
Journal of the Korean Statistical Society (2020) 49:1–14
https://doi.org/10.1007/s42952-019-00011-1

Online ISSN 2005-2863
Print ISSN 1226-3192

RESEARCH ART ICLE

On relaxing the distributional assumption of stochastic
frontier models

Hohsuk Noh1 · Ingrid Van Keilegom2

Received: 5 January 2019 / Accepted: 11 June 2019 / Published online: 1 January 2020
© Korean Statistical Society 2020

Abstract
Stochastic frontier models have been considered as an alternative to deterministic
frontier models in that they attribute the deviation of the output from the production
frontier to both measurement error and inefficiency. However, such merit is often
dimmed by strong assumptions on the distribution of the measurement error and the
inefficiency such as the normal-half normal pair or the normal-exponential pair. Since
the distribution of the measurement error is often accepted as being approximately
normal, herewe showhow to estimate various stochastic frontiermodelswith a relaxed
assumption on the inefficiency distribution, building on the recent work of Kneip and
his coworkers. We illustrate the usefulness of our method with data on Japanese local
public hospitals.

Keywords Frontier function · Measurement error · Inefficiency distribution ·
Productivity analysis · Stochastic frontier models

1 Introduction

Productivity analysis consists in a series of analytical methods that allow to measure
the performance of production units in terms of output versus input. Efficiency in
productivity analysis is often defined as the ratio of the actual achieved output to the
maximum possible output from the input, assuming that the inefficiency of the unit
is the cause of its production not reaching its maximum output. However, from the
recognition thatmany uncontrolled factors need to be considered in efficiency analysis,
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Aigner and Chu (1968) and Meeusen and van den Broeck (1977) first proposed the
stochastic frontier analysis, which allows for both unobserved variation in output, the
technical inefficiency (u) of the production unit and the noise (v) which represents the
effect of innumerable uncontrollable factors.

Although the initial stochastic frontier analysis has the advantage of considering
the role of unforeseen/uncontrollable factors, it was assumed that the frontier function
had a specific parametric form such as the Cobb–Douglas and translog function. In
addition, often specific parametric distributions for the inefficiency and the error were
assumed. Over the last 20 years, studies have been conducted to relax the assump-
tion of a parametric form of the frontier function in stochastic frontier analysis and
there have been some remarkable achievements such as Fan et al. (1996), Kumbhakar
et al. (2007) andMartins-Filho and Yao (2015). However, much less research has been
done on relaxing the parametric assumption on the inefficiency and the noise. This
is the starting point of our work. Since the distribution of the noise is often accepted
as being approximately normal, here we focus on developing a method for estimat-
ing various stochastic frontier models with a relaxed assumption on the inefficiency
distribution.

In general, it is known that the estimate of firm level efficiency proposed in Jondrow
et al. (1982) is given by a monotonic function of the overall error (ε = v − u) esti-
mate when the noise (v) follows a normal distribution (see Ondrich and Ruggiero
2001). Since the ranking of the estimates of the overall error (ε) can be obtained
through ordinary least squares residuals as mentioned in Bera and Sharma (1999)
and Parmeter and Kumbhakar (2014), if the rank of the individual inefficiency is
the main concern, we do not have to pay much attention to the assumption on the
inefficiency distribution. However, if our main interest lies in the value itself of the
production function or the inefficiency function when the inefficiency is affected by
other variables, then the appropriate modeling of the inefficiency distribution becomes
important. Motivated by this observation we will discuss how to estimate the frontier
function under relaxed assumptions on the inefficiency distribution so that the estima-
tion results become less sensitive to the specification of the inefficiency distribution.
The key idea of this paper is to extend the work in Kneip et al. (2015), who stud-
ied the estimation of the constant frontier under the setting of our interest. Actually,
Hall and Simar (2002) considered a similar problem with a different method but their
method has the uncorrected bias depending on the magnitude of the noise variance in
the estimation of the frontier function, even in large samples. In contrast, the method
in Kneip et al. (2015) does not have such problem provided that the noise follows a
normal distribution.

The rest of the paper is structured as follows. Section 2 briefly explains the method
of Kneip et al. (2015), which is important for understanding our proposals. Section 3
introduces our methods as an extension of Kneip et al. (2015)’s work and provides
some heuristics for the theoretical understanding of the proposed methods.We present
the small sample performance of the proposed methods in Sect. 4 and illustrate how
the proposed methods can be used for efficiency and productivity analysis in Sect. 5.
Some conclusions are given in Sect. 6.
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2 Background

In this section, following Kneip et al. (2015) we briefly review how the constant
frontier can be reconstructed with a relaxed assumption on the inefficiency when
the noise follows a normal distribution. Suppose that we have i .i .d. observations
Y1,Y2, . . . ,Yn from the model

Yi = τ exp(−Ui ) · exp(Vi ), i = 1, . . . , n, (1)

where τ > 0, Ui is a positive random variable that represents the inefficiency and
whose density makes a jump at the origin, and where Vi follows a normal distribution
with mean zero and unknown variance σ 2. Note that Model (1) can be rewritten as

log Yi = log τ + Vi −Ui , i = 1, . . . , n. (2)

Kneip et al. (2015) proposed a method to estimate τ and σ 2 based on a penalized
profile likelihood. The estimation procedure can be summarized as follows.

Let g(·) and f (·) be the densities of the observed variable Yi and the latent variable
Xi = τ exp(−Ui ), respectively. Note that the density f (·) is defined on [0, τ ] with
f (τ ) > 0.As inKneip et al. (2015), we use a sub-index 0 to indicate the true quantities.
For all y > 0, we can write the true density of Y ,

g0(y) = 1

σ0y

∫ 1

0
h0(t)φ

(
1

σ0
log

y

tτ0

)
dt, (3)

where h0(t) = τ0 f0(tτ0) for 0 ≤ t ≤ 1 and φ(·) is the standard normal density. From
expression (3), we consider the following probability density model to estimate τ0 and
σ 2
0 based on Y1,Y2, . . . ,Yn :

{
gh,τ,σ (·) : h is a probability density on [0, 1], τ > 0, σ > 0

}
, (4)

where

gh,τ,σ (y) = 1

σ y

∫ 1

0
h(t)φ

(
1

σ
log

y

tτ

)
dt . (5)

Since gh,τ,σ (y) depends on the underlying density h(·), Kneip et al. (2015) considered
the approximation of h by

{
hγ (t)=γ1 I (t = 0)+

M∑
k=1

γk I (qk−1< t ≤ qk) : γk >0 for all k and
M∑
k=1

γk =M

}
,

(6)
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where qk = k/M (k = 0, 1, . . . , M) and M is a pre-specified natural number. The
final density model is

ghγ ,τ,σ (y) = 1

σ y

M∑
k=1

γk

∫ qk

qk−1

φ

(
1

σ
log

y

tτ

)
dt . (7)

Estimators τ̂ and σ̂ of τ0 and σ0 are obtained by maximizing the following penalized
likelihood:

(τ̂ , σ̂ , γ̂ ) = argmax
τ>0,σ>0,γ∈�

{
n−1

n∑
i=1

log ghγ ,τ,σ (Yi ) − λpen(ghγ ,τ,σ )

}
, (8)

where λ ≥ 0 is a fixed value independent of n, pen(ghγ ,τ,σ ) = max3≤ j≤M |γ j −
2γ j−1 + γ j−2| and � =

{
γ = (γ1, . . . , γM )� : γk > 0 for all k and

∑M
k=1 γk = M

}
.

Note that the penalty is introduced to account for the smoothness of the function
h0. Also note that λ can be taken equal to zero, which means that we consider both
penalized and non-penalized estimators. However, it can be seen that the penalized
estimator attains a better rate of convergence.

3 Our proposals

In this section, building upon the work of Kneip et al. (2015), we propose how to
estimate the frontier function with a relaxed assumption on the inefficiency for three
stochastic frontier models. Additionally, we provide some heuristics for the theoretical
understanding of the proposed methods.

3.1 Linear model

Assume the stochastic frontier model with a linear frontier function

Yi = β0 + X�
i β + εi = β0 + X�

i β + Vi −Ui , i = 1, . . . , n, (9)

where β = (β1, . . . , βp)
� and Xi = (X1,i , . . . , X p,i )

�. Concerning Ui and Vi , we
make the same assumption as in Kneip et al. (2015). Our interest lies in estimating
both β0 and β. Horrace and Parmeter (2011) considered the samemodel with the same
assumption on Vi but they tried to estimate the density ofUi with a relaxed assumption
onUi , which is that the distribution ofUi is a member of the family of ordinary smooth
densities (see Fan 1991).

Since Yi = (β0−E(Ui ))+X�
i β+(Vi −(Ui −E(Ui ))with ε∗

i = Vi −(Ui −E(Ui ))

having zero mean, we can estimate β and β0 − E(Ui ) via least squares using the fact
that E(ε∗

i |Xi ) = 0, provided that Vi and Ui are independent of Xi . Once we have

obtained β̂, we calculate Yi −X�
i β̂, which is expected to be similar to β0 + Vi −Ui .

From the observation
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exp(Yi − X�
i β̂) ≈ exp(β0) exp(−Ui ) exp(Vi ), (10)

we apply the estimation method of Kneip et al. (2015) with exp(Yi −X�
i β̂) to obtain

the estimate of exp(β0) and σV = √
Var(Vi ). After obtaining exp(β0)

∧

, we can obtain
β̂0 = log(exp(β0)

∧

), E(Ui )
∧

= β̂0 − β0 − E(Ui )
∧

, ε
∧

i = Yi − (β̂0 + X�
i β̂). If we are

only interested in ranking production units or in ranking firm-specific inefficiency
estimates, the estimate β̂ is enough and we don’t need to go further with the method
of Kneip et al. (2015). However, if we have specific interest in firm level inefficiency,
then it is necessary to have the estimate ε̂i for which the distributional assumption
about the inefficiency is usually utilized. We propose here how to obtain ε̂i with the
relaxed assumption on the inefficiency. Traditionally, one estimates the firm-specific
inefficiency using the formula of E(Ui |εi ) derived from the distributional assumption
on Ui and Vi . In our case, instead of using the formula of E(Ui |εi ) we use the best
linear predictor of Ui given εi , a + b εi , which was analyzed in detail in Waldman
(1984). A simple calculation leads to b = −Var(Ui )/(Var(Ui ) + Var(Vi )) and
a = E(Ui )(1 + b).

3.2 Partially linear model

Another stochastic frontier model that we would like to consider is the model that
Parmeter et al. (2017) studied. They considered the same model as in Sect. 3.1 but
assume that the inefficiency is directly influenced by observable exogenous determi-
nants, Zi :

Yi = β0 + X�
i β + εi = β0 + X�

i β + Vi −Ui , i = 1, . . . , n, (11)

where Vi ∼ N (0, σ 2
V ), Ui ≥ 0, E(Ui |Xi , Zi ) = E(Ui |Zi ) = g(Zi ). For simplicity,

we assume that Zi is a scalar. We will deal with the case where Zi is a vector of
dimension q in Sect. 3.3. Model (11) can be rewritten as

Yi = β0 + X�
i β − g(Zi ) + ε∗

i = β0 + X�
i β − g(Zi ) + (Vi − (Ui − g(Zi ))). (12)

Since E(ε∗
i |Xi , Zi ) = 0 provided Vi is independent of (Xi , Zi ), we can estimate

β and g(·) using estimation techniques for partially linear models. More precisely,
the conditional mean function g(·) representing the inefficiency can be estimated up
to a constant because it is mixed up with the intercept β0. Parmeter et al. (2017)
discussed that the intercept β0 cannot be separately identified from g(Zi ) but this
is not a concern as differences between g(Zi ) across firms can be used as measures
of relative inefficiency. However, if we would like to evaluate the exact impact of
the exogenous determinants on the inefficiency, we have to know the value of β0
so that we can estimate the function g(·) consistently. Here we try to estimate the
exact level of β0 and g(·) applying the method in Kneip et al. (2015). The idea is
to calculate Yi − X�

i β = β0 + Vi − Ui . Let β̂ be the estimator of β obtained from

the partial linear model fitting of Model (11). Then, since β̂ is
√
n-consistent under

appropriate regularity conditions, Yi −X�
i β̂ is expected to be similar to β0 +Vi −Ui .
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So we apply the method of Kneip et al. (2015) to estimate β0 and σV = √
Var(Vi )

with exp(Yi − X�
i β̂) as in Sect. 3.1. In our simulation, we implemented the method

in Speckman (1988) to estimate the partially linear model but used two smoothing
parameters as proposed in Aneiros-Pérez et al. (2004). We chose the two smoothing
parameters based on generalized cross-validation.

3.3 Partially linear single-indexmodel

In this section, we consider a similar stochastic frontier model to the one in Sect. 3.2
but we assume that there is more than one observable determinant which affects the
inefficiency, i.e. Zi = (Z1,i , . . . , Zq,i ) ∈ R

q . In this case, we could consider various
models for g(Zi ) such as additive models, single-index models and so on. Here we
consider the single-indexmodelwhere g(Zi ) can be expressed as g1(Z�

i α) for a certain
univariate function g1(·) and a q-dimensional vector α. Specifically, our stochastic
frontier model can be written as

Yi = β0 + X�
i β + εi = β0 + X�

i β + Vi −Ui , i = 1, . . . , n, (13)

where E(Ui |Xi ,Zi ) = E(Ui |Zi ) = g1(Z�
i α). Amore convenient form for estimation

is

Yi = β0 + X�
i β − g1(Z�

i α) + ε∗
i = β0 + X�

i β − g1(Z�
i α)

+(Vi − (Ui − g1(Z�
i α))). (14)

Since E(ε∗
i |Xi ,Zi ) = 0 provided Vi is independent of (Xi , Zi ), we can estimate β,

g1(·) (up to a constant) and α using estimation techniques for partially linear single-
index models. Following the same idea as in Sects. 3.1 and 3.2, we can estimate
β0 and σV = √

Var(Vi ) from application of the method of Kneip et al. (2015) to
exp(Yi −X�

i β̂). In our simulation, we implemented the method in Liang et al. (2010)
to estimate the partially linear single-index model. We used 5-fold cross-validation to
choose the bandwidth for the single-index estimation.

3.4 Theoretical understanding of the proposedmethods

Let us now look at some asymptotic properties of the proposed estimators. Following
the results in Kneip et al. (2015) we first need to show that H2(ĝ, g0) = OP (M−2

n )

(see their Theorem 3.1), where for any densities g1 and g2 the Hellinger distance
H2(g1, g2) is defined by

H2(g1, g2) = 1

2

∫ (√
g1(y) − √

g2(y)
)2

dy,

and where ĝ = ghγ̂ ,τ̂ ,σ̂ and M = Mn is the number of grid points used to estimate
the function h. To prove that Theorem 3.1 in Kneip et al. (2015) remains valid in
our context, we need to check what changes in the proof of this theorem when Yi is
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replaced by Yi −X�
i β̂. Since β̂ converges to β with parametric rate, it can be seen that

β̂ does not disturb the rate of H2(ĝ, g0), and so the result of Theorem 3.1 in Kneip
et al. (2015) remains valid provided the regularity conditions (A1)-(A4) hold true.
Next, Theorem 3.2 in Kneip et al. (2015), which states the main result of the paper,
namely that

σ̂V − σV = OP ((log n)−2) and β̂0 − β0 = OP ((log n)−3/2)

remains valid in our context since it only requires that the result of Theorem 3.1 is
valid. In particular, our estimator β̂0 has a logarithmic rate of convergence, as in the
case where the variance σ 2

V would be known.

4 Simulation evidence

In this section, we present the small sample performance of the proposed methods.

4.1 Simulation setup

Our data generating process follows the simple stochastic frontier model:

Yi = β0 + β1 log I1,i + β2 log I2,i + Vi −Ui , i = 1, . . . , n,

where X1,i = log I1,i , X2,i = log I2,i . For all the settings below, Vi is distributed
i.i.d. N (0, σ 2

V ). The vector (I1,i , I2,i ,W1,i ,W2,i ) is i.i.d. multivariate normal with all
the correlations being ρ = 0.5. The mean vector for the covariates is (4, 8, 0, 0)
and all four random variables have unit variance. We define observable determinants
as Z1,i = �(W1,i ) and Z2,i = �(W2,i ), where �(·) is the distribution function of
a standard normal variable. To generate the inefficiency Ui , we consider a positive
random variable U∗

i , which follows an exponential distribution Exp(a) or a half-
normal distribution N+(μ, σ 2). Here, U∗

i ∼ Exp(a) means that the density of U∗
i

is

fU∗(u) = a−1 exp(−a−1u)I (u > 0),

and U∗
i ∼ N+(μ, σ 2) means that the density of U∗

i is given as

fU∗(u) = �−1(μ/σ)√
2πσ

exp

{
−1

2

(
u − μ

σ

)2
}
I (u > 0).

We consider three scenarios for U∗
i : (1) N+(0, 0.52) (2) N+(0.25, 0.42) (3)

Exp(0.3014). Depending on the type of model of interest, we define Ui as a func-
tion of U∗

i , Z1,i and Z2,i . Finally, we set the vector of β’s as β0 = 5, β1 = 1.5 and
β2 = 2 and choose σV = ρntsσU with ρnts = 0.05, 0.25, 0.5 and σU = √

Var(Ui ).
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4.1.1 Linear model

For this model, we simply let Ui = U∗
i .

4.1.2 Partially linear model

In this model, we define the inefficiency Ui as Ui = 0.2 exp(Z1,i )U∗
i . Hence,

g(Z1,i ) = E(Ui |Xi , Z1,i ) = 0.2E(U∗
i ) exp(Z1,i ) provided U∗

i is independent of
(Xi , Z1,i ).

4.1.3 Partially linear single-index model

In this model, we define the inefficiencyUi asUi = sin(
√
2Z1,i +

√
2Z2,i )U∗

i . Hence,
g(Z1,i , Z2,i ) = E(Ui |Xi , Z1,i , Z2,i ) = E(U∗

i ) sin(
√
2Z1,i + √

2Z2,i ) provided U∗
i

is independent of (Xi , Z1,i , Z2,i ).

4.2 Evaluation of the performance of ˆ̌ 0 and �̂V

For the three simulation models, we perform 500 Monte Carlo experiments with
n equal to 100, 200 or 400, and ρnts equal to 0.05, 0.25 or 0.5. We calculate
the Root Mean Squared Error (RMSE) of β̂0 and σ̂V over the grid log10 λ =
−4,−3,−2,−1, 0, 1, 2, 3, 4. For the sake of space, we only display the smallest
RMSEs of β̂0 and σ̂V in each model (Tables 1, 2, 3) but the whole results can
be found in the supplementary material. For the number of bins, we used the rule
M = max(3, 2 × round(n1/5)) as in Kneip et al. (2015). Here, round(a) means the
nearest integer to a. The tables show that the performance is as expected: when the
sample size increases the performance of the estimators improves for both β0 and σV .
When increasing the noise from ρnts = 0.05 to 0.50, the performance deteriorates.
This effect is stronger for estimating β0 than for estimating σV as observed in Kneip
et al. (2015). Finally, the selection of the penalty parameter λ seems not to be crucial
for the performance (see the supplementary material). This phenomenon will also be
observed in our data analysis in Sect. 5.

4.3 Estimation of the firm level inefficiency

One of the merits of the proposed method is that one can calculate the firm level
inefficiency in the relaxed models. To illustrate this aspect, we did a small simulation
study to estimate the firm level efficiency Ui of the linear model in Sect. 4.1.1 with
Ui ∼ N+(0, 0.52) and Ui ∼ Exp(0.3014). We present the result only when ρnts =
0.25 but the results with other ρnts values were more or less similar in trend. We
estimate Ui by using the best linear predictor Ui given εi as described in Sect. 3.1.
For estimation of β0, we use the average value of all β̂0(λ) over the grid log10 λ =
−4,−3,−2,−1, 0, 1, 2, 3, 4. Table 4 shows the average of the RMSEs between Ûi

andUi over 500 repetitions for n = 100, 200 and 400 when ρnts = 0.25. Our method
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Table 1 RMSEs of β̂0 and σ̂V in the linear model

U∗
i ∼ N+(0, 0.52) U∗

i ∼ N+(0.25, 0.42) U∗
i ∼ Exp(0.3014)

β̂0 σ̂V β̂0 σ̂V β̂0 σ̂V

ρnts = 0.05 n = 100 0.5021 0.0365 0.4927 0.0431 0.5282 0.0206

n = 200 0.3440 0.0273 0.3346 0.0387 0.3515 0.0144

n = 400 0.2467 0.0203 0.2341 0.0310 0.2549 0.0095

ρnts = 0.25 n = 100 0.5352 0.0357 0.5096 0.0424 0.5493 0.0307

n = 200 0.3609 0.0222 0.3479 0.0327 0.3661 0.0200

n = 400 0.2584 0.0155 0.2458 0.0289 0.2647 0.0122

ρnts = 0.50 n = 100 0.5881 0.0395 0.5548 0.0393 0.6084 0.0436

n = 200 0.4233 0.0191 0.3799 0.0219 0.4048 0.0308

n = 400 0.2607 0.0136 0.2668 0.0158 0.2883 0.0200

Table 2 RMSEs of β̂0 and σ̂V in the partially linear model

U∗
i ∼ N+(0, 0.52) U∗

i ∼ N+(0.25, 0.42) U∗
i ∼ Exp(0.3014)

β̂0 σ̂V β̂0 σ̂V β̂0 σ̂V

ρnts = 0.05 n = 100 0.2204 0.0096 0.2265 0.0101 0.2265 0.0091

n = 200 0.1537 0.0085 0.1595 0.0089 0.1595 0.0080

n = 400 0.1218 0.0064 0.1214 0.0075 0.1214 0.0065

ρnts = 0.25 n = 100 0.2659 0.0312 0.2616 0.0323 0.2616 0.0256

n = 200 0.1970 0.0208 0.1846 0.0249 0.1846 0.0178

n = 400 0.1384 0.0123 0.1388 0.0220 0.1388 0.0142

ρnts = 0.50 n = 100 0.3298 0.0451 0.3294 0.0574 0.3294 0.0422

n = 200 0.2464 0.0346 0.2421 0.0501 0.2421 0.0339

n = 400 0.1720 0.0271 0.1801 0.0411 0.1801 0.0261

Table 3 RMSEs of β̂0 and σ̂V in the partially linear single-index model

U∗
i ∼ N+(0, 0.52) U∗

i ∼ N+(0.25, 0.42) U∗
i ∼ Exp(0.3014)

β̂0 σ̂V β̂0 σ̂V β̂0 σ̂V

ρnts = 0.05 n = 100 0.5057 0.0294 0.4785 0.0359 0.5120 0.0228

n = 200 0.3611 0.0213 0.3114 0.0225 0.3382 0.0137

n = 400 0.2377 0.0121 0.2134 0.0156 0.2321 0.0089

ρnts = 0.25 n = 100 0.5266 0.0308 0.4933 0.0315 0.5318 0.0300

n = 200 0.3744 0.0206 0.3418 0.0199 0.3513 0.0184

n = 400 0.2487 0.0131 0.2195 0.0115 0.2424 0.0126

ρnts = 0.50 n = 100 0.5812 0.0393 0.5502 0.0377 0.5899 0.0477

n = 200 0.4175 0.0280 0.3927 0.0238 0.3900 0.0254

n = 400 0.2769 0.0219 0.2441 0.0182 0.2729 0.0192
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Table 4 Average of the RMSEs for the linear model when ρnts = 0.25

Ui ∼ N+(0, 0.52) Ui ∼ Exp(0.3014)

n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

Average of the RMSEs 0.0927 0.0851 0.0810 0.0972 0.0885 0.0857

Fig. 1 One instance of the scatter plots between Ûi andUi withU
∗
i ∼ N+(0, 0.52) andU∗

i ∼ Exp(0.3014).
The solid line is y = x

seems to be able to estimate the firm level efficiency under the relaxed assumption
about the inefficiency. Our finding is also supported by the scatter plots between Ûi

and Ui in Fig. 1.

4.4 Comparison with the fully nonparametric method

For estimation of the frontier function in the linear model of Sect. 4.1.1, we can
consider the fully-nonparametric estimation method proposed by Kneip et al. (2015),
which relies on some “local linear” approximation of the frontier function. Hence, we
would like to compare our proposal with their method. For comparison, we consider
the same model as in Sect. 4.1.1. In our method, we first obtain the estimates β̂0 and β̂

and construct the estimate of the frontier function as τ̂ (Xi ) = β̂0 +X�
i β̂. In contrast,

Kneip et al. (2015) estimate nonparametrically the frontier function at a given point
Xi combining the idea of local linear approximation and the recovery of a constant
frontier function in the presence of measurement error. Since both function estimators
are presumably expected to have the same logarithmic rates of convergence, one may
think that our method and the method of Kneip et al. (2015) will not show a significant
difference in estimation performance. To check this, we estimate the frontier function
at every data point Xi and calculate n−1 ∑n

i=1(τ̂ (Xi ) − τ(Xi ))
2 as a measure of
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performance. The sample size n equals 100, 200 or 400 and ρnts is fixed to 0.5. For
the inefficiency we useUi ∼ N+(0, 0.52). The other components of the model are the
same as in the model of Sect. 4.1.1. Finally, we display the performance measure for
the two estimation methods over the grid log10 λ = −4,−3,−2,−1, 0, 1, 2, 3, 4 in
Table 5 (the quantity log10 λ∗ is the value of log10 λ that gives the best performance).
The results suggest that our method has better performance than Kneip’s method when
the frontier function is linear. However, the difference in performance gets smaller as
the sample size increases.

5 Data analysis

In this section, we illustrate how the proposed methods can be used for efficiency and
productivity analysis. We will analyze an administrative dataset for financial variables
and selected characteristics of Japanese local public hospitals, which is available in
the R package rDEA, and we will estimate the inefficiency function of the observable
environmental variable using the method described in Sect. 3.2.

The dataset contains anonymous observations for 958 local public hospitals, iden-
tified by a researcher-generated variable “firm-id”. The output variable (Yi ) is the
logarithm of the sum of the annual number of inpatients and outpatients, where an
inpatient is a hospital patient who occupies a bed for at least one night and an outpatient
is a patient who receives treatment at a hospital but does not spend the night there.
The two input variables (X1,i and X2,i ) are the logarithm of the total labor cost per
year (total number of employees times per capita annual salary) and the logarithm of
the total capital cost (total number of beds times the sum of depreciation and interest
per bed). The environmental variable (Zi ) is the number of examinations per patient,
which represents the severity of the illness in which each hospital is primarily respon-
sible for treatment. We assume the following partially linear model in Sect. 3.2 for
this dataset:

Yi = β0 + β1X1,i + β2X2,i + Vi −Ui

= β0 + β1X1,i + β2X2,i − g(Zi ) + (Vi − (Ui − g(Zi )))

≡ β0 + β1X1,i + β2X2,i − g(Zi ) + ε∗
i , (15)

where Ui is the inefficiency, Vi ∼ N (0, σ 2
V ) is the noise that is supposed to be inde-

pendent of (X1,i , X2,i , Zi ) and E(Ui |Xi , Zi ) = E(Ui |Zi ) = g(Zi ) is the inefficiency
function. Since some hospitals are known to have characteristics that are different from
those of other hospitals in this dataset, we conduct outlier detection and remove 26
observations before fitting Model (15). The method used for outlier detection consists
in first obtaining the residuals by fitting the partially linear median regression model
to the data (Yi , X1,i , X2,i , Zi ), and then doing univariate outlier detection based on
the residuals applying the methods available in the R package extremevalues.

First, we estimate β1 and β2 using the method in Speckman (1988), which yields
β̂1 = 0.240 and β̂2 = 0.500. Then, we estimate β0 using the method outlined in
Sect. 3.2 and obtain the estimates of β0 given in Table 6, depending on the tuning
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Table 6 The estimates of β0 depending on the tuning parameter λ

log10 λ −4 −3 −2 −1 0 1 2 3 4

β̂0(λ) −3.184 −2.283 −3.309 −3.257 −3.184 −3.184 −3.184 −3.184 −3.184

Fig. 2 The estimates of the
inefficiency function g(·). The
solid curve is obtained using our
method and the dotted one is
from Parmeter et al. (2017)
assuming β0 = 0

Z (number of examinations per patient)
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parameter λ. After estimating β0 by the average value of all β̂0(λ), which is −3.106,
we estimate the inefficiency function g(·) using local linear regression. In Fig. 2, we
plot the estimate of the inefficiency function g(Zi ) using our method (solid curve) and
the method of Parmeter et al. (2017) assuming β0 = 0 (dotted curve). As expected,
in both cases the inefficiency function increases as the severity of illness increases
(actually, the two estimated curves have only a constant difference). The result suggests
that if we ignore β0 by assuming that β0 = 0, then we overestimate the level of the
inefficiency function. Hence, if one is interested in the exact level of the inefficiency
function and is not sure that β0 is zero, we recommend to use our method as a safer
option.

6 Conclusion

This paper proposes a new method to estimate various stochastic frontier models with
a relaxed assumption on the inefficiency distribution. Previous research relied on the
work of Hall and Simar (2002), which is known to work well in low noise settings
only. Instead, we proposed estimators building on the recent work of Kneip and his
coworkers and showed in the numerical study that the proposed methods work well
for various levels of the noise.
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