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Abstract
Anderson (The Annals of Mathematical Statistics 30(3):676–687, 1959) studied the
limiting distribution of the least square estimator for explosiveAR(1) process under the
independent and identically distributed (iid) condition on error i.e., Xt = ρXt−1 + et
where ρ > 1 and et is iid error with Ee = 0 and Ee2 < ∞. This paper is mainly
concerned about the limiting distribution of the least square estimator of ρ, that is ρ̂,
when errors are not identically distributed. In addition, we provide an approximate
description of the limiting distribution of

∑n−1
j=0 ρ− j en− j when ρ > 1 as n → ∞.

Keywords Explosive AR(1) process · Non-identical distribution · Least square
estimator

Mathematics Subject Classification 62M10

1 Introduction andmain results

Consider the following non-stationary AR(1) process defined by

Xt = ρXt−1 + et , t = 1, 2, . . . (1)
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where the coefficient ρ ≥ 1, the initial value X0 = 0 and the error process {et , t ≥ 1}
is iid with mean zero and finite variance. Observe that

Xt =
t−1∑

j=0

ρ j et− j .

The random walk (RW) refers to ρ = 1. For ρ > 1, {Xt , t ≥ 0} is referred to as an
‘explosive’ process. See, for instance, Hwang and Basawa (2005) and Hwang (2013).
The two cases, viz., ρ = 1 (RW) and ρ > 1 (explosive), are well investigated and
documented in the literatures for the case of iid errors. In this paper, we are mainly
concerned about the explosive case (ρ > 1) which depends on the initial condition X0
or e0 critically. In the literatures it is employed to study economic bubble and often
referred to as random chaotic system in the sense that it is highly sensitive to the initial
condition. See, e.g., Kim and Hwang (2019) or Lee (2018).

When X1, X2, . . . , Xn denote a sample of size n, the least squares estimator of ρ,

ρ̂ =
n−1∑

t=1

Xt Xt+1/

n−1∑

t=1

X2
t ,

is known to be n-consistent and ρn-consistent according to ρ = 1 and ρ > 1, respec-
tively (see Fuller 1996, Ch.10). Now the following expression is useful to derive limit
distributions of ρ̂,

ρ̂ − ρ =
∑n−1

t=1 Xtet+1
∑n−1

t=1 X2
t

=
∑n−1

t=1
∑t−1

j=0 ρ j et− j et+1
∑n−1

t=1 X2
t

= Un

Vn

where

Un =
n∑

i=2

i−1∑

j=1

ρi− j−1ei e j

and

Vn =
n−1∑

t=1

X2
t =

n−1∑

t=1

⎛

⎝
t−1∑

j=0

ρ j et− j

⎞

⎠

2

=
n−1∑

t=1

t−1∑

j=0

t−1∑

k=0

ρ j+ket− j et−k .

For ρ > 1, Anderson (1959) showed that under the iid condition on error process
{et , t ≥ 1}

plimn→∞(Unρ
−n+2 − Yn Zn) = 0 (2)

and
plimn→∞(Vnρ

−2n+4 − ρ2(ρ2 − 1)−1Z2
n) = 0 (3)
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where

Zt = ρ−t+2Xt−1 =
t−2∑

j=0

ρ−(t−2− j)et−1− j and Yt =
t−1∑

j=0

ρ− j et− j

(refer to Theorem 2.1 and Theorem 2.2 there). Now observe that by (2) and (3)

Un/Vn = (ρn−2Unρ
−n+2)/(ρ2n−4Vnρ

−2n+4) = (ρn−2Yn Zn)/(ρ
2n−2(ρ2 − 1)−1Z2

n)

= Yn/(ρ
n(ρ2 − 1)−1Zn)

in probability limit or plimn→∞. Thus

ρn(ρ2 − 1)−1Un/Vn = Yn/Zn (4)

in probability limit. By showing that the random variables in Yn and Zn are asymp-
totically disjoint (refer to Theorem 2.3 and 2.4 there), he derived the related limiting
distribution of ρ̂ for ρ > 1. Indeed

ρn(ρ2 − 1)−1(ρ̂ − ρ) ⇒ Y

Z

where Y is limiting distribution of Yn and Z is limiting distribution of Zn . Refer to
Theorem 2.5 there.

Now, we are mainly concerned about limiting distribution of ρn(ρ2 − 1)−1(ρ̂ −ρ)

when errors are not identically distributed. This is a practical issue because economic
bubble might be caused by non-identical shocks and severely affected by the initial
shock. From this point of view, it would be quite essential to check how sensitively the
initial condition give effects to ρ̂ under non-identical shocks. Our main results address
these issues which are given below.

Theorem 1 Let Y (1)
n = ∑[c(2)

n ]−1
j=0 ρ− j en− j and Z (1)

n = ∑[c(1)
n ]

j=1 ρ−( j−1)e j where 1 ≤
c(i)
n = o(n) for i = 1, 2 are sequences going to infinity slowly. Assuming supt Ee2t <

∞ and ρ > 1, distributions of Yn/Zn and Y
(1)
n /Z (1)

n are asymptotically equivalent in
the sense that

lim
n→∞

P(Yn/Zn ≤ x)

P(Y (1)
n /Z (1)

n ≤ x)
= 1.

Remark 1 Theorem translates Theorem 2.5 of Anderson (1959) under relaxed condi-
tion supt Ee2t < ∞. We also introduce c(1)

n and c(2)
n for better concise descriptions of

Yn and Zn . These mainly follow from

plimn→∞(Zn − Z (1)
n ) = 0 and plimn→∞(Yn − Y (1)

n ) = 0. (5)
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Fig. 1 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (i) with β = 0.5
and n = 200

It is worth mentioning that these sequences of c(1)
n and c(2)

n precisely attributes the
independence of Y (1)

n and Z (1)
n . For possible c(1)

n and c(2)
n , one may consider slowly

varying function which is defined as L(x) : (0,∞) → (0,∞) such that

lim
x→∞

L(ax)

L(x)
= 1 for all a > 0.

For example, the function L(x) = (log x)β for any β ∈ R is slowly varying. In such
case one can introduce (log n)βi , βi > 0, i = 1, 2 for c(i)

n . This means that most errors
are negligible except for very slowly increasing number of errors at both ends and
hence error distribution might be allowed to vary on most occasions. In other words,
any type error distribution is allowed between indices c(1)

n + 1 and n − c(2)
n . Refer to

Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 for related simulation
results.

Remark 2 Since c(1)
n and c(2)

n slowly go to infinity, one may reasonably approximate
the limiting distribution of Y/Z ∼ en/e1 in practice because en and e1 respectively
influence the limiting distributions of Y and Z most. For instance, if both e1 and en
are N (0, σ 2

0 ) and ρ > 1 is large, then one may reasonably approximate

ρn(ρ2 − 1)−1(ρ̂ − ρ) ⇒ N (0, σ 2
0 )

N (0, σ 2
0 )

∼ Cauchy(0, 1).
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Fig. 2 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (i) with β = 1.5
and n = 200

Fig. 3 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (i) with β = 2.5
and n = 200

If both e1 and en are uniform(−1, 1) and ρ is large,

ρn(ρ2 − 1)−1(ρ̂ − ρ) ⇒ U (−1, 1)

U (−1, 1)
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Fig. 4 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (i) with β = 0.5
and n = 500

Fig. 5 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (i) with β = 1.5
and n = 500
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Fig. 6 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (i) with β = 2.5
and n = 500

Fig. 7 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (ii) withβ = 0.5
and n = 200

123



Journal of the Korean Statistical Society (2020) 49:702–721 709

Fig. 8 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (ii) withβ = 1.5
and n = 200

Fig. 9 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (ii) withβ = 2.5
and n = 200

whose density is given by

g(z) =
{

1
4z2

, |z| > 1,
1
4 , |z| ≤ 1.
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Fig. 10 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (ii) with
β = 0.5 and n = 500

Fig. 11 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (ii) with
β = 1.5 and n = 500
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Fig. 12 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (ii) with
β = 2.5 and n = 500

Fig. 13 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (iii) with
β = 0.5 and n = 200
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Fig. 14 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (iii) with
β = 1.5 and n = 200

Fig. 15 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (iii) with
β = 2.5 and n = 200

From Theorem 1, one might establish limiting distribution for ρ̂ by imposing addi-
tional condition.

Theorem 2 Assume that supt Ee2t < ∞ and ρ > 1. Let {et,n} be triangular array of
errors for t = 1, . . . , n and n = 1, . . . If

en,n → e0 in distribution (6)
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Fig. 16 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (iii) with
β = 0.5 and n = 500

Fig. 17 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (iii) with
β = 1.5 and n = 500
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Fig. 18 Kernel density estimate f̂n and empirical distribution function F̂n for error sequence (iii) with
β = 2.5 and n = 500

as n → ∞, then we have

ρn(ρ2 − 1)−1(ρ̂ − ρ) ⇒ Y

Z

where Y and Z are independent.

Remark 3 Theorem 2 corresponds to Theorem 2.5 of Anderson (1959). Major dif-
ferences between the two Theorems are to replace identically distributed e’s and
Ee2 < ∞ by (6) and supt Ee2t < ∞. Note that (6) allows any types of distribu-
tions for et,n for t ≤ n − 1. Refer to Figs. 19, 20, 21 and 22 for related simulation
results. Onemay apply Theorem 2 to test economic bubble under non-identical shocks.
Note that it is usually recommended to fix ρ > 1 close to 1 for testing economic bubble
because it is unrealistic to imagine ρ far greater than 1 under economic bubble.

Remark 4 Notice that if Eε2t = σ 2
0 for all t , Var(Y ) = Var(Z) = σ 2

0 /(1− ρ−2) and
central limit theorem could result inY ∼ N (0, 1) or Z ∼ N (0, 1) as ρ decreases to one
from above. In fact (Phillips andMagdalinos 2007) verify this by taking ρn = 1+1/nk

for some 0 < k < 1 (see Theorem 4.3 there). This in turn suggests that Y and Z tend
to have central tendency to zero at the cost of increased variance as ρ decreases to one.
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Fig. 19 Kernel density estimate f̂n and qq plot Qn for error sequence (iv) with n = 200

Fig. 20 Kernel density estimate f̂n and qq plot Qn for error sequence (iv) with n = 500

2 Simulation study

In this section, we carried out some Monte Carlo simulations to check validity of
Theorems 1 and 2 in reality or at reasonable finite sample size. For this, we compare
kernel density estimate f̂n and empirical distribution function F̂n of Yn/Zn with those
of Y (1)

n /Z (1)
n in Theorem 1 under various non-identical error situations. In particular,
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Fig. 21 Kernel density estimate f̂n and qq plot Qn for error sequence (v) with n = 200

Fig. 22 Kernel density estimate f̂n and qq plot Qn for error sequence (v) with n = 500
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we fix ρ = 1.02 as recommended in Remark 3 and then generate model (1) with
non-identical error sequences {et } as follows:
(i) e1, . . . , e[n/2] ∼ U (−1, 1), e[n/2]+1 . . . , en ∼ N (0, 1),
(ii) e1, . . . , e[n/2] ∼ t(3), e[n/2]+1, . . . , en ∼ N (0, 1),
(iii) e1, . . . , e[n/10] ∼ U (−1, 1), e[n/10]+1, . . . , e[9n/10] ∼ N (0, 1),

e[9n/10]+1, . . . , en ∼ t(3),

Recall [x] denotes the greatest integer not exceeding x . Also we set

c(1)
n = c(2)

n = (log n)β, β = 0.5, 1.5, 2.5

at n = 200 and 500. For each simulation setting, 1, 000 repetitions are made. Simu-
lation results are reported in Figs. 1, 2, 3, 4, 5 and 6 (error sequence (i)), Figs. 7, 8, 9,
10, 11 and 12 (error sequence (ii)) and Figs. 13, 14, 15, 16, 17 and 18 (error sequence
(iii)). It follows from these simulations that the distributions of Yn/Zn (blue line) or
Y (1)
n /Z (1)

n (red line) are getting close to each other as n or β increase, which is as
expected.

Regarding Theorem 2, the following triangular array of errors {et,n} are considered:
(iv) et,n ∼ N (0, 1 − 1/n)), t = 1, . . . , n,
(v) e1,n ∼ N (0, 1 − 1/n), e2,n, . . . , en−1,n ∼ U (−1, 1), en,n ∼ N (0, 1 − 1/n),

and then compare kernel density estimate f̂n and qq plot Q̂n of ρn(ρ2 − 1)−1(ρ̂ − ρ)

with those of the standardCauchy distribution.Note that theCauchy(0,1) is the limiting
distribution for the error sequences of (iv) and (v) according to Theorem 2. Simulation
results are reported in Figs. 19 and 20 (error sequence (iv)) and Figs. 21 and 22 (error
sequence (v)). In Figs. 19, 20, 21 and 22, the distributions of ρn(ρ2 − 1)−1(ρ̂ − ρ)

(blue line) and the standard Cauchy (red line) are getting close to each other as the
sample size increases. Our simulation results confirms that Theorem 2 is regardless of
the types of error distributions in between the first and the last standard normal errors.

3 Proofs

Proof of Theorem 1 In the below, the results assuming Ee2 = σ 2
0 < ∞ by Anderson

(1959) are extended to the case of supt Ee2t < ∞. First, the proofs of (2) and (3) by
Anderson (1959) (see Theorem 2.1 and 2.2 there) are extended easily to our case of
supt Ee2t < ∞. Then using (4), the proof of Theorem 1 will be completed if (5) is
established, i.e.,

plimn→∞

⎛

⎝Zn −
[c(1)
n ]∑

j=1

ρ−( j−1)e j

⎞

⎠

= 0 and plimn→∞

⎛

⎝Yn −
[c(2)
n ]−1∑

j=0

ρ− j en− j

⎞

⎠ = 0.
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Without loss of generality, it is sufficient to consider the case supt |et | ≤ M . This is
so because by (14) and (15) in the proof of Lemma 1,

E(Zn I (sup
t

|et | > M))2 = 1 − ρ−2n

1 − ρ−2 E(e2 I (sup
t

|et | > M)) → 0 (7)

and

E(Yn I (sup
t

|et | > M))2 = 1 − ρ−2n

1 − ρ−2 E(e2 I (sup
t

|et | > M)) → 0 (8)

as M → ∞. Now (5) follows by (12) and (13) of Lemma 1. For Zn , letting

Z∗
n =


n−1−c(1)
n �−1∑

j=0

ρ−(n−2− j)en−1− j

where 
x� denote the least integer greater than or equal to x , we have

Zn = Z∗
n +

n−2∑

j=
n−1−c(1)
n �

ρ−(n−2− j)en−1− j = Z∗
n +

[c(1)
n ]∑

j=1

ρ−( j−1)e j .

Owing to (12) of Lemma 1, we obtain for any ε > 0,

P(|Z∗
n | > ε) = P

⎛

⎝

∣
∣
∣
∣
∣
∣


n−1−c(1)
n �−1∑

j=0

ρ−(n−2− j)en−1− j

∣
∣
∣
∣
∣
∣
> ε

⎞

⎠

≤ E

⎛

⎝

n−1−c(1)

n �−1∑

j=0

ρ−(n−2− j)en−1− j

⎞

⎠

2r

ε−2r = O(ρ−2rc(1)
n ).

Since the above holds for any positive integer r (recall supt |et | ≤ M at this moment)
and c(1)

n → ∞ as n → ∞, we have

plimn→∞

⎛

⎝Zn −
[c(1)
n ]∑

j=1

ρ−( j−1)e j

⎞

⎠ = plimn→∞Z∗
n = 0. (9)

For Yn , letting

Y ∗
n =

n−1∑

j=[c(2)
n ]

ρ− j en− j ,
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we have

Yn = Y ∗
n +

[c(2)
n ]−1∑

j=0

ρ− j en− j .

For any ε > 0, by using (13) of Lemma 1,

P

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣
∣

n−1∑

j=[c(2)
n ]

ρ− j en− j

∣
∣
∣
∣
∣
∣
∣
> ε

⎞

⎟
⎠ ≤ E

⎛

⎜
⎝

n−1∑

j=[c(2)
n ]

ρ− j en− j

⎞

⎟
⎠

2r

ε−2r = O(ρ−2rc(2)
n ).

Since the above holds for any positive integer r and c(2)
n → ∞ as n → ∞, we have

plimn→∞

⎛

⎝Yn −
[c(2)
n ]−1∑

j=0

ρ− j en− j

⎞

⎠ = plimn→∞Y ∗
n = 0. (10)

Recall that

ρ̂ − ρ = Un/Vn = (ρn−2Unρ
−n+2)/(ρ2n−4Vnρ

−2n+4)

= (ρn−2Yn Zn)/(ρ
2n−2(ρ2 − 1)−1Z2

n)

= Yn/(ρ
n(ρ2 − 1)−1Zn).

By (9) and (10), we have

ρn(ρ2 − 1)−1(ρ̂ − ρ) = ρn(ρ2 − 1)−1Un/Vn = Yn/Zn = Y (1)
n /Z (1)

n

in probability. �
Proof of Theorem 2 Choose c(1)

n = c(2)
n = (log n)β for β > 0. Then by Theorem 1, we

have
∑[c(2)

n ]−1
j=0 ρ− j en− j ⇒ Y and

∑[c(1)
n ]

j=1 ρ−( j−1)e j ⇒ Z , which leads to

ρn(ρ2 − 1)−1(ρ̂ − ρ) ⇒ Y

Z
.

Since the above holds for any β > 0, the proof is completed. �
Lemma 1 Assume that supt Ee

2r
t < ∞ for r > 2. Then we have

E(Z2
n) = O(1) and E(Y 2

n ) = O(1). (11)

Furthermore

E(Z∗
n)

2r = E

⎛

⎝

n−1−c(1)

n �−1∑

j=0

ρ−(n−2− j)en−1− j

⎞

⎠

2r

= O(ρ−2rc(1)
n ) (12)
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where c(1)
n → ∞ as n → ∞ and

E(Y ∗
n )2r = E

⎛

⎜
⎝

n−1∑

j=[c(2)
n ]

ρ− j en− j

⎞

⎟
⎠

2r

= O(ρ−2rc(2)
n ) (13)

where c(2)
n → ∞ as n → ∞.

Proof Assume Ee2 = σ 2
0 for the moment. Using independence and Ee = 0, one may

obtain

E(Z2
n)=E

⎛

⎝
n−2∑

j=0

ρ−(n−2− j)en−1− j

⎞

⎠

2

=E

(
n−1∑

t=1

ρ−(t−1)et

)2

=σ 2
0

(
1 − ρ−2(n−1)

1 − ρ−2

)

(14)
and

E(Y 2
n ) = E

(
n−1∑

t=0

ρ−t en−t

)2

= σ 2
0

n−1∑

t=0

ρ−2t = σ 2
0

(
1 − ρ−2n

1 − ρ−2

)

. (15)

This establishes (11) under Ee2 = σ 2
0 < ∞ and its extension to supt Ee

2
t < ∞ is

trivial. To verify (12), let r be a positive integer. Observe that

E(Z∗
n)

2r = E

⎛

⎝

n−1−c(1)

n �−1∑

j=0

ρ−(n−2− j)en−1− j

⎞

⎠

2r

= E

⎛

⎜
⎝

n−1∑

j=[c(1)
n ]+1

ρ−( j−1)e j

⎞

⎟
⎠

2r

≤
⎛

⎜
⎝

n−1∑

j=[c(1)
n ]+1

ρ−( j−1)(E(e2rj ))1/2r

⎞

⎟
⎠

2r

= O(ρ−2rc(1)
n ).

The above holds by the Minkowski inequality and supt Ee
2r
t < ∞, which validates

(12). Moreover, (13) can be yielded similarly to (12). Hence, the lemma is established.
�
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