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Abstract
The International Roughness Index (IRI) is the most popular index used to measure road surface roughness. In the current 
study, three integrated approaches based on Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and 
Fuzzy Inference System (FIS) techniques were conducted to develop linear and nonlinear regression models using IRI and 
pavement distress parameters. The pavement distress data were collected on 19 roads in the St. John’s road network in New-
foundland, Canada, using a network “TotalPave” application. Several significant variables related to surface pavement distress 
were included as input parameters to develop the correlation between the IRI and pavement distress variables; eight input 
parameters included rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, potholes, patching, 
and delamination. The performance of the three techniques used in this study was evaluated using the coefficient of determina-
tion ( R2 ), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The results of the models revealed that the 
MLR, ANN, and FIS models could accurately predict IRI. According to ANNs, a coefficient of determination indicated that 
the correlation was increased by 60.7%, 46.5%, 12.34% and 11.01%. While RMSE was reduced by 73.6%, 78.7%, 51.32%, 
70.4%, and MAE was reduced by 71.7%, 73.6%, 47.5%, and 61.1% compared to MLR and FIS, respectively. As a result, the 
ANN model indicated a better prediction of IRI for a given set of pavement distress parameters than FIS and MLR techniques.

Keywords Artificial neural network · Fuzzy Inference Index (FIS) · International Roughness Index (IRI) · Pavement 
performance · Multiple Linear Regression (MLR)

1 Introduction

Pavement performance and evaluation are essential for 
Pavement Management Systems (PMS). The condition and 
functional changes of pavements as they age are referred to 
as pavement performance [1]. In other words, the ability of 
pavements to withstand traffic intensity and climatic condi-
tions, functionally and structurally, can be used to assess 
performance. Pavement structural failure occurs as a result 

of stresses caused by heavy traffic. When pavements fail to 
provide a smooth riding surface, this is referred to as func-
tional failure. Uneven pavement causes discomfort for driv-
ers and passengers and raises vehicle operating costs [2].

Several factors can be used to assess the condition and 
serviceability of pavements, including the Present Service-
ability Index (PSI), the Pavement Condition Index (PCI), 
and the International Roughness Index (IRI). IRI, in par-
ticular, is a primary performance measure that highway 
agencies frequently use to forecast pavement performance. 
The current study aims to use field survey data to develop 
IRI prediction modelling using Multiple Linear Regres-
sion (MLR), Artificial Neural Network (ANN) and Fuzzy 
Inference Index (FIS) techniques. The IRI was created to 
provide a standardized global measurement for comparing 
pavement roughness. The average rectified slope (accumu-
lated suspension motion to distance travelled) derived from 
a mathematical model of a standard quarter car passing over 
a measured profile at 80.5 km/h is defined as the IRI of pave-
ment [3, 4]. The roughness or smoothness of the pavement 
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is a comprehensive assessment indicator that considers the 
ride quality, comfort of the pavement and the presence of 
collective distresses. The IRI of the pavement increases as 
it ages, indicating deterioration.

Several techniques were used for pavement performance 
modelling, such as multiple linear regression, ANN, and 
fuzzy logic. ANN for modelling infrastructure deterioration 
are becoming more popular, and numerous studies have been 
conducted to evaluate their effectiveness.

According to the U.S. Department of Transportation, 
pavement ride quality based on IRI can be categorized into 
five groups, as shown in Table 1 [5].

2  Literature Review

2.1  Multiple Linear Regression

MLR is commonly used to investigate the relationship 
between input and output variables. A traditional regression 
method is a comprehensive tool for analyzing input and out-
put parameters’ relationships. Linear regression is one of the 
most commonly used statistical techniques [6]. The follow-
ing equation gives the traditional linear regression model:

where Y is the dependent variable, C is the con-
stant, X is the ( x

1
,x

2
,…,xn ) independent variable, and 

a
1
, a

2
, a

3
………… an = coefficients.

According to Okine et al. [7], a technique for IRI pre-
diction using Multivariate Adaptive Regression Splines 
(MARS) allowed them to determine the relative impor-
tance of pavement conditions, traffic, and environmental 
parameters.

Choi et al. [8] used the MLR method to predict the IRI 
model based on asphalt concrete properties. The model con-
sidered Asphalt Concrete (AC), the percent passing no 200 
seize (P200) as input factors. According to Wang et al. [9], 
the Mechanistic-Empirical Pavement Design Guide employs 
IRI as a primary mode of assessing pavement condition and 
as one of the primary functional performance indicators 
(MEPDG).

(1)Y = C + a
1
X
1
+ a

2
X
2
+……………⋯ + anXn,

Owolabi et al. [10] used the MLR method to predict per-
formance models. The models took into account the input 
factors of fatigue cracking, longitudinal cracks, patching, 
potholes, and rut depth. The MLR method was used by 
Khattak et al. [11] to develop IRI models for hot mix asphalt.

Mubaraki [12] investigated the relationship between IRI 
and pavement damage on the highway connecting Jeddah 
and Jazan in Saudi Arabia. The study's findings revealed a 
significant relationship between IRI and cracking and IRI 
and ravelling. The results also show that rutting has no sig-
nificant association with IRI values.

2.2  Artificial Neural Network (ANN)

ANNs are recent computational models defined in anal-
ogy with biological characteristics to simulate the deci-
sion process in the brain. This technique helps approximate 
and estimate unknown functions depending on various and 
numerous input values. One of the most important charac-
teristics of this method is that it represents a method for 
solving extremely complex and nonlinear problems using 
only a few simple mathematical operations [13].

Machine Learning (ML) techniques are one of the most 
important methods for predicting pavement performance 
indicators. Chen et al. [14] genetic algorithms programming, 
gray forecast, and multiple regression are helpful tools for 
predicting IRI distress.

According to Hoang et al. [15, 16], seven methods of ML 
were used to investigate pavement distress, Naïve Bayesian 
Classifier (NBC), ANN, Random Forest (RF), Support Vec-
tor Machine (SVM), Radial Basis Function Neural Network 
(RBFNN), and Classification Tree (CT). Nabipour et al. [17] 
applied Genetic Expression Programming (GEP) and SVM 
techniques to predict the remaining service life pavement.

Ceylan et al. [18] published a study on ANN in pave-
ment engineering. According to Terzi [19], predicting PSI 
with pavement distress is possible. Kirbasß and Karasßahin 
[20] studied ANN and MLR for calculating pavement per-
formance models based on PCI. Platei et al. [21] used ANNs 
to assess pavement structural conditions based on FWD data. 
Other significant approaches to the study of compaction fac-
tors have been proposed in infrastructure engineering [22], 
evaluating drivers’ perception of conditions [23], assessing 

Table 1  Pavement ride quality 
based on roughness

Category IRI rating (m/Km), by highway type Interstate and noninterstate ride quality

Interstate Noninterstate

Very good  < 1  < 1.0 Acceptable 0–2.0
Good 1.0–1.5 1.0–1.50
Fair 1.5–1.90 1.50–2.70
Poor 1.9–2.70 2.70–3.50 –
Very poor  > 2.70  > 3.5 Less than acceptable > 2.70
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maintenance costs and prioritizing maintenance [24], and 
analyzing asphalt binders' ageing characteristics [25].

Amin MSR and Jiménez [26] published a case study of 
the Montreal road network. They considered simulated traf-
fic over five decades. They also factored in the uncertainty 
of pavement performance in their calculations. They also 
used the backpropagation neural network (BPN) with the 
generalized delta rule learning algorithm, where uncertain-
ties were ignored. Annual Average Daily Traffic (AADT), 
Equivalent Single Axle Loads (ESAL), and the pavement 
condition index were used to calculate the estimated PCI 
values. Marcelino et al. [27] applied the RF technique to 
predict IRI.

Vyas et al. [28] attempted to develop correlations using a 
variety of environmental structural, subgrade soil attributes, 
and functional inputs to estimate two different deflection 
basin parameters. The authors investigated a 124-km-long 
pavement network. They trained various ANN models with 
multiple architectures, each with one or more hidden layers. 
They compared the results of the ANN to those of MLR 
models and other intelligent techniques, and the ANN per-
formed better than the other techniques.

Nitsche et al. [29] attempted to predict Weighted Longi-
tudinal Profile (WLP) indices. Their goal was to assess the 
effectiveness of these techniques in estimating range and 
standard deviation.

Younos et  al. [30] developed a pavement condition 
index prediction model that considers climatic parameters, 

pavement thickness, weighted plasticity index, and traffic 
loading. Linear regression and neural networks were the two 
methods utilized (ANN). The R2 for the regression model 
was 0.80, while the R2 for the ANN model was 0.88. Inkoom 
et al. [31] used various ML techniques, including bootstrap 
forest, gradient-boosted trees, K nearest neighbours, nave 
Bayes, and multiple linear regression.

Researchers proposed using a Multi-Stage Hyper-Heuris-
tic (CMS-HH) approach to address specific combinatorial 
optimization issues, and they applied a self-learning discrete 
Jaya algorithm (SD-Jaya) to address the energy-efficient dis-
tributed no-idle Flow-shop Scheduling Problem (FSP) [32, 
33].

A neural network is an interconnected group of artifi-
cial neurons that uses a connectionist approach to compu-
tation to process information. ANN is an adaptive system 
that changes its structure in response to external or internal 
information flowing through the network during the learn-
ing phase. Modern neural networks are tools for nonlinear 
statistical data modelling. They are used to model complex 
relationships between inputs and outputs and discover pat-
terns in data. A series of layers typically represent them. 
Figure 1 shows that these layers usually consist of an input 
layer, several hidden layers, and an output layer. As shown 
in Fig. 1, each neuron in the ANN functions as a processing 
unit, the inputs are received, and the output is turned over 
to the next layer [34]. In each layer, neurons are connected 
to neurons in the next layer. Ann’s nonlinear relationship 

Fig. 1  Schematic representation of ANNs
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between input and output layers requires a function to make 
a correlation between the neurons. Three transfer functions 
provide computation between neurons of different layers: 
Log-Sigmoid, Tan-Sigmoid, and Linear [35]. The following 
equations describe these functions:

The processing of each neuron is simply a weighted 
summation that is transferred via the activation function, as 
shown in Eq. (4).

where Yj is the output of j the neuron, f is the activation 
function, n is the total number of inputs in this layer, xi is i 
the input, and wij is the connection weight between ith input 
and the neuron.

2.3  Fuzzy Inference System (FIS)

The term “fuzzy” refers to a lack of clarity, and this fuzzi-
ness is caused by modelling the most similar human infer-
ence using a complex mathematical pattern. A fuzzy system 
converts human knowledge into mathematical formulas.

This critical activity uses linguistic variables, “if–then” 
fuzzy rules, and a mapping system (fuzzy engine). Knowledge 

(2)logsig(x) =
1

1 + e−x
,

(3)tansig(x) =
2

1 + e−2x
− 1,

(4)purelin(x) = x.

(5)Yj = f

n∑

i=1

xiwij,

and rules underpin fuzzy systems [36]. A fuzzy system’s heart 
is a knowledge base comprised of fuzzy “if–then” rules. The 
first step in creating a fuzzy system is collecting a set of fuzzy 
“if–then” rules from expert knowledge or studying literature 
in the related field. The following step combines these rules 
into mathematical forms [37].

Fuzzy logic is one of the methods used in handling the 
uncertainties in the model or the data. FIS are based on fuzzy 
rules called fuzzy “if–then” rules. In some resources, instead 
of FIS, terms such as fuzzy model, fuzzy associative memory, 
and fuzzy logic controller are also used [38]. Fuzzy systems 
employ fuzzy sets to convert input variables to output vari-
ables [39]. These systems are especially useful for incorporat-
ing human experiences and behavioural data into the model. 
The model’s variables are expressed in this way using fuzzy 
subsets. Fuzzy set operations are used for the inference under 
consideration. By generalizing classical set operations, these 
operations are obtained. A general fuzzy system has five lay-
ers, as shown in Fig. 2. The FIS structure has five layers, as 
follows:

2.3.1  Fuzzification Layer

This layer consists of defined membership functions of the 
input parameters. The result is a degree of membership value 
calculated using a Gaussian membership function [40].

where ci, �i are parameters of a membership function.

(6)�
Ai
(x) = exp

⎢
⎢
⎢⎣
−

�
x − c

i

2�2
i

�2⎥
⎥
⎥⎦
,

Fig. 2  Schematic representation of a fuzzy system



Performance of Soft Computing Technique in Predicting the Pavement International Roughness…

1 3

2.3.2  Rule Layer

This layer applies fuzzy AND to the previous part of the fuzzy 
rules.

2.3.3  Normalized Layer

This layer normalized the membership functions.

2.3.4  Defuzzification Layer

In this layer, the outcome of the fuzzy rules is applied.

pi, qi, andri.arelinearvariables.

2.3.5  Output Layer

This layer is calculated by summing up the outputs of previ-
ous layers.

2.4  Assessment of Developed Models

To examine the strengths and weaknesses of the developed 
models for three techniques, MLR, ANNs, and FIS., the pre-
dicted IRI values were compared with the observed values 
concerning the determination coefficient of ( R2 ), Root Mean 
Square Error (RMSE), and Mean Absolute Error (MAE). 
Thus, a higher R2 value was considered a better fit of the devel-
opment data set. The mathematical representation of the three 
implemented measures is shown in the following equations:

(7)�i = �Ai(x) ∗ �Bi(x).

(8)�i =
�i∑
i �i

.

(9)�ifi = �i

(
pix + qiy + ri

)
.

(10)
�

i

�ifi =

∑
i �ifi∑
i �i

.

(11)R
2 = 1 −

∑
i
(t
i
− o

i
)2

∑
i
(o

i
)2

,

(12)MAE =
1

n

n∑

i

||ti − o
i
||,

(13)RMSE =

�∑
i
(t
i
− o

i
)2

n
,

where: oi is the actual value observation I, ti is the predicted 
value of observation I, n is the number of observations.

2.5  Research Goal and Methodology

This study focuses on the modelling and evaluation of rough-
ness in flexible pavements based on pavement distress. This 
study aims to develop a new technique for replacing the con-
ventional methods of determining IRI values. These include 
determining the IRI of flexible pavement and establishing 
credible prediction models for St. John’s roads based on data 
gathered over the last few years. The IRI values were meas-
ured using a smartphone application called “TotalPave.”

In this paper, the authors propose techniques based on 
MLR, ANN for predicting the IRI values based on pave-
ment distress. Models named FIS were used to compare with 
MLR and ANN models. In detail, with data obtained from 
the field survey, the authors have divided the work into five 
phases, as follows:

• Collection of the pavement distress parameters for 19 
roads (37 sections),

• Analysis of data by using the MLR technique,
• Analysis of data by using the ANN technique,
• Analysis of data by using the FIS technique, and
• Comparison and validation of the FIS, MLR, and ANNs 

models.

Eight pavement distress variables were studied: rutting, 
fatigue cracking, block cracking, longitudinal cracking, 
transverse cracking, potholes, patching, and delamination.

3  Study Area Location and Data Collection

The city of St. John's has a road network of more than 1000 
kms of paved road. These roads are critical for the quick and 
safe flow of products and people in and out of St. John's.

The data collected on St. John's roads used IRI to assess 
pavement performance based on pavement distress. The 
information gathered aids in the development of models 
that anticipate pavement conditions. To develop flexible 
pavement performance and meet the goals of this research, 
researchers conducted a complete field investigation of pave-
ment conditions for different roadways. The surveys covered 
19 roads (37 sections) in St. John's (wet freeze climate), 
with pavement conditions ranging from very poor to very 
good in the selected sections. The survey was conducted for 
asphalt concrete pavement types. In this research, approxi-
mately 58 km of road length was studied, including nine 
significant roads (36.2 km), eight minor roads (13.5 km), 
and one highway (8.6 km). A smartphone application called 
“TotalPave” was used to collect IRI data. This program can 
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detect vertical movement caused by the road’s rough surface 
and calculate the IRI value. The key motive for using this 
programme in the study was its property of requiring no pre-
or post-processing for the pavement distress data gathered. 
Furthermore, TotalPave is simple to use and has a reasonable 
cost. The TotalPave app was installed on a smartphone and 
then put on the vehicle's windshield using a mobile phone 
holder to collect IRI data. The phone was confirmed to have 
experienced some bumping and vibration. The vehicle was 
driven at a speed of 20–80 km/h throughout data collection, 
according to TotalPave user instructions. Table 2 provides a 
descriptive summary of the St. John’s road network chosen 
for this study for 2018 and 2021. Table 3 illustrates sample 
data of eight distress parameters (Fig. 3).

Ali et al. performed a distress survey on some road sec-
tions in St. John's, which was published at the 2021 Journal 
of Transportation Engineering, Part B: Pavements. They also 
studied some roads other than the sections considered in the 
current analysis, and the survey was presented at the 2018 
Conference of the Canadian Society for Civil Engineering 
(CSCE) ([41, 42]. Figure 4 shows example photographs of 
some of the city’s roads.

3.1  MLR Model Development

A MLR was used to determine the relationship between 
pavement distress parameters and the asphalt pavement per-
formance index (IRI). This study developed two prediction 
models using the MLR technique from the collected data. 

IBM's SPSS Statistics package (IBM 27) was used to analyze 
the data of 19 roads (37 sections) from the field survey data. 
Equation (14) shows a basic formula for the prediction models 
to find the influence of pavement distress parameters for IRI.

where IRI is the International Roughness Index, C is the 
constant, X1 is the rutting, X2 is the fatigue, X

3
 is the block 

cracking, X
4
 is the longitudinal cracking, X

5
 is the trans-

verse cracking, X
6
 is the patching, X

7
 is the potholes, X

8
 

is the delamination, and a
1
, a

2
, a

3
………… a

9
 are the 

coefficients.

(14)
IRI = C + a

1
X
1
+ a

2
X
2
+ a

3
X
3
+ a

4
X
4
+ a

5
X
5
+ a

6
X
6
+ a

7
X
7
+ a

8
X
8
,

Table 2  Details of study section

Road name Geometric type Starting coordinate Ending coordinate Length (m) IRI (2018) IRI (2021)

Trans-Canada Highway Highway 47.613080, − 52.693132 47.572898, − 52.778936 8600 1.09 1.10
Prince Philip Dr Urban (divided) 47.588916, − 52.720251 47.561888, − 52.749006 3900 2.22 2.44
Portugal Cove Rd 47.595724, − 52.726608 47.609546, − 52.765798 3800 1.77 1.88
Elizabeth Ave Rd Urban (undivided) 47.563756, − 52.739265 47.586281, − 52.708537 3500 5.3 6.02
Kenmount Rd 47.563756, − 52.739265 47.586281, − 52.708537 3500 2.59 3.10
Torbay Rd 47.560475, − 52.749060 47.533357, − 52.831811 7000 3.04 3.29
Blackhead Rd 47.599852, − 52.711999 47.638361, − 52.724715 4500 2.13 2.53
Logy Bay Rd 47.598178, − 52.698031 47.581270, − 52.704083 2000 3.98 5.83
Kenna’s Hill 47.580354, − 52.704381 47.571455, − 52.701725 1000 4.28 3.94
Water St 47.570864, − 52.697512 47.562220, − 52.709403 1300 3.63 2.25
King’s Bridge Rd 47.577570, − 52.703921 47.571912, − 52.701928 1000 5.68 4.37
Newfoundland Dr 47.539661, − 52.712965 47.522431, − 52.660019 8200 3.89 3.42
Newtown Rd 47.595526, − 52.725829 47.591908, − 52.687005 3600 4.39 4.78
Freshwater Rd 47.569411, − 52.731490 47.566484, − 52.716049 1300 3.50 4.26
MacDonald Dr 47.563767, − 52.717459 47.561518, − 52.745447 2200 2.16 2.77
Aberdeen Ave 47.590916, − 52.718891 47.593944, − 52.701323 1400 2.11 2.80
Empire Ave 47.619806, − 52.718596 47.612738, − 52.711725 1000 4.05 4.10
The Blvd 47.572286, − 52.713828 47.565904, − 52.729028 1400 3.19 3.87
Highland Dr 47.577727, − 52.703588 47.584444, − 52.684521 1600 2.94 2.59

Table 3  Sample data of pavement distress

Type of distress Unit Elizabeth Ave 
Road (Sec-
tion: I)

Elizabeth Ave 
Road (Section: 
II)

Quantity IRI Quantity IRI

Rutting (m2) 4.80 5.3 4.4 6.02
Fatigue cracking (m2) 2 1.5
Block cracking (m2) 0 0
Longitudinal cracking (m2) 26 47.5
Transverse cracking (m2) 0 0
Patching Number 5 7
Potholes (m2) 118 96
Delamination (m2) 18 13.5
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The IRI regression models are presented in Eqs. (15) 
and (16), which consider eight surface pavement dis-
tresses: rutting, fatigue cracking, block cracking, longi-
tudinal cracking, transverse cracking, potholes, patch-
ing, and delamination, as input variables and IRI output 
variables.

• MLR (2018)

Table 4 shows two IRI regression models developed 
based on surface pavement distress data. Rutting, fatigue 
cracking, block cracking, transverse cracking, and pot-
holes have been adversely correlated with the ���

2018
 

model. Longitudinal cracking, patching, and delamination 
have been positively correlated with the ���

2018
 model. 

The association between IRI and surface pavement dis-
tress was described as follows in Eq. (15):

The correlation coefficient ( R2 ) of this relationship is 
39%.

• MLR (2021)

IRI
2021

 model has been negatively correlated with rut-
ting, block cracking, longitudinal cracking, patching, 
and potholes. Fatigue cracking, transverse cracking, and 
delamination have been positively is associated with the 
IRI

2021
 model. The association between IRI and surface 

pavement distress was illustrated as follows in Eq. (16):

(15)

IRI2018 = 3.58 − 0.06×1 − 0.12×2 − 0.03×3 + 0.03×4

− 0.02×5 + 0.01×6 − 0.01×7 + 0.08×8.

(16)

IRI2021 = 4.006 − 0.078×1 + 0.194×2 − 0.222×3 − 0.067
×4 + 0.081×5 − 0.004×6 − 0.014×7 + 0.015×8.

The correlation coefficient ( R2 ) of this relationship is 
53.2%.

3.2  Cross‑validation Evaluating Model Performance

The cross-validation technique evaluates the model’s accu-
racy across various data. 80% of the data samples for each 
subgroup (as shown in Table 2) are chosen at random to 
create deterioration models. The remaining 20% of data sam-
ples are used to assess the precision of prediction models.

After the validation test, Table 5 illustrates the reduction 
in R2 , RMSE, and MAE values for all sections. Figures 5 and 
6 present the errors and linear relations for (2018 and 2021).

The following conclusions can be drawn from Table 5, 
Figs. 5 and 6:

• IRI (2018): The results showed that the reduction in R2 , 
RMSE and MAE values is insignificant. The reductions 
in accuracy are 8.21%, 16.52%, and 20.17%, respectively. 
As a result, the MLR technique has a good ability to 
predict IRI models reliably.

• IRI (2021): The results showed that the reduction in R2 , 
RMSE and MAE values are insignificant. The reductions 
in accuracy are 12.6%, 6.36%, and 1.31%, respectively. 
As a result, the MLR technique has a good ability to 
predict IRI models reliably.

3.3  ANN Model Development

The primary goal of model development is to predict 
pavement performance. The models were developed using 
MATLAB version R2021b. To acquire the best results, 
three ANN architectures were investigated: A (8-8-8-8-
1-1), B (8-10-10-10-1-1), and C (8-20-10-10-1-1). Each 
network architecture is composed of eight inputs, three 
hidden layers, and one output layer. The data were divided 

Fig. 3  Map of the road network 
of the St. John’s
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Fig. 4  Representative photo showing different distress types in pavement sections (Image by Abdualmtalab Ali)
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into three categories, 70% of the data as training, 15% 
of the data as testing, and 15% of the data as validation. 
The ANNs architecture (A), (B), and (C) are shown in 
Figs. 7, 8, and 9; the best results were obtained with ANN 
architecture (B), and the results showed a good ability of 
the pavement distress models. Statistical metrics such as 
maximum R2 values and minimum values of (RMSE) and 
(MAE) contributed to selecting the best ANN network. 

The findings of the ANNs approach are summarised in 
Table 6. The highest R2 values were 99.2% and 99.5%, and 
the lowest RMSE and MAE values were (0.276), (0.234), 
(0.16), and (0.16) for 2018 and 2021, respectively. Fig-
ures 10 and 11 present the ANNs prediction results for IRI.

Table 4  IRI models based on surface pavement distress data

Model 2018 2021

Unstandardized coef-
ficients

Standardized 
coefficients

t-stat Unstandardized coefficients Standardized 
coefficients

t-stat

B Std. Error β B Std. Error β

Constant 3.58 0.69 – 5.217 4.006 0.72 – 7.437
Rutting − 0.06 0.04 − 0.28 − 1.35 − 0.078 0.046 − 0.423 –1.849
Fatigue cracking − 0.12 0.15 − 0.17 − 0.801 0.194 0.161 0.15 0.636
Block cracking − 0.03 0.22 − 0.03 − 0.152 − 0.222 0.23 − 0.076 –0.342
Longitudinal cracking 0.03 0.03 0.18 1.017 − 0.067 0.029 − 0.363 − 1.851
Transverse cracking − 0.02 0.03 − 0.08 − 0.529 0.081 0.033 0.049 0.278
Patching 0.01 0.01 0.13 0.753 − 0.004 0.006 − 0.226 − 1.141
Potholes − 0.01 0.04 − 0.05 − 0.322 − 0.014 0.044 − 0.166 − 0.978
Delamination 0.08 0.05 0.28 1.439 0.015 0.056 0.06 0.278
R-squared (p-value) 0.39 (0.05) 0.532 (0.05)

Table 5  Validation results of 
prediction models

Indicator MLR Cross-validation Reduction % ( ±)

R
2 RMSE MAE R

2 RMSE MAE R
2 RMSE MAE

IRI (2018) 39 1.046 0.827 35.8 1.253 1.036 − 8.21 − 16.52 − 20.17
IRI (2021) 53.2 0.751 0.605 46.5 0.802 0.613 − 12.6 − 6.36 − 1.31
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3.4  FIS Model Development

The primary goal of using the FIS technique is to predict 
pavement performance. The models were developed using 
MATLAB version R2021b. The FIS technique was used 

on 19 roads (37 sections) in St. John’s. The fuzzy model 
employed the severity of the degradation as the input vari-
able to generate IRI models, while IRI was the output 
variable. The acquired data from the field survey were 
used for this. The FIS technique has three main steps, 

Fig. 7  Architecture of ANNs model (Model A)

Fig. 8  Architecture of ANNs model (Model B)
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Fig. 9  Architecture of ANNs model (Model C)

Table 6  Summary of IRI 
models of ANNs developed

ANN model ANNs models

Model (2018) Model (2021)

R
2 RMSE MAE R

2 RMSE MAE

8-8-8-8-1-1(A) 97.7 0.401 3.88 98.1 0.202 0.183
8-10-10-10-1-1 (B) 99.2 0.276 0.234 99.5 0.16 0.16
8-20-10-10-1-1(C) 97.8 0.349 0.339 97.1 0.279 0.225
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Fig. 10  ANNs model goodness-of-fit results for IRI values (2018)
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the Fuzzification, Normalisation, and Defuzzification 
modules. Figure 12 demonstrates the main steps of the 
FIS technique. In the fuzzy modelling study, eight inde-
pendent variables and one dependent (IRI) variable were 
considered inputs and outputs.

3.5  Data Pre‑processing and Membership Functions

The fuzzy model was constructed with eight independent 
parameters based on pavement distress and one output 
(IRI) after collecting and revising data for 19 roads in 
St. John’s.

All input variables’ membership functions are classi-
fied as Minimal, Moderate, or Severe. The IRI member-
ship functions for the output variables are Poor, Medio-
cre, Fair, Good, and Very Good. Table 7 shows pavement 

distress types and the number of membership functions 
to evaluate IRI.

3.6  Fuzzy Rule Generation

The main challenge of FIS during the second phase is devel-
oping the rules. The generation rules for the classification 
model described in this paper are difficult and complex, 
because they have eight inputs and one output. Table 8 Rule 
base was created for FIS and IRI.

3.7  The Results of Pavement Section Classification

The system evaluated two section datasets, each with 19 
roads (37 sections), and this technique generated member-
ship functions and rules by measuring the efficiency of fuzzy 
pavement classification. To display the level of agreement of 

Fig. 12  Diagram of a pavement classification on FIS

Table 7  Distress types and 
number of membership 
functions to evaluate IRI

Distress of type Category Number of MF Description

Rutting Input Minimal, moderate, severe Extremely important
Fatigue cracking Input Minimal, moderate, severe Relatively important
Block cracking Input Minimal, moderate, severe Important
Longitudinal cracking Input Minimal, moderate, severe Important
Transverse cracking Input Minimal, moderate, severe Moderately important
Patching Input Minimal, moderate, severe Moderately important
Potholes Input Minimal, moderate, severe Relatively important
Delamination Input Minimal, moderate, severe Relatively important
IRI Output Poor, mediocre, fair, good, very good Extremely important
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the IRI values, four defuzzified methods (Centroid, Bisector, 
SOM, and Lom) were used to find the R2 , RMSE, and MAE. 
Table 9 shows the level of agreement of the IRI values using 
four defuzzified methods. Figures 13 and 14 depict the rela-
tionship between observed and fuzzified IRI for 37 sections.

The FIS technique developed a section classification 
model for flexible pavement. An IRI was considered a FIS 
output, and the eight pavement distresses were considered 
inputs. The method was then developed in two phases for 
two data groups. The first phase involved creating fuzzy par-
titions for inputs and outputs applied a clustering algorithm. 
The second phase involved using four defuzzified methods 
to generate fuzzy rules from numerical data. The results 
presented that the fuzzy pavement classification has good 
accuracy compared to IRI calculated by MLR.

The following conclusions can be drawn from the good-
ness of fit statistics of the 19 road (37 sections) in Table 9:

• Centroid Method: The statistical indicators of R2 , 
RMSE, and MAE for the 2021 sections improved by 
0.226%, 5.30%, and 8.30%, respectively, when compared 
to 2018.

• Bisector Method: The statistical indicators of RMSE 
and MAE for the 2021 sections improved by 20% and 
21.41%, respectively, compared to 2018, while R2 is 
decreased by 1.02% for 2021 compared to 2018.

• Lom Method: The statistical indicators of RMSE 
and MAE for the 2021 sections improved by 1.34% 
and 2.88%, respectively, compared to 2018, while R2 
decreased by 1.93% for 2021, compared to 2018.

• Som Method: The statistical indicators of R2 , RMSE, 
and MAE for the 2021 sections improved by 1.03%, 
35.52%, and 45.92%, respectively, compared to 2018.

• According to the results, the centroid method is more 
accurate for 2018 and 2021 ( R2 = 88.3% and 88.5%, 

Table 8  Fuzzy rules for IRI by 19 road (37 sections)

Rule no. Distress type (Input) IRI (Output)

Rutting Fatigue cracking Block cracking Longi-
tudinal 
cracking

Transverse cracking Patching Potholes Delamination

1 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Very Good
2 Minimal Minimal Minimal Minimal Severe Minimal Minimal Minimal Very Good
3 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Minimal Very Good
4 Moderate Moderate Minimal Minimal Minimal Minimal Minimal Minimal Good
5 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Moderate Good
6 Moderate Minimal Minimal Moderate Minimal Minimal Minimal Minimal Fair
7 Minimal Moderate Minimal Severe Moderate Minimal Minimal Minimal Fair
8 Moderate Minimal Minimal Moderate Moderate Minimal Minimal Minimal Mediocre
9 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Mediocre
10 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Mediocre
11 Severe Moderate Minimal Minimal Moderate Minimal Minimal Minimal Poor
12 Moderate Minimal Minimal Severe Moderate Minimal Minimal Moderate Poor
13 Severe Severe Minimal Severe Severe Minimal Minimal Moderate Poor

Table 9  Assessment of various 
fuzzy inference systems' 
configurations for 19 roads (37 
sections)

*Indicates the best results for each fuzzy system in the column

Inference Year Defuzzification Statistical error measures Improvement (%)

R
2 RMSE MAE R

2 RMSE MAE

Mamdani (Triangular) 2018 Centroid 88.3* 0.567* 0.446* – – –
Bisector 88.1 0.675 0.523 – – –
Lom 88.2 0.671 0.521 – – –
Som 86.3 0.988 0.797 – – –

2021 Centroid 88.5* 0.537* 0.409* 0.226 5.30 8.30
Bisector 87.2 0.54 0.411 –1.02 20.0 21.41
Lom 86.5 0.662 0.506 –1.93 1.34 2.88
Som 87.2 0.637 0.431 1.03 35.52 45.92
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RMSE = 0.567% and 0.537%, and MAE = 0.446% and 
0.411%) than other methods.

3.8  Comparison and Validation of MLR, ANNs, 
and FIS Models

To validate the models developed in this study, all models 
were compared using MLR, FIS, and ANNs techniques. 
Table 10 shows that the models' performance was measured 

and compared using R2 , RMSE, and MAE values. Figures 15 
and 16 show the comparison among the three techniques.

Several conclusions can be drawn from Table 10, and 
Figs. 15 and 16:

IRI (2018):
According to the statistics, the R2 value for the ANNs 
model was higher than the R2 values of the FIS and the 
MLR models by 10.98% and 60.7%, respectively.
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The RMSE value of the ANNs model was less than the 
RMSE values of the FIS and MLR models by 51.32% and 
73.6%, respectively.

The MAE value of the ANNs model was less than the 
MAE values of the FIS and MLR models by 47.5% and 
71.7%, respectively.
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Fig. 14  Performance of a fuzzy inference system (2021)

Table 10  Comparison among 
MLR, FIS, and ANNs models

Technique Year

2018 2021

R
2 RMSE MAE R

2 RMSE MAE

MLR generated 39 1.046 0.827 53.2 0.751 0.605
FIS generated 88.3 0.567 0.446 88.5 0.54 0.411
ANNs generated 99.2 0.276 0.234 99.5 0.16 0.16
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IRI (2021):
According to the statistics, the R2 value of the ANNs 
model was higher than the R2 values of the FIS and the 
MLR models by 46.5% and 11.01%, respectively.

The RMSE value of the ANNs model was less than the 
RMSE values of the FIS and MLR models by 70.4% and 
78.7%, respectively.
The MAE value of the ANNs model was less than the 
MAE values of the FIS and MLR models by 61.1% and 
73.6%, respectively.

3.9  Model Sensitivity Analysis

A sensitivity analysis was performed to investigate the effect 
of input variables on the efficiency of prediction IRI models. 
A sensitivity analysis was conducted by creating prediction 
models that considered each individual input while ignor-
ing the effect of other factors. The results of the sensitivity 
analysis presented in Table 11, and Fig. 17 were as follows:

IRI (2018): Rutting has the most effect on the prediction 
model when compared to other variables. Fatigue cracking, 
longitudinal cracking, patching, and delamination have some 

Fig. 15  Fitness of MLR, FIS, 
and ANNs models to IRI pre-
diction (2018)
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Fig. 16  Fitness of MLR and 
ANNs models to IRI prediction 
(2021)
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Table 11  Sensitivity analysis of prediction models

Parameters (R2)

2018 2021

Rutting 17.4 5.4
Fatigue cracking 13.3 10
Block cracking 3.3 1.7
Longitudinal cracking 13.7 11.7
Transverse cracking – 0.1
Patching 11.0 3.2
Potholes 0.1 0.8
Delamination 12.9 5.4
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influences on the IRI model, whereas block cracking and 
potholes have minor effects.

IRI (2021): Longitudinal and fatigue cracking had the 
most effect on the prediction model compared to other vari-
ables. Rutting, block cracking, patching, and delamination 
have some influences on the IRI model, while transverse 
cracking and potholes have minor effects.

3.10  Chi‑Square Goodness of Fit Test

A chi-square goodness of fit test was performed for St. John’s 
19 roads (37 sections). The goodness of fit measures summa-
rises the difference between measured and predicted values. 
A goodness of fit between observed and predicted frequen-
cies is based on the quantity presented in the Eq. (17):

where X2 is a random value of a variable whose sampling 
distribution is approximated very closely by the chi-squared 
distribution with � = k − 1 degree of freedom; and oi and 
ei are the observed and predicted frequencies, respectively.

A higher chi-square value indicates that the measured 
frequencies differ significantly from the predicted frequen-
cies and that the fit is poor. If the observed and predicted 
frequencies are low, the chi-square value will be small, and 
the fit will be good. A good fit leads to the null hypothesis 
( Ho ) being accepted, while a poor fit leads to its rejection. 

(17)X2 =

k∑

i=1

(oi − ei)
2

ei
,

Table 12 summarises the goodness of fit test analysis; the 
null hypothesis is accepted, because X2 is less than its 
critical value with a 95% confidence level for 19 roads (37 
sections).

4  Conclusions

The soft computing techniques help demonstrate the cor-
relation between surface pavement distress and IRI. This 
paper aimed to evaluate the performance of MLR, ANNs, 
and FIS techniques predicting pavement performance. This 
case study investigated the relationship between the (IRI) 
indicator in asphalt pavements and eight independent vari-
ables, using 19 roads (37 sections) in 2018 and 2021 in St. 
John’s, Newfoundland, Canada. With performance indicator 
data (IRI), eight surface pavement distress types were col-
lected, including rutting, fatigue block cracking, longitudi-
nal cracking, transverse cracking, potholes, patching, and 
delamination, with performance indicator data (IRI). The 
notable findings of this research are summarized below:

• Table 2 indicated that 81% and 84% of road sections were 
classified as poor in (2018) and (2021), respectively.

• The ANNs technique predicted the pavement roughness 
with more accuracy and the lowest errors considerably 
compared to the FIS techniques (2018 and 2021); a coef-
ficient of determination indicated that the correlation 
was increased by 60.7% and 46.5%, respectively, while 
RMSE was reduced by 51.32% and 70.4%, respectively, 
MAE was decreased by 47.5% and 61.1%, respectively.

• The FIS technique predicted the pavement roughness 
with more accuracy and the lowest errors considerably 
compared to the MLR techniques (2018 and 2021); a 
coefficient of determination indicated that the correlation 
was increased by 55.83% and 39.89%, respectively, while 

Fig. 17  Results of the sensitiv-
ity analysis of MLR (2018 and 
2021)
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Technique 2018 2021 X
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2
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FIS 0.017 0.020 2.722
ANN 0.001 0.004 2.722
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RMSE was reduced by 45.80% and 28.1%, respectively, 
MAE was decreased by 46.07% and 32.06%, respectively.

• From the sensitivity analysis, it is concluded that rut-
ting, fatigue cracking, longitudinal cracking, patching, 
and delamination are having highest influences on the 
prediction model for (2018), longitudinal, fatigue crack-
ing, rutting, block cracking, patching, and delamination 
are effects on the prediction model (2021).
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