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Abstract
This experimental investigation involves adaptation of constrained simplex mixture design optimization technique for mod-
eling of the mechanical behavior of soil–saw dust ash (SDA) which is a derivative from industrial byproducts to provide 
efficient waste management practices. The soil enhancement protocols deployed were to improve its engineering properties 
for pavement foundation purposes. The statistical analyses engaged in this research study were achieved using Design Expert 
software for the formulation and imposition of the components constraints, derivation of the mixture experimental runs and 
design proportions of ingredients. The experimental responses obtained from the laboratory works showed a maximum 
unconfined compressive strength (UCS) and California bearing ratio (CBR) results of 248 kN/m2 and 35% with mixture 
fraction of 0.875:0.125 for soil and SDA two component mixture respectively. For the investigation and development of the 
Extreme Vertex Design (EVD)-model, information from experimental exercises was used. The procedures included statistical 
assessment, ANOVA, diagnostic tests, and influence statistics, as well as numerical optimization utilizing the desirability 
function to examine the datasets. Desirability score of 1.0 was derived at a mix ratio of 0.8125: 0.1875 for the two components 
of soil–SDA to produce maximized CBR and UCS response of 35.053% and 257.152 kN/m2 respectively. Furthermore, the 
adequacy of the model generated was assessed by statistical validation and simulation exercises using student’s t-test and 
F-test with P(T < = t) one-tail of 0.490 and 0.499 for F-test and P(F< = f) two-tail of 0.960 and 0.977 for t-test calculated 
for CBR and UCS responses, respectively. The calculated statistical results with P-value > 0.05 signified that there is no 
significant difference between the actual and EVD-model simulated results.

Keywords Saw-dust-ash · Soil stabilization · Constrained simplex optimization · Design expert

1 Introduction

In most developing countries like Nigeria, rapid increase in 
human population and urban settlements have increased the 
demand for good access highways, roads and housing facili-
ties to guarantee connectivity among the different urban set-
tlements. This, in addition to scarcity of quality aggregates, 
has compelled government and road authorities to make use 
of naturally occurring geomaterials or construction materials 
in constructing roads [1, 2]. Laterite is a kind of residual soil 
that is restricted to the humid and tropical parts of the world 
is an example of naturally occurring geomaterial which is 
widely used in the construction of engineering structures 
such as roads, compacted landfill liners, embankments as 
well as foundation materials [3, 4]. Residual soil such as 
laterite/lateritic soil often occurs in a loose, structured state 
and can collapse due to loading or wetting, resulting in 
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sudden settlements [5]. Similarly, lateritic soil can experi-
ence strength deterioration because of their varying silt and 
clay contents which often make them sensitive to changes in 
moisture content [6]. In addition, when subjected to stresses, 
the soil particles are often less stable and crushable due to 
the aggregation of finer particles into coarse-grained size 
fractions, held together by cementing agent or clay matrix, 
and this may lead to volumetric compression [7]. For this 
soil to be suitable for highway and pavement design, ground/
soil improvement method is usually deployed to address 
the numerous ground condition problems and improve its 
undesirable engineering properties. This improvement can 
be achieved in several ways, including soil densification 
(such as compaction or preloading), hydraulic modification 
(such dewatering or electro-osmosis), admixture stabiliza-
tion (mechanical, chemical, and biological stabilization), 
geosynthetic reinforcement and structural inclusions [8].

Chemical stabilization has been shown to be an effective 
method of improving and modifying the index and engineer-
ing properties of residual soil such as lateritic soil [9–11]. 
Cement, lime, limestone, rice husk ash, wood ash, and fly 
ash are few examples of admixtures available to stabilize 
lateritic soils and these admixtures are classified by Reddy 
et al. [12] into cementitious, non-cementitious and chemical 
additives. Literature has shown that cementitious additives 
such as lime and cement are widely used in the stabiliza-
tion of lateritic soils. Studies such as [13–16] reported that 
addition of lime and cement improved the CBR, unconfined 
compressive strength, plasticity and compressibility of 
the lateritic soil. However, the utilization of these conven-
tional mineral additives is associated with cost, formation 
of hazardous compounds which could contaminate soil and 
groundwater and greenhouse gases emission challenges [17].

Consequently, these shortcomings have compelled 
researchers to source for alternative materials that are both 
economical and environmentally friendly in place of lime 
and cement. Researchers have also used agricultural and 
industrial wastes that are sourced locally and disposed in 
large quantities in landfills with its attendant environmental 
hazards to stabilize and improve the engineering properties 
of lateritic soils [18]. The outcomes of waste derivatives 
utilization such as fly ash [19], saw dust ash [20], bagasse 
ash [21], steel slag [22], rice husk ash [23, 24], groundnut 
shell ash [25], and oil palm fiber ash [26] which possess poz-
zolanic behavior as construction materials to stabilized and 
improve the properties of lateritic soils have shown desired 
effect or improvement when these alternative stabilizers are 
used alone or with cement/lime [27, 28].

Sawdust is one of the byproducts of the wood processing 
factories. The wood processing factories normally dumped 
the sawdust at different locations and allowed it to decay or 
resorts into incineration in the open atmosphere which poses 
a serious challenge to the environment [29]. However, to find 

an environmentally friendly disposal method and creative 
use of this industrial residue, sawdust has been processed to 
ash which are used as eco-efficient construction materials to 
treat lateritic soil whose properties do not meet the standard 
specification to achieve sustainability [30]. More so, there is 
need for the optimization of the mixture design when using 
saw dust ash to stabilize lateritic soil. This study will there-
fore concentrate on treating lateritic soil with sawdust in a 
two component mixture design, experimentally investigat-
ing its mechanical properties to establish its suitability for 
sustainable construction, and using Extreme Vertex Design 
(EVD) to optimize the mixture component so as to develop 
a model of the mixture design [31, 32]. Experimental assess-
ments involving mixture components under imposed limits 
may be shown using the EVD approach. The experimen-
tal design points would be located in the feasible region 
within the simplex as a result of the restrictions leading to 
a decrease in the size of the factor-space. The components 
of a mixed experiment issue are varied in fractions, and the 
consequences of these changes on the response parameter 
are evaluated [33]. In situations when the factor level has 
various dependencies that are articulated via component 
constraints formulation, EVD offers an effective method 
for mixed experiment design. The generated experimental 
points are thus located inside the vertices and center edges 
of the practicable confined area [34].

Mixture design is a special type of response surface 
experiments whereby the ingredient ratio is more significant 
when compared to their quantity and also the product under 
study consists of several ingredients whose total sum is uni-
tary. This design process further results in response surface 
optimization [35]. Mixture design can be subdivided into 
simplex lattice, simplex centroid and extreme vertex design 
method. Extreme vertex design makes use of a limited num-
ber of experimental rules required to assess the behaviour 
of obtained responses which is deployed for prediction of 
actual or experimental results [36]. This type of mixture 
design, upper and lower values are expertly assigned to 
each of the factor levels which is referred to as components 
constraints to minimize the experimental points required for 
evaluation of response function. These constraints are as 
a result of economic and safety considerations [37]. Mix-
ture experiments are utilized widely in the area of blending 
experiments, viability of experiment choice or systems and 
formulations of mixture ingredients so as to obtain the pref-
erential attribute composition of a given product to achieve 
desired goal and objectives in terms of cost effectiveness 
and quality. Mixture of more than one component to obtain 
homogenous and end product is termed mixture experiment 
[38].

Due to the imposition of sum to the constraints in mixture 
experiment presented in Eq. (1) for i  = 1, 2, …, q, the linear 
models presented in Eq. (2). become redundant in mixture 
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designs. More so, Scheffe proposed linear and quadratic 
mixture models as shown in Eqs. (3) and (4) [39].

where �i is the model coefficients at the simplex vertices 
where xi = 1 , otherwise known as the pure blend and �ij is 
the model coefficient which signifies the quality of quadratic 
curvature at the edge of the simplex region having binary 
mixtures of xixj . When the model coefficient �ij is negative 
it indicates antagonistic blend while synergistic blend signi-
fies positive �ij [40]. Mclean and Anderson [33] discovered 
extreme vertices can be calculated by combinations formu-
lation of the lower (ai) and upper (bi) limits of the initial 
(q − 1) components using two-level factorial designs and 
thereafter deriving the qth component level. Extreme vertex 
point is observed if the calculated Xq values lie between or 
on the upper (bq) or lower (aq) limits of Xq with the limit 
points defined as shown in Eq. (5) [41].

This computation produces 2q−1 possible experimental 
points and the process is repeated q-times which permits 
each of x (factor levels) to be the computed variable to pro-
duce a total of N = q × 2q−1 possible points. Extreme ver-
tex designs are mixture designs which cover sub-positions 
of the simplex when the components or factor levels are 
constrained to upper and lower bounds and these imposed 
constraints must be consistent as shown in Eq. (6) [42].

(1)
q
∑

i=1

xi − 1 = 0

(2)�0 +

q
∑

i=1

�ixi + �

(3)y =

q
∑

i=1

�ixi + �

(4)y =

q
∑

i=1

�ixi +

q−1
∑

i=1

�ixi +

q
∑

j=i+1

� ijxixj + �

(5)aq ≤ xq ≤ bq

In this research study, using the EVD mixture design 
method, two components blend namely loose laterite soil 
and saw dust ash were optimized in terms of its mechanical 
characteristics to achieve sustainable construction materials 
and robust performance. The optimal fraction of the factor 
levels was determined through the desirability function using 
multiple optimization criteria in Design Expert software. 
This experimental research work presents essential insight 
on the constrained simplex mixture design application for 
soil-additive blend engineering properties evaluation [2, 43].

2  Methodology

2.1  Materials

The Lateritic soil for the experiments was collected from a 
borrow-pit in Olokoro, Umuahia, Abia state, Nigeria, at a 
depth of 2 m. The sample was taken in a solid condition and 
had a reddish brown hue. It was air dried and ground using 
a pestle in a tray and sieved using a neatly organized British 
standard in accordance with ASTM-Vol. 04.08 [44]. The 
Saw dust residue was acquired from a timber-workshop at 
Abia State, Nigeria. The trees found in the workshop where 
the processed saw dust was obtained are majorly hard wood 
for furniture purposes such as mahogany, walnut, maple, 
oak, and cherry. The saw dust, processed ash and the sample 
mixed with weak soil is shown in Fig. 1. The industrial resi-
due was further burnt through controlled incineration system 
in a muffle furnace to acquire ash samples, which were then 
processed for laboratory testing in line with ASTM C618 
[45] and BS 8615-1 (2019) [46] and sieved with a 150 μm 
to obtain finer particles.

2.2  Test Methods

The program for this investigation was conducted in 
accordance with the guidelines outlined in BS 1377 (1990) 
[47] and BS 1924 (2018) [48] for the enhancement of lat-
eritic clayey soil engineering characteristics using sawdust 

(6)0 ≤ Li ≤ xi ≤ yi ≤ 1. For i = 1, 2… q

Fig. 1  Materials for the experi-
ment. a Saw dust waste; b saw 
dust ash; c soil–saw dust ash 
mixture



830 G. U. Alaneme et al.

1 3

ash (SDA). Derivation of general engineering properties 
of the test soil and classification using AASHTO were 
carried out which includes; specific gravity test, sieve 
analysis, compaction test, consistency limit, CBR and 
UCS test [49]. This mixture experiment problem which 
consists of two components namely; saw dust ash (SDA) 
and lateritic soil, while the optimum moisture content 
derived during the preliminary tests was utilized for the 
investigation. I-optimal design computation with cubic 
model mixture design were deployed for the computation 
of the ingredients’ ratios and the number of experimental-
runs required taken into consideration the imposed com-
ponents constraints formulated [50, 51]. The formulated 
constituent proportions were taken into consideration 
while conducting CBR and UCS experiments, and the 
resulting responses were used to simulate the soil–SDA 
blend's mechanical characteristics. Following the develop-
ment of experimental responses, further statistical impacts 
and diagnostic tests were conducted to support the created 
EVD model [52]. Furthermore, the optimal combination 
of the soil–SDA blend for maximum mechanical response 
was determined through graphical and numerical optimi-
zation which were conducted using desirability-function 
computation to take into account the factor levels while 
maximizing the output variable criterion (Design expert 
11; Minitab 18) [53, 54]. The program flowchart presented 
in Fig. 2.

2.2.1  California Bearing Ratio (CBR)

CBR test presents an essential soil strength characteristics 
indicator which is carried out in accordance with BS 1924 
[48] and BS 1377 [47] specifications. Making use of the for-
mulated proportions of varying soil–SDA blend and required 
number of runs, the experiments were carried out for the 
mixed soil specimens carefully compacted based on Brit-
ish Standard Light (BSL) compaction energy. The blended 
soil samples in the course of the laboratory exercise were 
adequately compacted in layers of three sections using a 
2.5 kg weight rammer with about 62 number of blows for 
each of the layer. The compacted samples were further cured 
for 7 days after which they are immersed in water for two 
days to get the test specimens ready to be put through the 
CBR machine's static loading mechanism until failure is 
witnessed [56].

2.2.2  Unconfined Compressive Strength (UCS)

UCS is defined as the maximum axial compressive stress 
which a cylindrical molded or compacted soil–SDA blended 
sample can bear or resist at unconfined settings and carried 
out in accordance with BS 1377 [47] specifications. The 
mixture samples were compacted using compaction energy 
of British Standard Light and further cured for seven days 
after which they are positioned without lateral support in the 
loading frame UCS testing apparatus to determine the failure 
load at constant rate of stream [55].

2.3  Mixture Components Constraints Formulation

As a starting point for the formulation and design of compo-
nent constraints, bibliographic reviews, professional opinion, 
evidence-based interrelations, a wealth of experiences, as 
well as practical, environmental, and financial factors, were 
used. The formulation of the combination ratio of the mix-
ture's ingredients, which is constrained by the sum-to-one 
constraint, will be moderated by these boundary limits [57]. 
The upper and lower limits for each of the parameters are 
presented in the design components constraints shown in 
Table 1 ranging from 0.5–1.0 for the soil sample and 0–0.5 
for the saw dust ash material. The viable experimental-
region is placed inside the confined area of the simplex to 

Fig. 2  Program Flowchart (source: Aju et al. 2021) [55]

Table 1  Design constraints

Mixture coding Actual

Low Constraint High

0.500 A: Soil 1.000
0.000 B: SDA 0.500

A + B 1.000
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adopt a hyper-polyhedron simplex form due to multi-criteria 
limitations put on factor levels. The degree of freedom (df) 
is further evaluated by computing the design matrix for the 
design trials using the cubic mixture model with L pseudo 
mixture component coding, as shown in Table 2. Table 3 
displays the information-matrix measurements for leverages, 
space type, and mean. Six experimental runs were created 
in order to increase the optimality or performance of the 
established EVD-model [58].

2.3.1  Two‑Component Factor Space Plot

Figure 3 illustrates the contour plot created for the two-
component restricted simplex with the space type on the 
x-axis and the component distribution on the y-axis. The 
graphical representation depicts the diagrammatic place-
ments and arrangements of the experimental points inside 
the confined area of the simplex in designated regions, 
namely the vertex, axial CB, and center [59].

2.3.2  Fraction of Design Space (FDS)

Fractional design space (FDS) is a schematic approach that 
offers a straightforward setting for evaluating functionality 
and assessing contrast in a two-component mixture experi-
ment of soil-additive bend. FDS offers computational data 
from the scaled prediction variance curvature for expected 
design region; and also measures G-efficiency which 
affords needed template for studied comparisons as shown 
in Figs. 4, 5 [60]. The maximum, lowest, and mean stand-
ard-error values were derived from the displayed FDS at 
0.993, 0.618, and 0.792, respectively. Furthermore, Coef-
ficient Matrix condition number of 6.477 was obtained 
with G efficiency of 78.2% which holds converse correla-
tion with the maximum variance, computed determinant 
(X'X)−1 of 2.095E + 2 and Trace (X'X)−1 of 84.667, Scaled 
D-optimality Criterion and I-optimality result of 15.12 and 
0.859 were calculated to enable the components fractions 
formulation and number of experimental runs [61].

Table 2  Design matrix 
evaluation

Degrees of freedom for evalu-
ation

Model 3
Residuals 2
Lack of fit 1
Pure error 1
Corr total 5

Table 3  Measures derived from the information matrix

Run Leverage Space type

1 0.4964 Vertex
2 0.9856 Vertex
3 0.7698 Axial CB
4 0.4964 Vertex
5 0.7698 Axial CB
6 0.4820 Center
Average = 0.6667

Fig. 3  Factor-space of two-component simplex
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2.3.3  Experimental Mix Proportions

Six generated runs of experimental run were obtained 
from the simplex cubic mixture design information-matrix 
computation which evaluates the imposed components 
constraints and using criterion optimality algorithm in the 
Design Expert software to improve suitable experimental 

point selection within the confined design space. To 
achieve accurate optimization results, the generated two-
component proportions and number of experimental runs 
as derived by the statistical software are expected to be 
strictly taken in the experiments to generate the CBR 
and UCS responses. The determined proportions of the 
combination elements would be utilized to construct an 

Fig. 4  Fraction design space 
plot for two-component

Fig. 5  Two-component standard 
error design plot
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EVD-model capable of forecasting the mechanical char-
acteristics of the soil–SDA blend. These obtained mixes 
for the actual and pseudo fractions provide a special guide 
for specimens to be tested in the laboratory to achieve the 
desired responses as shown in Table 4 [62]. In restricted 
simplex mixture designs, pseudo values are coded or fic-
titious parameters that are used to facilitate model fit-
ting by minimizing multi-collinearity between compo-
nent boundaries. The blended soil–SDA mixes for the six 
experimental runs were affected with the aid of derived 
optimum moisture content of 17% to achieve homogenous 
mixture of the two-component binary blend with SDA 
fractions added to the soil from 0 to 50%.

3  Discussion of Results

3.1  Characterization of Test Soil and Admixture

The preliminary results on the soil samples which were 
aimed at deriving the engineering behavior of the test 
materials and for classification using a unified soil clas-
sification system (USCS) and AASHTO method as shown 
in Table 5. The laboratory results showed specific gravity 
of 2.35, plasticity index of 25%, 13% for shrinkage limit 
and liquid limit of 59% which signifies high plasticity 
behavior with high swelling potential and also poorly 
graded with AASHTO and USCS of A-7 and CH, respec-
tively [63]. The obtained experimental results when com-
pared with federal ministry of works specification implies 
unsuitable and unacceptable performance for construction 
works with 7% CBR, max-dry-density of 1.74 mg/m3 and 
17% optimum-moisture-content. The particle size distri-
bution of the test materials is presented in Fig. 6 which 
showed 96.6–42% passing through 2 mm–75 μm sieve 
aperture for the soil and 99.57–53.4% were also passing 
through 2 mm–75 μm sieve aperture for SDA [64].

3.1.1  Chemical Properties

Table 6 shows the chemical properties of the test mixture 
ingredients with soil SDA possessing constituents of 65.28% 
for  SiO2, 2.75% for  Fe2O3 and 5.52% for  Al2O3 which indi-
cates cumulative sum  (SiO2 +  Fe2O3 +  Al2O3) of 73.55% to 
signify good pozzolanic behavior according to ASTM C618, 
98 [65] standard requirements. However, the test soil has 
high alumina, iron-oxide and silica with 17.91%, 2.32% and 
49.74%, respectively. From the presented results, the derived 
elemental oxides prevailing in the soil and SDA would react 
in the presence of water with the abundant alumina silica in 
the blended mixture through pozzolanic reaction to produce 
stable calcium-silicate-hydrate as hydration products which 
improves the soil’s mechanical properties [66].

3.2  Mechanical Properties of Soil–SDA Blend

The laboratory test responses to assess the mechanical 
behavior of the soil–SDA blend with respect to the formu-
lated mixture ingredients proportions through the design six 
experimental runs are presented in Table 7 and contour plot 
in Fig. 7 to observe the effects of the additives additions to 
enhance the soil engineering properties. The derived experi-
mental results showed maximum CBR and UCS results of 
35% and 248 kN/m2 with mixture fraction of 0.875: 0.125 
for soil and SDA two component mixture, respectively [67]. 
However, the unblended soil with ratio of 1:0 for soil and 
SDA, respectively, produced the minimum CBR and UCS 
results of 7% and 64 kN/m2 correspondingly. The pozzo-
lanic reactions of SDA to produce cementitious products by 
combining the Pozzolana in SDA with the CaOH in the soil 

Table 4  Mixtures of component proportions for the experimental 
research

Experi-
mental 
run

Actual values Response Pseudo values

Z1: Soil Z2: SDA X1: Soil X2: SDA

1 1 0 1 0
2 0.5 0.5 0 1
3 0.625 0.375 0.25 0.75
4 1 0 1 0
5 0.875 0.125 0.75 0.25
6 0.75 0.25 0.5 0.5

Table 5  General test soil properties

Test soil characteristics Results

Moisture content 12.36%
% Passing sieve 0.075 mm 42.5
Liquid limit (LL) 59%
Plastic limit (PL) 34%
Plasticity index (PI) 25%
Specific gravity 2.35
Shrinkage limit (SL) 12%
AASHTO A-7
USCS CH
Optimum moisture content 17%
Max dry density 1.74 mg/m3

pH 8.6
Color Brownish ash
CBR 7%
UCS 64 kN/m2

Fineness modulus 3.26
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Fig. 6  Particle size distribution
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Table 6  Chemical properties of 
SDA and Soil

a Alaneme et al. [65]

Oxides CaO MgO Fe2O3 Na2O Al2O3 SiO2 MnO LOI K2O

SDAa (%) 10.14 5.8 2.75 5.2 5.52 65.28 0.01 4.55 Trace
Soil (%) 1.12 2.25 2.32 1.46 17.91 49.74 Trace 10.05 0.88

Table 7  Mixtures of 
components for the 
experimental research

Experimental 
run

Actual values CBR (%) UCS (kN/m2) Pseudo values

Z1: Soil Z2: SDA X1: Soil X2: SDA

1 1 0 7 64 1 0
2 0.5 0.5 17 92 0 1
3 0.625 0.375 24 156 0.25 0.75
4 1 0 8 65 1 0
5 0.875 0.125 35 248 0.75 0.25
6 0.75 0.25 28 219 0.5 0.5

Fig. 7  Response of the mechanical strength to SDA interaction with soil
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are what give the material its increased strength. The low 
strength shown by the SDA, which therefore occupies inside 
the weak soil sample, is responsible for the drop in outcome 
after reaching the optimal value. Weak connections between 
the soil and cementitious chemicals are created when too 
much SDA is added to the soil, which is aligned with Obeta 
et al. [68] study results. According to the federal Ministry 
of Works standard for subgrade materials, the laboratory 
findings show improved mechanical strength performance on 
the poor soil for construction road foundation applications 
when SDA is mixed with it at 12–25% [69].

4  EVD Model Development, Formulation, 
and Validation

After the experimental exercises using the formulated mix-
ture components proportions, the derived details are taken 
as the system database to develop the EVD-model which 
is adapted to analyze the two component mixture design 
optimization problem with quadratic (square-root, λ = 0.5) 
power transformation. The responses obtained for CBR and 
UCS experiments range from 7 to 35% with maximum-to-
minimum ratio of 5 and 64–248 kN/m2 with maximum-to-
minimum ratio of 3.875 respectively [69]. To derive the 
optimal two component mixture ratio which evaluates the 
mechanical behavior of the soil–SDA blended mixture, fit 
statistics, statistical influences and diagnostics, numerical 
and graphical optimization were executed using design 
expert software and Minitab software [53, 54]. Furthermore, 
post statistical analysis, confirmation and point prediction 
computation, were carried out to derive the EVD-model 
coefficients after which model simulation of the developed 
model were achieved to validate the applicability and per-
formance of the prediction module for field construction 
works [70].

4.1  Fit‑Summary Statistics

Fit statistical computations were first performed on the 
derived experimental datasets to ascertain its type and suit-
ability so as to attain the requirements for EVD modeling 
using L_Pseudo mixture component coding. The summary 
derived from this statistical computation gathers vital details 
which would enable the selection of the most appropriate 
starting point for the EVD model development. With the 
help of Whitcomb score, the suggested suitable model were 
taken which are expected to be the starting point acceptable 
for the model fitting [71]. This statistical analysis shows the 
fit summary which search for the right model using evalu-
ation indicators such as standard deviation, coefficient-of-
determination (R-sqd.), predicted sum of squares (PRESS) 
which measures how appropriate the model fits the design 
points, sequential model sum of squares and lack of fit as 
presented in Tables 8, 9, 10, 11, 12, and 13. The results 
shown for the CBR and UCS response variables help to 
select the required polynomial order which possesses sig-
nificant terms. Cubic models were suggested for the two 
responses under study with R-sqd. of 0.9753 and 0.9901 for 
CBR and UCS, respectively. The sequential sum of squares 
statistical evaluation presents p-value of 0.0383 and 0.0395 
for CBR and UCS, respectively, which indicates statistical 
significance between the selected models and the target vari-
ables [72].

4.2  Results of an Analysis of Variance (ANOVA) Test

ANOVA computational statistics were performed once the 
preferred appropriate model was selected through fit statisti-
cal calculations whereby minimum p-value conditions are 
deployed to enable determination of significant model terms. 
A univariate ANOVA was deployed in this research study as 
provided by the Design Expert software because we intend 
to test the effects of the model terms on one dependent 

Table 8  CBR response model 
summary statistics

Source Std. Dev R-Sqd Adjd. R-Sqd Pred. R-Sqd PRESS

Linear 1.31 0.2040 0.0050 −0.7869 1.545
Quadratic 0.79 0.7821 0.6368 −0.5989 1.383
Cubic 0.33 0.9753 0.9383 −0.8306 0.083 Suggested
Quartic 0.13 0.9981 0.9904  + 

Table 9  Lack of fit tests for 
CBR response

Source SS df MS F-value p-Value Prob > F

Linear 6.87 3 2.29 137.17 0.0627
Quadratic 1.87 2 0.93 55.97 0.0941
Cubic 0.20 1 0.20 11.79 0.1804 Suggested
Pure error 0.017 1 0.017
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variable of CBR and UCS responses successively. Adopt-
ing the suitable cubic models and using L_Pseudo for the 
CBR and UCS, respectively, computation of partial sum of 
squares type III and calculation of R-sqd. statistics as shown 
in Tables 14, 15, 16, and 17. From the computed results, 
p-value, model and lack of fit F-value of 0.0368, 26.35 and 
11.79, respectively, was obtained for the CBR response. 
However, for the UCS response, 0.0148, 66.78 and 2.7 was 
calculated for p-value, model and lack of fit F-value, respec-
tively, which indicated the derived model terms are statisti-
cally significant and also that the lack of fit is not significant 
relative to the computed pure error [73].

A negative Pred. R-Squared suggests that the overall 
mean predicts your reaction better than the present model. 
The signal-to-noise ratio is measured using Adeq.-Prec., 
and a determined value of > 4 is preferable. As a result, 
the resulting ratio of 11.023 shows a sufficient signal. This 
paradigm is useful for navigating the design space [74].

The Pred. R-Sqd. of 0.9901 and the Adjd. R-Sqd. of 
0.9753 are reasonably in agreement, therefore the differ-
ence is less than 0.2. The signal to noise ratio is meas-
ured using Adeq.-Prec., where a determined value of > 4 
is preferred. Your signal is strong enough based on your 
ratio of 16.887. To move about the design area, utilize this 
model [75].

Table 10  Sum of squares [type 
I] sequential model for CBR 
response

SS sum-of-squares; MS mean-square; df degree of freedom

Source SS df MS F-value p-Value Prob > F

Mean vs. total 109.35 1 109.35
Linear vs. mean 1.76 1 1.76 1.03 0.3686
Quadratic vs. linear 5.00 1 5.00 7.96 0.0667
Cubic vs. quadratic 1.67 1 1.67 15.66 0.0383 Suggested
Quartic vs. cubic 0.20 1 0.20 11.79 0.1804
Residual 0.017 1 0.017
Total 118.00 6 19.67

Table 11  Model summary 
statistics for UCS response

Source Std. dev R-Sqd Adjd. R-Sqd Pred. R-Sqd PRESS

Linear 3.85 0.0723 −0.1596 −1.2820 145.48
Quadratic 1.65 0.8724 0.7874 −0.0124 64.54
Cubic 0.56 0.9901 0.9753 0.4115 37.51 Suggested
Quartic 0.41 0.9973 0.9866  + 

Table 12  Lack of fit tests for 
UCS response

Source SS df MS F-value p-Value Prob > F

Linear 58.97 3 19.66 115.34 0.0683
Quadratic 7.96 2 3.98 23.36 0.1448
Cubic 0.46 1 0.46 2.70 0.3482 Suggested

Table 13  Sequential model 
sum of squares [type I] for UCS 
response

SS sum-of-squares; MS mean-square; df degree of freedom

Source SS df MS F-value p-Value Prob > F

Mean vs total 776.25 1 776.25
Linear vs mean 4.61 1 4.61 0.31 0.6063
Quadratic vs linear 51.01 1 51.01 18.82 0.0226
Cubic vs quadratic 7.50 1 7.50 23.81 0.0395 Suggested
Quartic vs cubic 0.46 1 0.46 2.70 0.3482
Residual 0.17 1 0.17
Total 840.00 6 140.00
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4.3  Estimates of the Coefficients and Model 
Equations

Through meticulous statistical analysis performed with the 
aid of Design Expert software, the appropriate model coef-
ficient estimations and equations are generated. For the 
CBR and UCS responses, the computations clearly illus-
trate the standard error, variance inflation factor (VIF), 
low and high confidence ranges, and coefficient estimate 
as given in Tables 18, 19, 20, and 21. The influences of 
orthogonality absence on the generated model coefficients’ 
variances are evaluated by VIF, therefore, the standard 

error of the model is proportional to square root of VIF 
[76].

The developed model equations in pseudo coded factor 
terms can be used to carry out investigative predictions 
about the response for given levels of each factor to evalu-
ate the response variables [53, 54].

4.4  Diagnostics Plots

Diagnostic statistical plots are of the form of scattered plot 
which presents the models’ error prediction or residuals vs. 
predicted results to investigate how further the achieved 

Table 14  Cubic mixture 
model for CBR response using 
ANOVA

a Linear mixtures inferences uses SS Type I

*** L Pseudo is the mixture component coding ***

Table of variance analysis [partial sum of squares—type III]

Source SS df MS F-value p-Value Prob > F

Model 8.43 3 2.81 26.35 0.0368 Significant
Linear  mixturea 1.76 1 1.76 16.53 0.0555
AB 4.43 1 4.43 41.48 0.0233
AB(A-B) 1.67 1 1.67 15.66 0.0583
Residual 0.21 2 0.11
Lack of fit 0.20 1 0.20 11.79 0.1804 Not significant
Pure error 0.017 1 0.017
Cor total 8.65 5

Table 15  R-sqd. Calculations for CBR Response

Std. Dev 0.33 R-Sqd 0.9753
Mean 4.27 Adjd. R-Sqd 0.9383
C.V. % 7.65 Pred. R-Sqd −0.8306
PRESS 15.83 Adeq.-Prec 11.023
−2 Log Likelihood −2.99 BIC 2.38

AICc 15.01

Table 16  Cubic mixture model 
for UCS Response using 
ANOVA

a Linear mixtures inferences uses SS type I

*** L Pseudo is the mixture component coding***

Table of variance analysis [partial sum of squares—type III]

Source SS df MS F-value p-Value Prob > F

Model 63.12 3 21.04 66.78 0.0148 Significant
Linear  mixturea 4.61 1 4.61 14.64 0.0620
AB 46.94 1 46.94 149.00 0.0066
AB(A-B) 7.50 1 7.50 23.81 0.0395
Residual 0.63 2 0.32
Lack of fit 0.46 1 0.46 2.70 0.3482 Not significant
Pure error 0.17 1 0.17
Cor total 63.75 5

Table 17  R-sqd. calculations for UCS response

Std. Dev 0.56 R-Squared 0.9901
Mean 11.37 Adjd. R-Sqd 0.9753
C.V. % 4.93 Pred. R-Sqd 0.4115
PRESS 37.51 Adeq.-Prec 16.887
−2 Log Likelihood 3.51 BIC 8.88

AICc 21.51
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model estimation can be improved. The diagnostic plot 
also uses studentized residuals to assess the developed 
EVD model’s goodness-of-fit and also to affirm the fulfil-
ment of regression assumption conditions so as to fathom 
undue observations which could present substantial influ-
ences on the analysis outcome [77]. The calculated standard 
errors of the residuals are diverse unless the leverages of 
the experimental runs are similar which signifies that the 
model residuals which are not studentized are inadequate 
for evaluation of regression model assumption. Therefore, 
studentized residuals are highly recommended so that all 
observed normal distributions from varying dimensions 
are sequentially mapped to solitary distribution. To achieve 
diagnostic statistical analysis with respect to the model tar-
get responses, predicted vs. residual, normal probability, run 
plot vs. residuals, predicted vs. actual and box-cox power 
transformation to help detect problems with the analysis 
using outliers [78].

4.4.1  Normal‑Probability Plot

The first diagnostic statistical assessment is executed in the 
form of normal probability plot which ensures the EVD 
model residuals assume the path of a normal standard dis-
tribution closer to the regression line as shown in Fig. 8. for 
the CBR and UCS response parameters. The normal prob-
ability plot presents the externally studentized residuals on 
the x-axis and the normal probability in percentage on the 
y-axis. To derive better results, defined graph patterns such 
as curve or linear shapes are carefully studied to determine 

when it’s necessary to deploy transformation of the response 
variables [79].

4.4.2  Predicted vs. Studentized Residuals Plot

This statistical diagnostic test presents the externally stu-
dentized residuals on the vertical axis and the EVD mode 
predicted results on the horizontal axis of the graphical 
scattered plot to validate the residuals’ constant variance 
assumption for the target responses as presented in Fig. 9. 
The derived results from the statistical plot indicate cluster-
ing of predicted data at zero externally studentized points 
at boundary points of ± 76.39 for CBR and UCS response 
variables, respectively [80].

4.4.3  Experimental Run vs. Studentized Residuals Plot

This diagnostic statistical plot presents experimental 
run on the x-axis against the externally studentized 
residuals on the y-axis to evaluate the studentized 
residuals vs. experimental run’s effects on the response 
variables under study. This analytical plot basically 
search for prowling factors that would inf luence the 
dependent parameters during the statistical computa-
tion as presented in Fig. 10. Similar to the predicted 
vs. residual plots, the computed results for the experi-
mental runs were found to be positioned about the 
zero external studentized residual regions for the CBR 
response while the result for the UCS response spread 
out more to about ±25 residual points for run number 

Table 18  Results of the model 
coefficients computation for 
CBR response

Factors Estimate coef-
ficients

df Standard error 95% CI low 95% CI high VIF

A-Soil 2.76 1 0.23 1.77 3.75 1.43
B-SDA 4.30 1 0.32 2.90 5.69 1.85
AB 8.32 1 1.29 2.76 13.88 2.08
AB (A-B) 10.62 1 2.68 −0.93 22.17 1.19

Table 19  Final equation in terms of L_Pseudo components

Coding *A *B *AB *AB(A-B)

L_Pseudo Sqrt. (CBR) =  + 2.76  + 4.30  + 8.32  + 10.62

Table 20  Results of the model 
coefficients computation for 
UCS response

Factors Estimate coef-
ficients

df Standard error 95% CI low 95% CI high VIF

A-Soil 8.08 1 0.39 6.39 9.76 1.43
B-SDA 9.69 1 0.55 7.31 12.06 1.85
AB 25.92 1 2.20 16.47 35.38 2.08
AB(A-B) 21.66 1 4.56 2.03 41.30 1.19

Table 21  Final Equation in Terms of L_Pseudo Components:

Coding *A *B *AB *AB(A-B)

L_Pseudo Sqrt. (UCS) =  + 8.08  + 9.69  + 25.92  + 21.66
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2, 3, 5 and 6, respectively. However, the derived out-
comes were overall situated at the boundary of ±76.39 
studentized residual limits [81].

4.4.4  Experimental vs. Predicted Results

This statistical diagnostic graph presents a straight line 
plot of the experimental or actual results on the horizontal 

Fig. 8  Residuals normal probability plots for the target responses

Fig. 9  Residual vs. predicted diagnostic statistical graphs
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axis against the EVD model predicted values on the ver-
tical axis to evaluate the generated model performance in 
terms of accuracy of prediction. The regression line is used 
to examine how well the two datasets fits the square root 
transformation output (λ = 0.5) of the two response vari-
ables as shown in Fig. 11. The essence of this analytical 

diagnostic computation is to investigate the experimental 
groups or design points which the developed EVD model 
cannot accurately predict and to evaluate the laboratory or 
actual and predicted response relationships. The obtained 
results from the plots indicated predicted and actual points 
ranging from 2 to 6 for CBR and 8–16 for UCS responses, 
respectively [82].

Fig. 10  Residual vs. experimental run diagnostic graphs

Fig. 11  Actual vs. model pre-
dicted diagnostic graphs
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4.4.5  Box‑Cox Plot Power Transformation

This statistical computation graph presents essential condi-
tions for choosing appropriate power transformation law to 
investigate the significant effects of the factor levels on the 
response variables. The analytical plot is dependent upon 
the obtained best lambda results on the x-axis derived at 
the minimum point of the curve on the graph with respect 
to the natural logarithm of the sum-of-squares residuals on 
the y-axis, the preferred transformation is then endorsed as 
presented in Fig. 12 [83]. From the statistical plots for the 
CBR response showed 0.5 current lambda, high and low 
confidence interval (C.I.) of 2.8 and −2.07 lambda, respec-
tively, with best lambda of 0.2. However, the UCS response 
showed best and current lambda of 0.67 and 0.5 respectively, 
high and low C.I. of 3.54 and −3.45, respectively [84].

4.5  Diagnostic‑Influence Plots

This diagnostic effect graphical calculation makes it possible 
to assess the potential impact or influence of experimen-
tal runs on the results of the study. When a case or a few 
instances stand out from other groups in the experimental 
design, these analytical charts provide a better statistical 
viewpoint. Utilizing the crucial instruments of leverage vs. 
experimental run, cook's distance, and statistical difference 

in fits (DFFITS) vs. run of experiments, the diagnostic sta-
tistical influence calculation was carried out [85].

4.5.1  The Cook’s Distance

Cook’s distance is a statistical diagnostic influence tool uti-
lized in regression statistics to determine significant outliers 
in the factor levels with respect to the response parameters. 
It is then used to locate predictor variables in the possible 
design points that have an adverse impact on the created 
EVD model. Additionally, it is used to locate areas or planes 
with an apparent strong correlational link, as illustrated in 
Fig. 13. The computed cook's distance value, which ranges 
from 0 to 40, is shown on the y-axis of the graph, and the 
six trial runs are shown on the x plane. For the CBR and 
UCS responses, experimental run number 2 was observed 
to lie above the zero to one cook’s distance boundary which 
indicates overall positive influences of the factor levels on 
the developed model [86].

4.5.2  Leverage vs. Run

In statistical diagnostic influence computations, leverage 
is adapted to investigate the magnitude which each design 
point in an experimental design affects the goodness-of-fit 
of the developed model. It is also the measure of distance in 
which the factor levels or independent variables of a given 

Fig. 12  Box-cox plots for power transformation
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observation are away from a set of other observations in 
the mixture experiment design. The leverage point is the 
area of observation that presents unfamiliar estimations from 
the several observations under study as shown in Fig. 14 
presenting the experimental runs on the x-axis and the cal-
culated leverage points ranging from 0 to 1 on the vertical 
axis of the plot. When leverage of 1 is derived, it indicates 
that the developed EVD-model at the point of interest for 
evaluation perfectly fits the observation. The plotted results 
for the CBR and UCS responses present leverage boundary 
points of 0–0.66667. Experimental runs number 1, 4, and 
6 were observed to be situated below the leverage limits at 
about 0.5 while runs 2, 3, and 5 were found above the line 
from about 0.75–1.0 [31, 39].

4.5.3  Runs vs. Statistical Difference in Fits (DFFITS)

The DFFITS statistic, which provides a scaled assessment 
of the expected response variation for the  ith observation, 
is a crucial tool for studentized diagnostic impact. The dif-
ference in fits (DFFITS) also defines the variances in the 
EVD-model responses for particular point on the experi-
mental design when the model fitting processes are excluded 
as shown in Fig. 15. The presented graphical computation 
displays the six experimental runs on the horizontal axis 
and the derived DFFITS results ranging from −30 to 10 and 
−150 to 50 for CBR and UCS, respectively, with boundary 
limits of ± 2.44949 on the y-axis. The results plotted for the 

CBR and UCS responses were observed to be situated at 
approximately DFFITS points from −1 to 5 and −10 to 30 
respectively [87].

The diagnostic statistical summary and influences for 
the analytical computations carried out in this experimental 
investigation and EVD model development for the CBR and 
UCS responses are shown in Tables 22, 23. The results pre-
sents the predicted vs. actual values, the computed residuals, 
leverages, internally and externally studentized residuals, 
cook’s distance and influence on fitted value [35].

4.6  Optimization Overview

To maximize the response variables, optimization is further 
carried out using the desirability function, which evaluates 
the imposed components constraints on the model variables. 
This is done after the fits statistical computation, analysis of 
variances (ANOVA), statistical diagnostics, and influences 
graphical computations have been achieved to generate the 
EVD model, analyze, and validate models. To do this, the 
aspects of the goals functions are routinely altered by ana-
lytical weight function adaptation in accordance with the 
predetermined model variable criteria. Through a scale of 
0 ≤ d

(

yi
)

≤ 1 boundary conditions, these multi-collinearity 
criteria would allow for the accomplishment of the neces-
sary circumstances to reach a desirability score of 1.0 [88]. 
The optimization procedures for this two component mix-
ture design explores the varying formulated ingredients 

Fig. 13  Cook’s distance influence plot
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Fig. 14  Diagnostic influence plot of leverage vs. run

Fig. 15  Experimental run vs. diagnostic influence plot of DFFITS
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combinations in the factor space with respect to the sort 
after response which satisfies the imposed criteria or compo-
nents constraints for the factor levels and the corresponding 
optimized dependent variables simultaneously. The goal of 
optimization as expected is set to in-range preference for the 
factor levels and at maximum option for the target responses 
to ascertain the optimal ratio of the mixture ingredients 
with maximized responses bounded by the derived upper 

and lower limits from the experimental details as shown in 
Table 24 [89].

Table 25 shows the calculated mixture design optimiza-
tion solution that was obtained from the analytical results 
of the mixed experiment designs. From the deduced data, a 
combination ratio of 0.8125: 0.1875 produced a maximum 
CBR and UCS response of 35.053% and 257.152 kN/m2, 
respectively, with an ideal desirability score of 1.0 [90].

Table 22  Diagnostics case statistics for CBR response

a Exceeds limits

Run order Actual value Predicted value Residual Leverage Internally 
studentized 
residual

Externally 
studentized 
residual

Cook's distance Influence on 
fitted value 
DFFITS

Stand-
ard 
order

4 2.83 2.76 0.065 0.496 0.279 0.201 0.019 0.200 6
3 4.69 4.48 0.21 0.770 1.358 3.433 1.541a 6.278a 5
5 5.92 5.70 0.21 0.770 1.358 3.433 1.541a 6.278a 4
6 5.29 5.61 −0.32 0.482 −1.358 −3.433 0.429 −3.312a 3
2 4.24 4.30 −0.053 0.986 −1.358 −3.433 31.572a −28.416a 2
1 2.65 2.76 −0.12 0.496 −0.509 −0.386 0.064 −0.383 1

Table 23  Diagnostics case statistics for UCS response

a Exceeds limits

Run order Actual value Predicted value Residual Leverage Internally 
studentized 
residual

Externally 
studentized 
residual

Cook's distance Influence on 
fitted value 
DFFITS

Stand-
ard 
order

4 8.06 8.08 −0.016 0.496 −0.040 −0.029 0.000 −0.028 6
3 12.49 12.11 0.38 0.770 1.412 17.813 1.667a 32.572a 5
5 15.75 15.37 0.38 0.770 1.412 17.813 1.667a 32.572a 4
6 14.80 15.36 −0.56 0.482 −1.412 −17.813 0.464 −17.183a 3
2 9.59 9.69 −0.094 0.986 −1.412 −17.813 34.142a −147.427a 2
1 8.00 8.08 −0.078 0.496 −0.198 −0.142 0.010 −0.141 1

Table 24  Variables constraints 
for optimization

Name Goal Lower limit Upper limit Lower 
weight

Upper weight Importance

A: Soil Is in range 0.5 1 1 1 3
B: SDA Is in range 0 0.5 1 1 3
CBR Maximize 7 35 1 1 3
UCS Maximize 64 248 1 1 3

Table 25  Computed mixture 
design optimization solutions

Number Soil SDA CBR UCS Desirability

1 0.813 0.188 35.053 257.152 1.000 Selected
2 0.825 0.175 35.136 256.856 1.000
3 0.833 0.167 35.043 255.625 1.000
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4.6.1  Graphical Optimization Plots of Ramps and Bar

The outcomes from the mixture design optimization pro-
cesses were presented graphically in the form of bar chart 
and ramps for clearer understanding of the derived results. 
To further explain the acquired desirability function findings 
as shown in Figs. 16, 17, 18, bar graphs and optimization 
ramps illustrate the ideal solution for the mixture compo-
nents in red and the dependent parameters in blue hues. The 
results presented indicate explanatory and response variables 
desirability score of 1.0, while the combined optimal desira-
bility result of 1.0 was calculated which denotes satisfactory 
performance when the prescribed factors criteria are taken 
into account. The optimization results is also in agreement 
with the findings of Aju et al. [55] and Sahni et al. [86]

4.7  EVD‑Model Post Analysis and Simulation

This stage in the computation is executed after development 
of the EVD model and numerical optimization to further 
evaluate the generated factor values, the derivation of sam-
ple means and coefficient table through point prediction and 
confirmation. The simulation of the generated EVD model 
is thus carried out to assess its performance and applicabil-
ity and the validity of the derived statistical analysis results 
[91].

4.7.1  Point Prediction Computation

Point prediction, as shown in Table 26, is a post-analysis 
tool that allows the factor values to be examined and uses the 
generated model’s fit calculation and the recommended set-
tings for the factor tools to provide interval estimations once 
the study is successfully completed. The calculated findings 
showed standard deviations of 3.865 and 17.81, with 95% 

confidence intervals of 23.26–49.27 and 200.699–320.601 
for CBR and UCS, respectively [71].

4.7.2  Coefficient‑Table

The coefficient table presents the ratio combination mag-
nitude which assesses the two-component soil–SDA 
mixture blend which was aimed at enhancing the soils 
engineering properties for construction works as shown 
in Table 27. From the analysis of the multi-criteria optimi-
zation using EVD method to obtain suitable performance 
the factor levels coefficients are derived. Cubic models 
were adapted in this optimization exercise based on the 
recommendations from the fits statistics for the CBR and 
UCS responses, respectively, to attain better experimental 
data generalization [92]. The p-values for each term of 
the models were calculated and displayed in the legend 
column, where p-values < 0.01 represent the best measures 
for strong significance (presented in red), p-values ≤ 0.05 

Fig. 16  Ramps graph for the 
desirability function

Fig. 17  Bar graph for the desirability function
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and ≥ 0.01 represent moderate significance (presented in 
green), p-values ≤ 0.10 and ≥ 0.05 represent slight signifi-
cance (presented in blue), and p-values ≥ 0.10 represent 
level of non-insignificant (presented in black) [93].

4.7.3  EVD Model Simulation

The post analysis and derivation of the coefficient table 
are completed before the EVD-model simulation exercise, 

Fig. 18  Graphical plot of two-component mixture optimization

Table 26  Point prediction

Response Pred. mean Pred. median Std. Dev CI for 95% CI low Mean 95% CI high 99% of 95% TI low Population 
95% TI 
high

CBR 35.0529 34.9462 3.86467 23.2571 49.2688 2.10299 107.597
UCS 257.152 256.843 17.8063 200.699 320.601 71.2444 557.527
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which is also seen as the concluding stage of the statistical 
analysis of the two-component design of experiment opti-
mization. This is achieved using statistical methods which 
are essential so as to simulate the non-trivial scenario to give 
appropriate practical guide for consultants, contractors, field 
operators, and designers on the expected performance of the 
EVD-model when compared to real life applications. The 
derived results from this statistical analysis exercise is help-
ful to validate the rigors through fits computation, diagnos-
tics statistics and influences followed through the develop-
ment of the model. A graphical representation showing the 
laboratory or actual responses against EVD-model simulated 
results are presented in Fig. 19 [94, 95]. The plotted data-
sets were statistically compared using Minitab and Microsoft 
Excel software to evaluate the degree of correlation and sta-
tistical significance at 95% confidence interval as shown in 
Tables 28, 29, 30, 31 using student’s t-test and F-test. The 
t-test and F-test are statistical tests in which the test statistic 
follows t-distribution and F-distribution, respectively, under 
null hypothesis. These tests are essential when comparing 
statistical models that have been fitted to a dataset to detect 
how significant the differences between group means are. 
This would help to identify if the differences in means could 
have occurred by chance in hypothesis testing. P(F <  = f) 
two-tail values 0.960 and 0.977, which are larger than 

Table 27  Coefficient table Response A B AB AB(A-B)
Sqrt(CBR) 2.76369 4.29584 8.3237 10.6226

P 0.0555 0.0555 0.0233 0.0583
Sqrt(UCS) 8.07816 9.68573 25.9243 21.6629

P 0.0807 0.0807 0.0071 0.0416

Legend p <0.01 0.01≤ p <0.05 0.05≤ p <0.10 p ≥0.10

Fig. 19  Actual vs. EVD-model 
predicted responses
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Table 28  T-test two-sample for variances for CBR response

Statistical factors Actual-CBR CBR-model

Mean 19.6726 19.62628
Variance 121.9547 119.1408
Observations 6 6
Pearson correlation 0.980849
df 5
t Stat 0.052707
P(T <  = t) one-tail 0.480003
t Critical one-tail 2.015048
P(T <  = t) two-tail 0.960006
t Critical two-tail 2.570582

Table 29  F-test two-sample for variances for CBR response

Statistical factors Actual-CBR CBR-model

Mean 19.6726 19.62628
Variance 121.9547 119.1408
Observations 6 6
df 5 5
F 1.023618
P(F <  = f) one-tail 0.490094
F Critical one-tail 5.050329
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0.05 for the CBR and UCS answers for the student's t-test, 
respectively, were calculated from the computed results. 
Additionally, P(T <  = t) one-tail values of 0.490 and 0.499 
were determined for the CBR and UCS responses based on 
the findings of the F-test. Additionally, the results show that 
there is no statistically significant difference between the 
experimental and model outcomes, indicating that the model 
performed well and was consistent with Alaneme et al. [59] 
findings.

5  Conclusion

Two components mixture design optimization using extreme 
vertex design method was adapted in this experimental 
research which evaluate the soil–SDA mechanical strength 
behavior for sustainable foundation construction. From the 
results derived, the following conclusions can be drawn:

• The mixture ingredients constraints were set at 0–50% 
range to investigate and ascertain appropriate fractions 
with optimum strength performance of the blended mix-
ture to enhance utilization of industrial waste to achieve 
eco-friendly stabilization of weak soils.

• Chemical properties test carried out on SDA signified 
good pozzolanic behavior with 65.28% of  SiO2, 2.75% 
of  Fe2O3 and 5.52% of  Al2O3 to obtain a total value of 
73.55%. While the preliminary tests carried out on the 
test soil showed inadequate strength performance and 
potential swelling behavior when compared to federal 
ministry of works specifications.

• The formulated mixture ingredients using I-optimal 
design for factor space evaluation were taken for 
experimental methodology to ascertain correspond-
ing responses for the UCS and CBR properties of the 
treated soil samples.

• The conclusions reached demonstrated a considerable 
improvement in the behavior of the soil's strength for 
pavement foundation materials while promoting the 

reuse of industrial leftovers, which is a crucial com-
ponent of waste management. This is because the low 
strength displayed by the SDA, which consequently 
takes up space in the sample, is attributed to the poz-
zolanic reactions of SDA that result in the cementitious 
products being formed between the CaOH present in 
the soil and the pozzolana present in SDA after the 
optimum value.

• For the analysis and development of the EVD-model, 
information was taken from experimental exercises, 
including the formulation of the mixture components' 
fractions and derived responses. The steps involved sta-
tistical evaluation, ANOVA, diagnostic tests, and influ-
ence statistics to analyze the datasets.

• Additionally, by applying the desirability function, 
numerical and graphical optimization was accomplished 
to find the mixture components' optimal points with the 
highest response to meet or fulfill the many requirements 
outlined for the variables in the EVD-model.

• The calculation operations at the mix ratio of 0.8125: 
0.1875 for the two-component soil–SDA blend produced 
a maximal CBR and UCS response of 35.053% and 
257.152 kN/m2, respectively. This resulted in a desir-
ability score of 1.0.

• Finally, statistical validation and simulation exercises uti-
lizing the student's t-test and F-test were used to evaluate 
the suitability of the model created. For the CBR and 
UCS responses, respectively, the computed findings indi-
cated P(T = t) one-tail of 0.490 and 0.499 for the F-test 
and P(F = f) two-tail of 0.960 and 0.977 for the t-test. The 
results of the experiments revealed a strong connection 
between the simulated and experimental values from the 
EVD-model.

Data Availability All data generated or analyzed during this study are 
included in this published article.
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Table 30  T-test two-sample for variances for UCS response

Statistical factors Actual-UCS UCS-model

Mean 140.6724 140.5479
Variance 6378.328 6359.258
Observations 6 6
Pearson Correlation 0.99187
df 5
t Stat 0.029957
P(T <  = t) one-tail 0.48863
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