fX (x)

√
h + b(x)

fX (x)
h + o(h)

]2

+1

3

[

a(x)

fX (x)

√
h + b(x)

fX (x)
h + o(h)

]3
− ...

= log fX (x) + a(x)

fX (x)

√
h +

[

b(x) − a2(x)

2 fX (x)

]

h

fX (x)
+ o(h).

Next, if we define J4h(x) = E[A4h(x)] (using quadrupled bandwidth), i.e.,

ln J4h(x) = ln fX (x) + 2a(x)

fX (x)

√
h + 4

fX (x)

[

b(x) − a2(x)

2 fX (x)

]

h + o(h),

we can set up conditions to eliminate the term
√
h while keeping the term ln fX (x).

Now, since ln[Jh(x)]t1 [J4h(x)]t2 equals

(t1 + t2) ln fX (x) + (t1 + 2t2)
a(x)

fX (x)

√
h + (t1 + 4t2)

[

b(x) − a2(x)

2 fX (x)

]

h

fX (x)
+ o(h),

the conditions we need are t1 + t2 = 1 and t1 + 2t2 = 0. It is obvious that the solution
is t1 = 2 and t2 = −1, and we get

ln[Jh(x)]2[J4h(x)]−1 = ln fX (x) − 2

fX (x)

[

b(x) − a2(x)

2 fX (x)

]

h + o(h).

If we take the exponential function and use its expansion, we have

[Jh(x)]2[J4h(x)]−1 = fX (x)
∞
∑

k=0

(−1)k

k!
[

2

fX (x)

{

b(x) − a2(x)

2 fX (x)

}

h + o(h)

]k

= fX (x)

[

1 − 2

fX (x)

{

b(x) − a2(x)

2 fX (x)

}

h + o(h)

]

= fX (x) − 2

[

b(x) − a2(x)

2 fX (x)

]

h + o(h)

= fX (x) + O(h).
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Proof of Theorem 2.6

Because of the definition of Jh(x) and J4h(x), we can rewrite Ah(x) = Jh(x) + Y
and A4h(x) = J4h(x) + Z , where Y and Z are random variables with E(Y ) and
E(Z) are both 0, Var(Y ) = Var [Ah(x)], and Var(Z) = Var [A4h(x)]. Then, by the
expansion (1 + p)q = 1 + pq + O(p2), we get

˜fX (x) = [Jh(x)]2[J4h(x)]−1
[

1 + Y

Jh(x)

]2 [

1 + Z

J4h(x)

]−1

= [Jh(x)]2[J4h(x)]−1

[

1 + 2Y

Jh(x)
+ O

{

Y 2

J2h (x)

}] [

1 − Z

J4h(x)
+ O

{

Z2

J24h(x)

}]

= [Jh(x)]2[J4h(x)]−1 + 2Jh(x)

J4h(x)
Y −

[

Jh(x)

J4h(x)

]2
Z + O[(Y + Z)2].

Hence,

E[ ˜fX (x)] = [Jh(x)]2[J4h(x)]−1 + 2Jh(x)

J4h(x)
E(Y ) −

[

Jh(x)

J4h(x)

]2

E(Z) + O[E{(Y + Z)2}]

= fX (x) − 2

[

b(x) − a(x)

2 fX (x)

]

h + o(h) + O

(

1

nh
1
4

)

,

and its bias is

Bias[ ˜fX (x)] = −2

[

b(x) − a(x)

2 fX (x)

]

h + o(h) + O

(

1

nh
1
4

)

.

Proof of Theorem 2.7

By usual calculation of i.i.d. random variables, we have

Cov[Ah(x), A4h(x)] = 1

n
E[K (X1; x, h)K (X1; x, 4h)] + O

(

1

n

)

.

Now, for the expectation,

E[K (X1; x, h)K (X1; x, 4h)] =
∫ ∞

0

t
1√
h
−1

e
− t

x
√
h+h

�
(

1√
h

)

(x
√
h + h)

1√
h

t
1

2
√
h
−1

e
− t

2x
√
h+4h

�
(

1
2
√
h

)

(2x
√
h + 4h)

1
2
√
h

fX (t)dt

=
�

(

3
2
√
h

− 1
) [

2
√
h(x+√

h)(x+2
√
h)

3x+5
√
h

] 3
2
√
h
−1

�
(

1√
h

)

�
(

1
2
√
h

)

(x
√
h + h)

1√
h (2x

√
h + 4h)

1
2
√
h
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×
∫ ∞

0

t

(

3
2
√
h
−1

)

−1
e
−t

[

3x+5
√
h

2
√
h(x+√

h)(x+2
√
h)

]

�
(

3
2
√
h

− 1
) [

2
√
h(x+√

h)(x+2
√
h)

3x+5
√
h

] 3
2
√
h
−1

fX (t)dt

= C(x, h)E[ fX (T )],

whereC(x, h) is the factor outside the integral, and T is a random variable with mean

μT = 3(x + √
h)(x + 2

√
h)

3x + 5
√
h

+ O(
√
h)

and variance Var(T ) = O(
√
h). Utilizing Taylor expansion results in

E[ fX (T )] = fX (x) +
[

3(x + √
h)(x + 2

√
h)

3x + 5
√
h

− x + O(
√
h)

]

f ′
X (x) + o(

√
h)

+1

2
f ′′
X

[

3(x + √
h)(x + 2

√
h)

3x + 5
√
h

+ O(
√
h)

]

O(
√
h)

= fX (x) + O(
√
h).

Using the definition of R(z) as before, we get

C(x, h) = [2√h(x + √
h)(x + 2

√
h)] 3

2
√
h
−1

(x
√
h + h)

1√
h (2x

√
h + 4h)

1
2
√
h (3x + 5

√
h)

3
2
√
h
−1

×
√
2π

(

3
2
√
h

− 2
) 3

2
√
h
− 3

2

e
3

2
√
h
−2

R
(

3
2
√
h

− 2
)

e
1√
h
−1

R
(

1√
h

− 1
)

√
2π

(

1√
h

− 1
) 1√

h
− 1

2

e
1

2
√
h
−1

R
(

1
2
√
h

− 1
)

√
2π

(

1
2
√
h

− 1
) 1

2
√
h
− 1

2

=
R

(

1√
h

− 1
)

R
(

1
2
√
h

− 1
)

2h
1
4
√

πR
(

3
2
√
h

− 2
)

(3x + 5
√
h)

(

3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2 − 2
√
h)

1√
h
− 1

2 (1 − 2
√
h)

1
2
√
h
− 1

2

×
(

x + √
h

3x + 5
√
h

) 1
2
√
h
−1 (

2x + 4
√
h

3x + 5
√
h

) 1√
h
−1

,

when x > h (for x ≤ h, the calculation is similar). Hence, the covariance term is

Cov[Ah(x), A4h(x)] =
R

(

1√
h

− 1
)

R
(

1
2
√
h

− 1
)

2
√

πR
(

3
2
√
h

− 2
)

(3x + 5
√
h)

(

3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2 − 2
√
h)

1√
h
− 1

2 (1 − 2
√
h)

1
2
√
h
− 1

2

×
(

x + √
h

3x + 5
√
h

) 1
2
√
h
−1 (

2x + 4
√
h

3x + 5
√
h

) 1√
h
−1

fX (x)

nh
1
4

+ O

(

h
1
4

n

)

,
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when xh−1 → ∞, and

Cov[Ah(x), A4h(x)] =
R

(

1√
h

− 1
)

R
(

1
2
√
h

− 1
)

2
√

πR
(

3
2
√
h

− 2
)

(3c
√
h + 5)

(

3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2 − 2
√
h)

1√
h
− 1

2 (1 − 2
√
h)

1
2
√
h
− 1

2

×
(

c
√
h + 1

3c
√
h + 5

) 1
2
√
h
−1 (

2c
√
h + 4

3c
√
h + 5

) 1√
h
−1

fX (x)

nh
3
4

+ O

(

1

nh
1
4

)

,

when xh−1 → c > 0.

Proof of Theorem 2.8

It is easy to prove that [Jh(x)][J4h(x)]−1 = 1 + O(
√
h) by using the expansion of

(1 + p)q . This fact brings us to

Var [ ˜fX (x)] = Var [2{1 + O(
√
h)}Y − {1 + O(

√
h)}2Z ] + Var [O{(Y + Z)2}]

= Var [2Ah(x) − A4h(x)] + o

(

1

nh
1
4

)

= 4Var [Ah(x)] + Var [A4h(x)] − 4Cov[Ah(x), A4h(x)] + o

(

1

nh
1
4

)

.

Last, since the equation above is just a linear combination of two variance formulas, the
orders of the variance do not change, which are n−1h−1/4 in the interior and n−1h−3/4

in the boundary region.
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