
Journal of the Korean Statistical Society (2020) 49:324–349
https://doi.org/10.1007/s42952-019-00010-2

Online ISSN 2005-2863
Print ISSN 1226-3192

RESEARCH ART ICLE

A new thinning-based INAR(1) process for underdispersed
or overdispersed counts

Yao Kang1 · Dehui Wang1 · Kai Yang2 · Yulin Zhang1

Received: 15 December 2018 / Accepted: 19 July 2019 / Published online: 1 January 2020
© Korean Statistical Society 2020

Abstract
Underdispersed and overdispersed phenomena are often observed in practice. To deal
with these phenomena, we introduce a new thinning-based integer-valued autoregres-
sive process. Some probabilistic and statistical properties of the process are obtained.
The asymptotic normality of the estimators of the model parameters, using condi-
tional least squares, weighted conditional least squares and modified quasi-likelihood
methods, are presented. One overdispersed real-data example and one underdispersed
real-data example are given to show the flexibility and superiority of the new model.

Keywords INAR(1) process · Overdispersion · Underdispersion · GSC thinning
operator

Mathematics Subject Classification 62M10 · 62J20

1 Introduction

During the last three decades, an integer-valued autoregressive (of order 1) model,
denoted by INAR(1), has been widely used in real-world applications, such as the
insurance actuarial, reliability theory, medicine and social sciences. There is a huge
literature on the INAR(1) model [see Weiß (2008b) and Scotto et al. (2015)]. For
more details on the INAR(1) model, we refer to Jazi et al. (2012), Schweer and Weiß
(2014), Bourguignon and Vasconcellos (2015), Barreto-Souza (2015, 2017), Li et al.
(2015), Borges et al. (2016), Bourguignon and Weiß (2017), Kim and Lee (2017) and
Bourguignon et al. (2019).
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The INAR(1) processes have been constructed by using thinning operators. The
binomial thinning operator was originally proposed by Steutel and Van Harn (1979)
and defined as

α ◦ X =
X∑

i=1

Bi , (1)

where {Bi } is a sequence of iid Bernoulli(α) random variables independent of X .
Based on the binomial thinning operator, the Poisson INAR(1) (POINAR(1)) model
was introduced by Alzaid and Al-Osh (1987) and defined by

Xt = α ◦ Xt−1 + εt , t ≥ 1,

where {εt } is a sequence of iid Poisson random variables with mean λ(1− α), uncor-
related with the past value of {Xt }. Moreover, X0 is assumed to follow the Poisson
distribution with mean λ.

The POINAR(1) model has been widely used in practice due to its simplicity. For
instance, Cossette et al. (2011) generalized the classical discrete time risk models
which used the POINAR(1) model to describe the dependence (in time) between the
claim frequencies. Freeland and McCabe (2004) applied the POINAR(1) model that
exhibited the short-range dependence to analyse a data set.

While the POINAR(1) model is widely used, it has twomain limitations in practice.
First, the binomial thinning operator in the POINAR(1) model is not appropriate when
the observed unit can generate more counting objects or produce more new random
events. Second, the Poisson distribution suffers from the equidispersion requirement
which can not explain underdispersion and overdispersion. To handle the first limita-
tion, Ristić et al. (2009) introduced the negative binomial thinning operator

α ∗ X =
X∑

i=1

Wi , (2)

where {Wi } is a sequence of iidGeometric(α/(1+α)) randomvariables independent of
X . The negative binomial thinning operator contains geometric counting series which
can explain overdispersion. To deal with the second limitation, Ristić et al. (2009)
introduced a negative binomial thinning INAR(1) model with the geometric marginal,
i.e., NGINAR(1) process. Since the NGINAR(1) model captures overdispersion, dur-
ing the past ten years, the NGINAR(1) model has become popular in some fields such
as the reliability theory, medicine and reservoirs theory.

However, the NGINAR(1) model still has some drawbacks: (i) the counting series
in the negative binomial thinning operator can not exhibit equidispersion and under-
dispersion, (ii) the geometric marginal distributions are not suitable for explaining
underdispersion. The aim of this paper is to deal with the above two problems. For the
first drawback, we propose a new thinning operator by using a more general discrete
distribution. Our thinning operator has three attractive characteristics: (i) the counting
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series in our thinning operator can exhibit equidispersion, overdispersion, underdis-
persion, zero inflation and zero deflation; (ii) the probability mass function (pmf) of
the counting random variable in our thinning operator is a decreasing function, which
is very useful to explain some practical problems; (iii) the counting random variable
in our thinning operator can describe both the short and long tailed count data. To the
best of our knowledge, there is no thinning operator that can capture all the above
three features. For the second drawback, we propose a new thinning-based INAR(1)
process to explain both overdispersion and underdispersion.

The contents of this paper are organized as follows. In Sect. 2, we construct a new
INAR(1) process based on an alternative thinning operator. In Sect. 3, some probabilis-
tic and statistical properties of the process are derived. In Sect. 4, the estimators of the
model parameters are derived by using conditional least squares (CLS), weighted con-
ditional least squares (WCLS) and modified quasi-likelihood (MQL) methods. Also,
the asymptotic properties of the estimators are investigated. In Sect. 5, we present
some simulation studies to investigate the performances of the proposed estimators.
In Sect. 6, we apply the model to two real data sets. Section 7 contains a discussion
on the higher-order model. All proofs are given in Appendix.

2 Construction of the new process

Gómez-Déniz et al. (2011) introduced a new discrete distribution taking non-negative
integers {0, 1, . . .}. For convenience, we call it the Gómez–Déniza–Sarabia–Calderín-
Ojeda (GSC) distribution. The pmf of the GSC distribution is given by

Pn = Pr(N = n) = log(1 − αθn) − log(1 − αθn+1)

log(1 − α)
, (3)

where α < 1, α �= 0 and 0 < θ < 1. The moments and the moment generating
function (mgf) of the GSC distribution are given as follows:

E(N ) = 1

log(1 − α)

∞∑

s=1

log(1 − αθ s),

E(N 2) = 1

log(1 − α)

∞∑

s=1

(2s − 1)log(1 − αθ s),

E(t N ) = 1

log(1 − α)

∞∑

s=0

t s log

(
1 − αθ s

1 − αθ s+1

)
, t ∈ [−1, 1].

There are four main advantages of the GSC distribution. Firstly, Gómez-Déniz et al.
(2011) found that overdispersion and underdispersion are encountered depending on
the values of the distribution parameters. In our study, we found that some parameter
combinations can also lead to equidispersion, which means that the GSC distribution
can be viewed as an alternative one to the Poisson distribution. To investigate the
dispersion characteristic of GSC(α, θ ) with varying values of α and θ , the index of
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Table 1 The indices of dispersion of GSC(α, θ ) for different values of α and θ

α −50 −7.855 −5.57 −1 0 0.3 0.7

θ

0.1 0.8895 0.9786 1 1.0777 1.1111 1.1247 1.1489

0.125 0.9279 1 1.0207 1.1038 1.1429 1.1592 1.1891

0.2 1.0626 1.0958 1.1124 1.1986 1.2500 1.2736 1.3198

0.25 1.1677 1.1798 1.1935 1.2765 1.3333 1.3610 1.4177

Table 2 The zero inflation
indices of GSC(α, θ ) for
different values of α and θ

α −10 −5 0 0.3 0.7

θ

0.1 −0.0077 0 0.0058 0.0055 0.0046

0.25 0.0701 0.0599 0.0467 0.0435 0.0356

0.5 0.9593 0.7148 0.3591 0.3218 0.2517

dispersion of the GSC distribution; Var(N )/E(N ), is shown in Table 1. Secondly,
the GSC distribution can be used to explain varying degrees of the zero-inflated and
slightly zero-deflated phenomena. To illustrate it, we introduce a zero inflation index;
zi = p0 exp(μ) − 1 (see Weiß et al. 2019), where p0 is the proportion of 0’s and
μ is the mean. zi > 0 means that the distribution suffers from zero inflation and
zi < 0 means the random variable is zero-deflated. The zero inflation indices of
GSC(α, θ ) with varying values of α and θ are shown in Table 2. Thirdly, the GSC
distribution represents a general family of distributions. As pointed out by Gómez-
Déniz et al. (2011), the GSC distribution can be viewed as a compound Poisson
distribution, a specific mixed geometric distribution and a specific mixed Poisson
distribution. Furthermore, the GSC distribution can be viewed as a possible alternative
one to the negative binomial, generalized Poisson, hyper-Poisson, Poisson-inverse
Gaussian distribution, different generalizations of the geometric distribution that have
been discussed in the statistical literature. Finally, Gómez-Déniz et al. (2011) pointed
out that the pmf (3) is a decreasing function and has the ability to describe the short
and long tailed counts.

Although the GSC distribution has some interesting properties, it still has a signif-
icant disadvantage: as pointed out by a referee, the GSC distribution does not have
explicit formulae for the mean and variance, which leads to some difficulties when it
is applied to the statistical model. To analyse this drawback, we discuss it from two
aspects. Firstly, we prove that the infinite sum in the mean and variance expressions
are convergent (see the top of Appendix). Secondly, the infinite sum in the mean and
variance of the GSC distribution can be approximated very precisely by the corre-
sponding finite sum. This conclusion can be supported by Table 3, i.e., the mean and
variance of GSC(α, θ ) for different values of α and θ with varying upper limit in the
finite sum. From Table 3, we find that the approximation is precise enough for each
parameter combination when the finite sum as the indices running s = 1, . . . , 200.
Based on these discussions, we conclude that the inexistence of explicit formulae for
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Table 3 Themeans (above) and variances (below) of GSC(α, θ ) for different values of α and θ with varying
upper limit in the infinite series

s 10 20 50 100 200 500 1000

(α, θ)

(−5, 0.1) 0.2566 0.2566 0.2566 0.2566 0.2566 0.2566 0.2566

0.2583 0.2583 0.2583 0.2583 0.2583 0.2583 0.2583

(−5, 0.9) 7.5016 11.3680 13.9388 14.0668 14.0674 14.0674 14.0674

11.6160 49.8558 131.8660 143.4529 143.5802 143.5802 143.5802

(0.3, 0.1) 0.0948 0.0948 0.0948 0.0948 0.0948 0.0948 0.0948

0.1066 0.1066 0.1066 0.1066 0.1066 0.1066 0.1066

(0.3, 0.9) 5.4810 7.2605 8.1499 8.1887 8.1889 8.1889 8.1889

14.4548 42.0325 78.3814 82.3472 82.3879 82.3879 82.3879

(0.7, 0.1) 0.0668 0.0668 0.0668 0.0668 0.0668 0.0668 0.0668

0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767

(0.7, 0.9) 4.5857 5.8787 6.5012 6.5280 6.5281 6.5281 6.5281

14.4119 37.2870 64.5604 67.3919 67.4205 67.4205 67.4205

the mean and variance can be overcomed by approximating the infinite sum by the
finite sum.

To get a better fit for a serially dependent count data, one should identify the
dispersion behavior of the counts before choosing a suitable INAR(1) process. The
most popular methods to identify the dispersion behavior of the counts is a test pro-
posed by Schweer and Weiß (2014). Consider the null hypothesisH0: X1,…,Xn stem
from an equidispersed POINAR(1) process (Id = 1) against the alternative of an
overdispersed (or underdispersed) marginal distribution. Let z1−β be the quantile of
the (1 − β)-quantile of the N (0, 1)-distribution. We reject the null hypothesis H0:
equidispersion on significance level β in favor of alternative hypothesis H1: overdis-
persion (or underdispersion) if

Îd > 1 + z1−β

√
2(1 + ρ̂2

X (1))

n(1 − ρ̂2
X (1))

(
or Îd < 1 + zβ

√
2(1 + ρ̂2

X (1))

n(1 − ρ̂2
X (1))

)
,

where Îd = ∑n
t=1(Xt − X)2/

∑n
t=1 Xt , X = (1/n)

∑n
t=1 Xt and ρ̂X (1) is the first-

order autocorrelation coefficient of X1, . . . , Xn .
After identifying the dispersion behavior of the counts, one may choose a suitable

existing INAR(1) model to fit the data. On one hand, the binomial thinning INAR(1)
models with different innovation structures are natural choices. For example, Bour-
guignon and Vasconcellos (2015), Kim and Lee (2017), Bourguignon et al. (2019)
introduced the binomial thinning INAR(1) processes with the power series, Katz
family, double Poisson and generalized Poisson innovations, respectively. The above
models are able to handle equidispersion, underdispersion and overdispersion. On the
other hand, the negative binomial thinning INAR(1) models with different marginal
distributions are also commonly used.Aswementioned before, theNGINAR(1)model
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is very popular when the overdispersed counts are suffered. Barreto-Souza (2015)
proposed a negative binomial thinning INAR(1) process with the zero-modified geo-
metric marginal to account for underdispersion and overdispersion. However, new
thinning-based INAR(1) model is still needed. This statement can be explained from
two aspects. Firstly, the binomial and negative binomial thinning operators both have
some limitations: (i) the binomial thinning operator is not suitable when the observed
unit can generate more counting objects or produce more new random events; (ii) the
negative binomial thinning operator can not exhibit equidispersion and underdisper-
sion. Secondly, due to the complexity and diversity of the practical application, the
counting series in the thinning operator are expected to have the ability to explain as
many data characteristics as possible.

Based on the need for the new thinning operator and the attractive advantages of
the GSC distribution, we use this distribution to create a GSC thinning operator which
is defined by

α � X :=
X∑

j=1

Wj , (4)

where {Wj } is a sequence of iid GSC(α, exp{−|α|}) random variables, E(Wj ) = φ,
Var(Wj ) = β, {Wj } and X are independent. The proposed thinning operator (4) not
only can overcome the shortcomings of the binomial and negative binomial thinning
operators (1) and (2), but also has the ability to describe many data characteristics.
To be specific, the GSC thinning operator can capture the feature that the observed
unit may generate more counting objects or produce more new random events and the
counting series in our thinning operator can show equidispersion, overdispersion and
underdispersion. Besides, the counting series in our thinning operator can describe the
zero-inflated, zero-deflated, short tailed and long tailed characteristics.

We now introduce GSC thinning-based INAR(1) process, as follows:

Definition 1 An INAR(1) model based on the GSC thinning operator, denoted by
GSCINAR(1), is defined by the following difference equation:

Xt = α � Xt−1 + εt , t ≥ 1, (5)

where {Wj } is a sequence of iid GSC(α, exp{−|α|}) random variables with the finite
mean φ and variance β, α < 1, α �= 0. Here, we write φ = 1

log(1−α)

∑∞
s=1 log(1 −

α exp{−s|α|}) and β = 1
log(1−α)

∑∞
s=1(2s − 1)log(1−α exp{−s|α|})−φ2. {εt } is an

innovation sequence of iid non-negative integer-valued randomvariables, uncorrelated
with the past values of {Xt }. Letμε = E(εt ), σ 2

ε = Var(εt ) (we assume that they exist).

3 Properties of GSCINAR(1) process

In this section, we consider some properties of GSCINAR(1) process.

Proposition 1 Suppose {Xt } is a stationary process satisfying (5). Then for t ≥ 1,
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(i) E(Xt |Xt−1) = φXt−1 + με ,
(ii) E(Xt ) = με/(1 − φ),
(iii) Var(Xt |Xt−1) = βXt−1 + σ 2

ε ,
(iv) Var(Xt ) = [βμε + σ 2

ε (1 − φ)]/[(1 − φ)2(1 + φ)],
(v) ρk = Corr(Xt+k, Xt ) = φk , k = 1, 2, . . . ,

where φ and β are given in Definition 1.

Remark 1 (i) Proposition 1(i) shows that the GSCINAR(1) model is a member of
the non-Gaussian conditional linear AR(1) models discussed by Grunwald et al.
(2000).

(ii) The index of dispersion of {Xt } is given by

IX := Var(Xt )

E(Xt )
= βμε + σ 2

ε (1 − φ)

με(1 + φ)(1 − φ)
.

Following Li et al. (2015), the existence of the strict stationary and ergodic GSCI-
NAR(1) process can be established in the following theorem.

Theorem 1 If 0 < φ < 1, then there exists an unique strictly stationary integer-valued
random series {Xt } satisfying

Xt = α � Xt−1 + εt , t ≥ 1,

Cov(Xs, εt ) = 0 for s < t . Furthermore, the process is an ergodic process.

4 Estimation of the unknown parameters

Suppose {Xt } is a strictly stationary and ergodic solution of model (5). Our task is to
estimate the parameter η = (α, με)

′
from a sample (X1, X2, . . . , Xn). Three different

methods of parameter estimation, the CLS, WCLS and MQL, are applied. The reason
why we take these approaches is that they do not require specifying the exact family
of distributions for the innovations.

4.1 Conditional least squares estimator

The CLS estimator η̂CLS = (̂αCLS, μ̂εCLS)
′
of η is obtained by minimizing the

expression

Q1(η) :=
n∑

t=1

(Xt − φXt−1 − με)
2

=
n∑

t=1

(
Xt − Xt−1

log(1 − α)

∞∑

s=1

log(1 − α exp{−s|α|}) − με

)2

. (6)
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The following result establishes the asymptotic distribution of η̂CLS . For conve-
nience, write

Vω =
(
V11 V12
V12 V22

)
, Hω =

(
H11 H12
H12 H22

)
,

where

V11 = E[{ω(X0)(φ̇X0)(X1 − φX0 − με)}2],
V22 = E[{ω(X0)(X1 − φX0 − με)}2],
V12 = E[ω2(X0)(φ̇X0)(X1 − φX0 − με)

2]
H11 = E[ω(X0)(φ̇X0)

2], H12 = E[ω(X0)(φ̇X0)],
H22 = E[ω(X0)], φ̇ = ∂φ

∂α
=

∑∞
s=1 log(1 − α exp{−s|α|})

(1 − α) log2(1 − α)

+
∞∑

s=1

(s|α| − 1) exp{−s|α|}
log(1 − α)(1 − α exp{−s|α|}) ,

ω(·) is a weight function. It can be verified that Hω is a invertible matrix.

Theorem 2 Suppose E|Xt |4 < ∞. Then, we have

√
n(̂ηCLS − η)

d−→ N (0, HCLS
−1VCLSHCLS

−1),

where VCLS and HCLS are given by Vω and Hω, with ω(X0) = 1.

4.2 Weighted conditional least squares estimator

In general, the CLS estimator is not asymptotically efficient. To improve the efficiency,
we consider the WCLS estimator as an alternative one to the CLS estimator. In this
section, we focus on the WCLS method with a known weight function. The WCLS
estimator η̂WCLS=(̂αWCLS, μ̂εWCLS)

′
can be obtained by minimizing

Q2(η) :=
n∑

t=1

ω(Xt−1)(Xt − φXt−1 − με)
2

=
n∑

t=1

ω(Xt−1)

(
Xt − Xt−1

log(1 − α)

∞∑

s=1

log(1 − α exp{−s|α|}) − με

)2

, (7)

where ω(Xt−1) is a suitably chosen weight function. A natural choice of ω(Xt−1)

may be

ω(Xt−1) = 1

Xt−1 + c1
, (8)

where c1 is a positive constant.
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The following result establishes the asymptotic distribution of η̂WCLS . The proof
is similar to the proof of Theorem 2 and we omit it.

Theorem 3 Suppose E|Xt |4 < ∞. Then, we have

√
n(̂ηWCLS − η)

d−→ N (0, HWCLS
−1VWCLSHWCLS

−1),

where VWCLS and HWCLS are given by Vω and Hω, with ω(X0) = 1/(X0 + c1).

4.3 Modified quasi-likelihood estimator

Let τ = (α, σ 2
ε )

′
. Recall that, from Proposition 1(iii), the expression for the one-step

conditional variance is

Vτ (Xt |Xt−1) = Var(Xt |Xt−1) = βXt−1 + σ 2
ε ,

where β is given in Definition 1. The MQL estimator η̂MQL = (̂αMQL , μ̂εMQL)
′
can

be obtained by minimizing

Q3(η) :=
n∑

t=1

V−1
τ̂ (Xt |Xt−1)(Xt − φXt−1 − με)

2

=
n∑

t=1

V−1
τ̂ (Xt |Xt−1)

(
Xt − Xt−1

log(1 − α)

∞∑

s=1

log(1 − α exp{−s|α|}) − με

)2

,

(9)

where τ̂ is a consistent estimator of τ . Note that η̂CLS is a consistent estimator of η

(see Theorem 2), while the consistent estimator of σ 2
ε can be obtained, as follows:

The first method is based on the moment estimator

σ̂ 2
ε = (1 − φ̂2)s2 − β̂X , (10)

where s2 = ∑n
t=1(Xt − X)2/(n − 1), X = ∑n

t=1 Xt/n, φ̂ = 1
log(1−α̂)

∑∞
s=1 log(1 −

α̂ exp{−s |̂α|}), β̂ = 1
log(1−α̂)

∑∞
s=1(2s − 1)log(1− α̂ exp{−s |̂α|})− φ̂2, α̂ is the CLS

estimator of α.
The secondmethod is based on the two-step CLSmethod which has been discussed

by Karlsen and Tjøstheim (1988). Let

S(α, με, σ
2
ε ) =

n∑

t=1

[{Xt − E(Xt |Xt−1)}2 − Var(Xt |Xt−1)]2.

Then, the consistent estimator of σ 2
ε may be obtained by minimizing S(̂αCLS, μ̂εCLS,

σ 2
ε ) with respect to σ 2

ε .
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Following Zheng et al. (2007), we establish the asymptotic distribution of η̂MQL
in the following theorem.

Theorem 4 Suppose E|Xt |4 < ∞. Then, we have

√
n(̂ηMQL − η)

d−→ N (0, HMQL
−1VMQLHMQL

−1),

where VMQL and HMQL are given by Vω and Hω, with ω(X0) = V−1
τ (X1|X0).

5 Simulation studies

In this section, the estimators described earlier are compared by simulations. Consider

Xt = α � Xt−1 + εt , t ≥ 1,

where {εt } is a sequence of iid Poisson random variables (Model A) with mean με or
iid generalized Poisson (GP) random variables (Model B) with με = λε/(1 − κε) .

Remark 2 A random variable X has a GP distribution with parameters λ and κ , which
we denote by GP(λ, κ), if its pmf is

P(X = x) =
{

λ(λ + κx)x−1e−(λ+κx)/x !, x = 0, 1, 2 . . . ,

0, for x > m if κ < 0,

where λ > 0, max(−1,−λ/m) < κ < 1, and m (≤ 4) is the largest positive integer
for which λ + κm > 0 when κ < 0. The mean and variance of GP(λ, κ) are

E(X) = λ

1 − κ
, Var(X) = λ

(1 − κ)3
.

In the simulation, we generate the GSCINAR(1) sample with the sample size equals
to n + 1000 and discard the first 1000 observations. We generate the data from the
models and set the sample sizes n = 300, 500, 800, 1000. The true values of the
parameters are:
Model A: (A1) (α, με) = (−2, 2); (A2) (α, με) = (−1.5, 2.5);
Model B: (B1) (α, λε, κε) = (0.8, 0.5, 0.5); (B2) (α, λε, κε) = (0.85, 0.75, 0.5).

Figure 1 is the sample paths from Models A and B. Table 4 lists some statistics of
Models A and B including the mean, variance, first-order autocorrelation coefficient
(ACF(1)) and zero probability (p0). Specially, the zero probability is computed from
the average percentages of zeros in time series of length 5000 generated from the
corresponding models. The average is obtained based on 1000 replications.

To compare the three methods, we calculate the mean squared error (MSE) and
standard deviation (SD) based on m = 1000 replications for each combinations;

MSE = 1
m

∑m
k=1(̂αk − α)2, SD =

√
1

m−1

∑m
k=1(̂αk − α)2, where α̂k is the estimator

of α at the kth replication and α = 1
m

∑m
k=1 α̂k . For simplification of the computation,
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Table 4 Some statistics for
Models (A1)–(B2)

Model Mean Variance ACF(1) Zero probability

(A1) 2.6882 2.9412 0.2560 0.0759

(A2) 4.2877 5.6559 0.4169 0.0226

(B1) 1.8877 7.4112 0.4703 0.4134

(B2) 2.4570 9.2682 0.3895 0.3002

Table 5 The MSEs and SDs of the WCLS estimators with different weights and the sample size n = 1000

Model Parameter c1 = 1 c1 = 3 c1 = 5 c1 = 7 c1 = 9

MSE SD MSE SD MSE SD MSE SD MSE SD

(A1) α = −2 0.0241 0.1540 0.0197 0.1394 0.0193 0.1379 0.0192 0.1378 0.0193 0.1379

με = 2 0.0104 0.1019 0.0091 0.0954 0.0090 0.0948 0.0090 0.0948 0.0090 0.0949

(A2) α = −1.5 0.0057 0.0754 0.0050 0.0707 0.0050 0.0707 0.0051 0.0710 0.0051 0.0713

με = 2.5 0.0192 0.1386 0.0170 0.1305 0.0169 0.1302 0.0170 0.1306 0.0172 0.1312

(B1) α = 0.8 0.0005 0.0222 0.0005 0.0212 0.0005 0.0212 0.0005 0.0213 0.0005 0.0214

με = 1 0.0072 0.0849 0.0068 0.0824 0.0068 0.0824 0.0068 0.0827 0.0069 0.0830

(B2) α = 0.85 0.0006 0.0247 0.0005 0.0224 0.0005 0.0219 0.0005 0.0217 0.0005 0.0216

με = 1.5 0.0128 0.1133 0.0115 0.1074 0.0113 0.1065 0.0113 0.1063 0.0113 0.1064

all the infinite sum in (6), (7) and (9) are approximated by the corresponding finite
sum running s = 1, . . . , 200.

To choose a more suitable weight for the WCLS method, we firstly compare the
WCLSmethodswith differentweights.We suppose that c1 in (8) equals to 1, 3, 5, 7 and
9, respectively. The simulation results are summarized in Table 5, which indicates that
there is no significant difference among the five weights and a little better estimator
can be obtained when c1 = 3, 5, 7, 9. In the following, we set c1 = 3.

From Table 6, the MSEs and SDs of the estimators decrease as the sample size n
increases, as expected. This finding can be supported by the box plots shown in Fig. 2
(the box plots are symmetric and centered around the true parameter value). Next,
we compare the three methods by observing the MSEs and SDs in Table 6. We find
that the WCLS and MQL methods perform better than the CLS method. The smaller
SDs indicate that the WCLS method improves the efficiency of the estimation and the
weight function is satisfactory. The WCLS and MQL methods give the similar results
in most cases and the MQL method can be a little better than the WCLS method.
Figure 3 shows the QQ plots of the CLS, WCLS and MQL estimators for Model
(B2) with the sample size n = 1000, which indicates that the CLS, WCLS and MQL
estimators are asymptotically normal for all the parameters. Similar results can be
obtained for all parameter combinations and the figures are also omitted.

To further compare the three methods, a contaminated model is considered here.
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Table 6 The MSEs and SDs of the estimators

Model Sample size Parameter CLS WCLS MQL

MSE SD MSE SD MSE SD

(A1) n = 300 α = −2 0.0797 0.2777 0.0794 0.2773 0.0765 0.2716

με = 2 0.0281 0.1674 0.0281 0.1674 0.0272 0.1648

(A1) n = 500 α = −2 0.0415 0.2029 0.0399 0.1988 0.0394 0.1974

με = 2 0.0176 0.1327 0.0169 0.1302 0.0167 0.1292

(A1) n = 800 α = −2 0.0257 0.1577 0.0252 0.1561 0.0245 0.1538

με = 2 0.0109 0.1042 0.0107 0.1031 0.0105 0.1020

(A1) n = 1000 α = −2 0.0193 0.1388 0.0188 0.1369 0.0184 0.1355

με = 2 0.0086 0.0926 0.0083 0.0913 0.0082 0.0906

(A2) n = 300 α = −1.5 0.0205 0.1397 0.0189 0.1345 0.0190 0.1341

με = 2.5 0.0618 0.2466 0.0575 0.2380 0.0573 0.2370

(A2) n = 500 α = −1.5 0.0113 0.1049 0.0108 0.1025 0.0107 0.1016

με = 2.5 0.0363 0.1897 0.0338 0.1830 0.0335 0.1820

(A2) n = 800 α = −1.5 0.0073 0.0847 0.0067 0.0808 0.0066 0.0805

με = 2.5 0.0234 0.1528 0.0214 0.1461 0.0212 0.1453

(A2) n = 1000 α = −1.5 0.0047 0.0687 0.0042 0.0647 0.0042 0.0646

με = 2.5 0.0175 0.1324 0.0158 0.1256 0.0157 0.1253

(B1) n = 300 α = 0.8 0.0022 0.0457 0.0018 0.0424 0.0020 0.0443

με = 1 0.0248 0.1573 0.0230 0.1518 0.0232 0.1523

(B1) n = 500 α = 0.8 0.0011 0.0332 0.0009 0.0302 0.0009 0.0302

με = 1 0.0160 0.1262 0.0136 0.1167 0.0137 0.1169

(B1) n = 800 α = 0.8 0.0007 0.0260 0.0006 0.0242 0.0006 0.0241

με = 1 0.0097 0.0983 0.0087 0.0935 0.0087 0.0932

(B1) n = 1000 α = 0.8 0.0006 0.0237 0.0005 0.0213 0.0005 0.0213

με = 1 0.0080 0.0895 0.0071 0.0845 0.0071 0.0845

(B2) n = 300 α = 0.85 0.0017 0.0407 0.0018 0.0425 0.0016 0.0397

με = 1.5 0.0405 0.2007 0.0402 0.2002 0.0385 0.1956

(B2) n = 500 α = 0.85 0.0010 0.0320 0.0012 0.0340 0.0010 0.0311

με = 1.5 0.0241 0.1552 0.0244 0.1563 0.0233 0.1524

(B2) n = 800 α = 0.85 0.0007 0.0257 0.0007 0.0258 0.0006 0.0248

με = 1.5 0.0147 0.1213 0.0144 0.1199 0.0139 0.1177

(B2) n = 1000 α = 0.85 0.0006 0.0236 0.0005 0.0227 0.0005 0.0223

με = 1.5 0.0129 0.1136 0.0122 0.1103 0.0120 0.1095

Definition 2 (Contaminated GSCINAR(1) Model). A stochastic process (Yk)k∈Z+ is
called a contaminated GSCINAR(1) model if

Yk = Xk + ξkc2, k ∈ Z+, (11)
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Fig. 3 QQ plots of the CLS, WCLS and MQL estimators for Model (B2) with the sample size n = 1000

Table 7 The MSEs and SDs of the estimators in the contaminated situation with the sample size n = 1000

Model Contamination percentage Parameter CLS WCLS MQL

MSE SD MSE SD MSE SD

(A1) δ = 0.1 α = −2 0.0259 0.1519 0.0257 0.1515 0.0251 0.1490

με = 2 0.0200 0.0976 0.0200 0.0976 0.0198 0.0960

(A1) δ = 0.2 α = −2 0.0297 0.1532 0.0307 0.1535 0.0293 0.1502

με = 2 0.0482 0.1008 0.0495 0.1005 0.0487 0.0988

(A2) δ = 0.1 α = −1.5 0.0061 0.0751 0.0057 0.0716 0.0056 0.0711

με = 2.5 0.0277 0.1394 0.0266 0.1332 0.0264 0.1323

(A2) δ = 0.2 α = −1.5 0.0074 0.0770 0.0071 0.0744 0.0070 0.0737

με = 2.5 0.0504 0.1387 0.0499 0.1333 0.0497 0.1321

(B1) δ = 0.1 α = 0.8 0.0006 0.0239 0.0005 0.0217 0.0005 0.0214

με = 1 0.0126 0.0903 0.0126 0.0835 0.0123 0.0823

(B1) δ = 0.2 α = 0.8 0.0007 0.0248 0.0007 0.0223 0.0007 0.0219

με = 1 0.0265 0.0974 0.0305 0.0904 0.0291 0.0883

(B2) δ = 0.1 α = 0.85 0.0006 0.0246 0.0006 0.0236 0.0006 0.0229

με = 1.5 0.0187 0.1171 0.0188 0.1127 0.0178 0.1107

(B2) δ = 0.2 α = 0.85 0.0006 0.0245 0.0006 0.0230 0.0006 0.0224

με = 1.5 0.0352 0.1184 0.0387 0.1162 0.0359 0.1127

where (Xk)k∈Z+ is aGSCINAR(1) process given byDefinition 1. c2 is a positive integer
and it represents the contamination’s size. (δk)k∈Z+ is a sequence of iid Bernoulli(δ)
random variables. It is obvious to see that the contamination percentage is δ. (Xk)k∈Z+
and (ξk)k∈Z+ are independent.

123



Journal of the Korean Statistical Society (2020) 49:324–349 339

For comparison, we give the simulation results of Models A and B with the sample
size n = 1000 and different contamination percentages δ = 0.1, 0.2. Here we suppose
c2 = 1 in (11). From Table 7, we find that the three methods produce the worse
estimator as the contamination percentage γ increases. The contaminating data have
a more significant impact on the WCLS and MQL methods than the CLS method.
The explanation for this phenomenon may be that the WCLS and MQL methods use
more wrong information in the contaminating data due to the existence of the weight
functions. However, theWCLS andMQLmethods are still better than the CLSmethod
especially when we consider the SD. As before, the WCLS and MQL methods give
the competitive results and the WCLS method is a little worse than the MQL method
when the contaminating data exists.

In the two simulation studies,wefind that theWCLSandMQLmethods canproduce
more satisfactory results than the CLS method. While the WCLS method is reliable
in each situation, it may cause inconvenience because choosing a suitable weight is a
problem which can not be avoided. Based on the above discussions, we conclude that
the inverse of the conditional variance is a more satisfactory weight function and we
recommend the use of the MQL method to estimate the model parameters.

6 Real data analysis

In this section, we conduct two applications to illustrate the usefulness of the GSCI-
NAR(1) process in explaining underdispersed and overdispersed phenomena. The two
data sets, exhibiting underdispersion and overdispersion, are used. We compare our
process with some INAR(1) models based on the binomial and negative binomial
thinning operators:

• POINAR(1) model (Alzaid and Al-Osh 1987);
• NGINAR(1) model (Ristić et al. 2009);
• ZMGINAR(1) model (Barreto-Souza 2015).

The MQLmethod is used to estimate the unknown parameters of the fitted models.
We assume that {εt } in the GSCINAR(1) model is a sequence of iid GP(λε , κε) random
variables. The moment estimators of λε , κε are given by

κ̂ε = 1 − μ̂ε

σ̂ 2
ε

, λ̂ε = μ̂ε(1 − κ̂ε),

where μ̂ε is the MQL estimator of με and σ̂ 2
ε is the moment estimator (see (10)).

Also, the following statistics of the fitted models are computed: mean, variance, index
of dispersion Id (the variance to mean ratio), first-order autocorrelation coefficient
ACF(1), root mean square of differences between observations and predicted values
(RMS) and zero probability p0. As before, the zero probability is computed from
the average percentages of zeros in time series of length 5000 generated from the
corresponding model and the average is obtained based on 1000 replications.
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Table 8 Descriptive statistics for
the criminal mischief count data

Mean Variance Id ACF(1) p0

18.9416 43.2760 2.2847 0.2527 0

Table 9 Estimators of the parameters and statistics for the criminal mischief count data

Model Estimators Mean Variance Id ACF(1) RMS p0

GSCINAR(1) α̂ = −1.9375

λ̂ε = 8.7781 19.0005 43.2949 2.2786 0.2713 6.3515 0

κ̂ε = 0.3660

POINAR(1) α̂ = 0.2735 19.0403 19.0403 1.0000 0.2735 6.3516 0

λ̂ = 13.8036

NGINAR(1) α̂ = 0.2681 18.9997 379.989 19.9997 0.2681 6.3515 0.05

μ̂ = 18.9997

6.1 Modelling overdispersion

In this section, one real example is applied to show good performance of the GSCI-
NAR(1) model in fitting overdispersed count data. We applied our model to fit the
series of a monthly count of criminal mischief reported in the twentyninth police car
beat in Pittsburgh. The data consists of 137 observations starting in January 1990 and
ending in May 2001.

Table 8 displays some descriptive statistics of the criminal mischief counts. We find
that the sample mean is smaller than the sample variance. Thus, the data set seems
to be overdispersed. The zero probability equals to zero indicates that the data set
is zero-truncated. A time series plot, the autocorrelation function (ACF) and partial
autocorrelation function (PACF) are shown in Fig. 4, which indicates that an autore-
gressive process of order one is suitable to model the series. In Table 9, we provide
the estimators, mean, variance, Id , ACF(1), RMS and p0 of the fitted models. From
the results presented in Table 9, although the POINAR(1) model can capture the zero-
truncated characteristic of the data set, it performs worst when we consider ACF(1)
and RMS. Furthermore, it is very clear that the POINAR(1) process is not suitable for
modelling this data set since it can not explain overdispersion. While the NGINAR(1)
model gives the best fit of ACF(1), it fails to describe the overdispersed phenomenon
accurately. The GSCINAR(1) model can capture overdispersion accurately and Id of
the GSCINAR(1) model is very close to the empirical Id . Moreover, the GSCINAR(1)
model performs well when we consider ACF(1). During our study, we also applied
the ZMGINAR(1) model to fit this data set. However, the constraints on the model
parameters lead to the result that the ZMGINAR(1) model is not suitable for the data.
Based on these facts, we recommend the use of the GSCINAR(1) model to fit this data
set.
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Table 10 Descriptive statistics
for the ip count data

Mean Variance Id ACF(1) p0

1.2863 1.2052 0.9369 0.2925 0.2739

Table 11 Estimators of the parameters and statistics for the ip count data

Model Estimators Mean Variance Id ACF(1) RMS p0

GSCINAR(1) α̂ = −1.9136

λ̂ε = 1.0635 1.2917 1.2070 0.9344 0.2774 1.0464 0.2551

κ̂ε = −0.1395

POINAR(1) α̂ = 0.2852 1.2863 1.2863 1 0.2852 1.0463 0.2748

λ̂ = 0.9232

NGINAR(1) α̂ = 0.2872 1.2917 2.9601 2.2917 0.2872 1.0463 0.4364

μ̂ = 1.2917

π̂ = −1.1186

ZMGINAR(1) α̂ = 0.2737 1.2917 1.1983 0.9277 0.2737 1.0465 0.1976

μ̂ = 0.6097

6.2 Modelling underdispersion

To illustrate the usefulness of the GSCINAR(1) process in modelling underdispersion,
we consider an observation of this time series corresponds to the number of different IP
addresses (≈ different users) registered within periods of 2-min length at the server of
theDepartment of Statistics of theUniversity ofWürzburg inNovember andDecember
2005. In particular, we focus on the time series collected on November 29th, 2005,
between 10 o’clock in the morning and 6 o’clock in the evening, a time series of length
241. These data have been investigated by Weiß (2007, 2008a) and Zhu (2012a, b).

Some descriptive statistics of the data are shown in Table 10, which reveals that the
data set shows underdispersion since the empirical Id is smaller than one. The plots
of the data, ACF and PACF are presented in Fig. 5. Within these fitted models, the
estimators, mean, variance, Id , ACF(1), RMS and p0 are summarized in Table 11,
which shows that the NGINAR(1) model is not a good choice since it gives the wrong
information that the data set is overdispersion. The POINAR(1) model has the best
results when we consider some statistics. To be specific, it gives the best fit when we
consider the mean, ACF(1), RMS and p0. However, the GSCINAR(1) model gives
the most satisfactory results among the alternative models based on the variance and
Id . It is well-known that the POINAR(1) model encounters the problem that it can
only deal with equidispersion. For this data set, the POINAR(1) model fails to account
for the underdispersed phenomenon. The ZMGINAR(1) model is practicable in this
case, since π̂ = −1.1186 and μ̂ = 0.6097 statisfy the constraint π ∈ (−1/μ, 1).
The ZMGINAR(1) and GSCINAR(1) models capture the underdispersed feature well
and the GSCINAR(1) model is a little better than the ZMGINAR(1) model when we
consider Id . Based on ACF(1), RMS and p0, the GSCINAR(1) model also gives the
better fit than the ZMGINAR(1) model. In summary, the GSCINAR(1) process gives
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the satisfactory fits based on each statistics and the most comprehensive performances
among the alternative models. We conclude that the GSCINAR(1) model is the best
choice for fitting this data set.

7 Discussion

In this paper, we have introduced GSCINAR(1) process. The strict stationarity, ergod-
icity and some statistical properties of the process are obtained. The CLS, WCLS and
MQL methods are used to estimate the model parameters. Two real examples show
that our model not only can model the underdispersed data but also has the ability to
explain the overdispersed phenomenon.

However, more research is still necessary for some aspects of the GSCINAR(1)
process. One of the most important issues may be extending the GSCINAR(1) process
to the higher-order autoregressive model.

Definition 3 An INAR(p) model based on the GSC thinning operator, denoted by
GSCINAR(p), is defined by the following difference equation:

Xt = α1 � Xt−1 + α2 � Xt−2 + · · · + αp � Xt−p + εt , t ≥ 1, (12)

where αi � Xt−i = ∑Xt−i
j=1 Wj , i = 1, . . . , p, {Wj } is a sequence of iid GSC(αi ,

exp{−|αi |}) random variables with the finite mean φi and variance βi , αi < 1,
αi �= 0. Here, we write φi = 1

log(1−αi )

∑∞
s=1 log(1 − αi exp{−s|αi |}) and βi =

1
log(1−αi )

∑∞
s=1(2s − 1)log(1 − αi exp{−s|αi |}) − φ2

i . {εt } is an innovation sequence
of iid non-negative integer-valued random variables, uncorrelated with the past values
of {Xt }. Let με = E(εt ), σ 2

ε = Var(εt ) (we assume that they exist).

We give some statistical properties of the GSCINAR(p) model in the following
proposition. The proof of the proposition is similar to the proof of Proposition 2.1 in
Zhang et al. (2010) and we omit it.

Proposition 2 Suppose {Xt } is a stationary process satisfying (12). Then for t ≥ 1,

(i) E(Xt |Xt−i , i = 1, . . . , p) = ∑p
i=1 φi Xt−i + με ,

(ii) E(Xt ) = με/(1 − ∑p
i=1 φi ),

(iii) Var(Xt |Xt−i , i = 1, . . . , p) = ∑p
i=1 φi Xt−i + σ 2

ε ,
(iv) Var(Xt ) = [με

∑p
i=1 φi + σ 2

ε (1 − ∑p
i=1 φi )]

/[(1 − ∑p
i=1 φi )(1 − ∑p

i=1 φ2
i )],

(v) ρk = Corr(Xt+k, Xt ) = ∑p
i=1 φiρk−i , k = 1, . . .,

where φi and βi are given in Definition 3.

The strict stationarity and ergodicity of the GSCINAR(p) model are given by the
following theorem. Again, the proof is omitted because it is similar to the proof of
Theorem 2.1 in Zhang et al. (2010).
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Theorem 5 If all roots of the polynomial λp − φ1λ
p−1 − · · · − φp−1λ − φp = 0

are inside the unit circle, then there exists an unique strictly stationary integer-valued
random series {Xt } satisfying

Xt = α1 � Xt−1 + α2 � Xt−2 + · · · + αp � Xt−p + εt , t ≥ 1,

Cov(Xs, εt ) = 0 for s < t . Furthermore, the process is an ergodic process.

We must point out that the GSCINAR(p) model deserves a more detailed analysis
in a future research. In particular, the topic of parameter estimation should be treated in
more detail. For example, it would be interesting in applying the empirical likelihood
approach to the GSCINAR(p) model and investigating the asymptotic behavior of the
estimators. Furthermore, the forecasting problem for the GSCINAR(p) model would
be particularly relevant for practice.
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Appendix

As we mentioned in the third paragraph of Sect. 2, the infinite sum in the mean and
variance for GSC(α, θ ) are convergent, where α < 1, α �= 0 and 0 < θ < 1. We
illustrate it, as follows:

Let α < 0. Denote Sn = ∑n
s=1 log(1 − αθ s). Then, we have

0≤ lim
n→∞ sup

p>0
|Sn+p−Sn|= lim

n→∞ sup
p>0

n+p∑

s=n+1

log(1−αθ s)≤ lim
n→∞ sup

p>0
[p log(1−αθn)]=0.

By the Cauchy criterion of series, the infinite sum
∑∞

s=1 log(1−αθ s) are convergent.
Denote S

′
n = ∑n

s=1(2s − 1) log(1 − αθ s). Then, we have

0 ≤ lim
n→∞ sup

p>0
|S′

n+p − S
′
n| = lim

n→∞ sup
p>0

n+p∑

s=n+1

(2s − 1) log(1 − αθ s)

≤ lim
n→∞ sup

p>0
p · 2(n + p) log(1 − αθn+1) ≤ lim

n→∞ sup
p>0

2p(n + p)(−α)θn+1 = 0,

using x ≥ log(1 + x) for x ≥ 0. By the Cauchy criterion of series, the infinite sum∑∞
s=1(2s − 1) log(1− αθ s) are convergent. Following the same way, we can see that

the two infinite sum are convergent when 0 < α < 1. ��
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Proof of Proposition 1 We have (i) and (iii), i.e.,

E(Xt |Xt−1) = E(α � Xt−1 + εt |Xt−1) = φXt−1 + με

and

Var(Xt |Xt−1) = Var(α � Xt−1 + εt |Xt−1)

= Var(α � Xt−1|Xt−1) + Var(εt |Xt−1)

= βXt−1 + σ 2
ε .

Then, we get

E(Xt ) = E[E(Xt |Xt−1)] = φE(Xt−1) + με

and

Var(Xt ) = Var[E(Xt |Xt−1)] + E[Var(Xt |Xt−1)]
= Var(φXt−1 + με) + E(βXt−1 + σ 2

ε )

= φ2Var(Xt−1) + βE(Xt−1) + σ 2
ε ,

which yield (ii) and (iv), due to the stationarity; E(Xt ) = E(Xt−1) and Var(Xt ) =
Var(Xt−1). Moreover, we have (v), i.e.,

Cov(Xt , Xt+k) = Cov(Xt , α � · · · � α︸ ︷︷ ︸
k

�Xt ) + Cov(Xt ,

k−1∑

j=0

α � · · · � α︸ ︷︷ ︸
j

�εt+k− j )

= E{E[Xt (α � · · · � α︸ ︷︷ ︸
k

�Xt )|Xt ]} − E(α � · · · � α︸ ︷︷ ︸
k

�Xt ) · E(Xt )

= φk{E(X2
t ) − [E(Xt )]2}

= φkVar(Xt ).

��
Proof of Theorem 1 We first introduce a random sequence {X (n)

t },

X (n)
t =

⎧
⎨

⎩

0, n < 0,
εt , n = 0,
α � X (n−1)

t−1 + εt , n > 0,

where Cov(X (n)
s , εt ) = 0 when s < t for any n.

As in Li et al. (2015), we can verify: existence of {Xt } satisfying (5), i.e., (A1)
X (n)
t ∈ L2, n > 0, (A2) X (n)

t is a Cauchy sequence, (A3) {Xt } satisfies (5), uniqueness,
strict stationarity and ergodicity. The details are omitted here to save space. ��
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Proof of Theorem 2 From (6), solving ∂Q1(η)/∂α = 0 and ∂Q1(η)/∂με = 0 lead
to the CLS estimators of α and με . Now, let Fn = σ {X0, X1, . . . , Xn}, M (1)

n =
− 1

2 (∂Q1(η)/∂α) = ∑n
t=1 φ̇Xt−1

(
Xt − φXt−1 − με

)
, M (1)

0 = 0. Also, M (2)
n =

− 1
2 (∂Q1(η)/∂με) = ∑n

t=1

(
Xt − φXt−1 − με

)
, M (2)

0 = 0. Then, it is easy to see

that {M (1)
n ,Fn}n≥0 and {M (2)

n ,Fn}n≥0 are martingales. The martingale central limit
theorem and Cramer-Wold’s device imply that

n−1/2(M (1)
n , M (2)

n )
′ d−→ N (0, VCLS).

Using Taylor’s expansion, we have

0= − 1

2
√
n

∂Q1(̂ηCLS)

∂η
= − 1

2
√
n

∂Q1(η)

∂η
− 1

2n

∂2Q1(η)

∂η∂η
′

√
n(̂ηCLS−η)+op(n

−1/2).

Since we have proved that− 1
2
√
n

∂Q1(η)
∂η

d−→ N (0, VCLS), after some algebra, we have

√
n(̂ηCLS − η)

d−→ N (0, HCLS
−1VCLSHCLS

−1).

This completes the proof. ��
Proof of Theorem 4 Following Zheng et al. (2007), we firstly suppose τ is known. Let

L(1)
n (τ , η) =

n∑

t=1

V−1
τ (Xt |Xt−1)φ̇Xt−1

(
Xt − φXt−1 − με

)
, L(1)

0 (τ , η) = 0,

L(2)
n (τ , η) =

n∑

t=1

V−1
τ (Xt |Xt−1)

(
Xt − φXt−1 − με

)
, L(2)

0 (τ , η) = 0.

Similar to Theorem 2, we have

n−1/2(L(1)
n (τ , η), L(2)

n (τ , η)
)′ d−→ N (0, VMQL).

Now, we replace V−2
τ (Xt |Xt−1) by V−2

τ̂
(Xt |Xt−1), where τ̂ is a consistent estimator

of τ . Then we want

n−1/2(L(1)
n (τ̂ , η), L(2)

n (τ̂ , η)
)′ d−→ N (0, VMQL).

For this we need to prove that 1√
n
L(i)
n (τ̂ , η)− 1√

n
L(i)
n (τ , η)

P−→ 0, i = 1, 2 [its proof
is omitted here, since the argument is the same as in Zheng et al. (2007)]. Following
the proof of Theorem 2, by Taylor’s expansion and some algebra, we have

√
n(̂ηMQL − η)

d−→ N (0, HMQL
−1VMQLHMQL

−1).
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This completes the proof. ��
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