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Abstract
Laboratory determination of subgrade soil stiffness (T) and modulus of resilient deformation (D) of subgrade lateritic mate-
rial is a cumbersome exercise that requires sophisticated and expensive triaxial experimental set up. This, in most cases is 
lacking in most laboratories. The same condition is experienced during the experimentation of suction and capillary rise for 
the design of hydraulically bound pavement layers; the subgrade or unsaturated soils. To overcome the above costs, time 
and challenges, intelligent techniques; genetic programming (GP), artificial neural network (ANN) and genetic algorithm 
(GA) optimized polynomial linear regression (PLR) known as the evolutionary polynomial regression (EPR), have been 
adopted in this work to propose models for T and D under cemented and uncemented conditions of the lateritic subgrade soil 
treated with geopolymer cement (G). The parameters considered in this predictive model research work were capillary rise 
(C), suction (S), unconfined compressive strength (U) and California bearing ratio (B) as well as the varied proportions of 
geopolymer cement (G). At the end of the model on G-treated uncemented and cemented soil classified as A-2-6 and highly 
plastic soil, performance indices (SSE and R2) were used to measure the accuracy of the models. For the uncemented case, 
GP and EPR showed equal accuracy with R2 of 99.9% but with SSE of 2.9% and 2.6%, while ANN ended with 99.8% and 
3.6% for the stiffness (T) prediction. For the resilient deformation (D) prediction, GP and ANN performed with R2 of 99.3% 
and SSE of 6.9% and 6%, respectively, while EPR has an R2 value of 99.2% and SSE of 6.7%. For the cemented case, EPR 
outclassed GP and ANN with R2 of 99.9%; 99% and SSE 2.1%; 4.6% for the stiffness (T^) and deformation (D^) predic-
tions, respectively. Generally, the predictive models showed consistent performance accuracy in predicting uncemented and 
cemented subgrade soil treated with geopolymer cement.

Keywords  Pavement subgrade stiffness · Subgrade resilient deformation · Genetic programming · Evolutionary polynomial 
regression · Artificial neural network · Lateritic soil
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B^	� CBR at 24 h soaking of G-treated soil modi-
fied with OPC

T^	� Stiffness at 24 h soaking of G-treated soil 
modified with OPC

D^	� Modulus of resilient deformation of G-treated 
soil modified with OPC

OPC	� Ordinary Portland cement
UCS (U)	� Unconfined compressive strength
CBR (B)	� California bearing ratio
ANN	� Artificial neural network
GP	� Genetic programming
EPR	� Evolutionary polynomial regression
SSC	� Shrink-swell cycle
SSE	� Sum of squared error
R2	� Coefficient of determination
FA	� Fly ash
GGBFS	� Ground granulated blast furnace slag
NMC	� Natural moisture content
WL	� Liquid limit
WP	� Plastic limit
IP	� Plasticity index
MDD	� Maximum dry density
OMC	� Optimum moisture content
SG	� Specific gravity
AASHTO	� American association of state highway and 

transportation officials
QD	� Quarry dust
SD	� Standard deviation
Var	� Variances
Avg	� Average

1  Introduction

Pavement design and construction needs serious research 
attention due to complexity of the parametric consideration 
that is involved. Based on its response to load effects, pave-
ment stiffness plays a critical role in reestablishing the stabil-
ity of pavement systems and this was supported by Tingle 
and Jersey [1, 2]. Overall, the resilient deformation of geo-
polymer cement-treated lateritic soils are important property 
inputs in their mechanistic empirical pavement design for 
enhanced performance and resistance of the base layers and 
subgrade against dynamic, impulsive or critical loads [3]. 
Hence, the load and environmentally associated pavement 
response and performance are of fundamental concern to 
transportation geotechnical engineers [4]. Resilient defor-
mation of pavement, its ability to absorb energy when it is 
deformed elastically, and tendency to release that energy 
upon unloading is a critical factor when assessing its ser-
vice life [5]. Stabilized soils account for plastic stress accu-
mulation for durable performance due to their safe resilient 
modulus [6]. It is also reported that the confining pressure, 

moisture content and deviator stress levels influence the 
resilient and permanent deformation of treated soils [7]. 
For a sustainable pavement structure design and long-term 
pavement performance maintenance, pavement subgrade 
strength, a measure of its strength (the stress needed to break 
or rupture a material) or stiffness (the relationship between 
stress and strain in the elastic range) or how well a material 
is able to return to its original shape and size after being 
stressed should be perfectly analyzed, explained, described 
and/or predicted using certain influencing parameters such 
as: suction, capillary rise, California bearing ratio (CBR), 
stiffness, compressive strength, and modulus of resilient 
deformation  [8–11].

Owing to the complex nature of the pavement system, 
pavement material characteristics, and loading conditions, 
there is induced complexity in analyzing and modelling 
the mechanism at which geopolymer cement-treated soils 
response. Hence, accurate prediction of optimal pavement 
subgrade stiffness and obtainable resilient deformation 
deserves evolutionary computational techniques where these 
non-linear interactions are perfectly traced and evaluated. 
Some researchers have reported the benefits of using many 
other soil stabilization materials and techniques in modi-
fying pavement subgrade stiffness and hence reduction in 
its deformation tendencies. For example, Tang et al. [3] 
reported that the incorporation of geogrids at the interface 
between a base course layer and subgrade provides separa-
tion and minimize the degradation of the base layer caused 
by the mix of base aggregate and subgrade soil. They also 
maintained that the geogrids provide lateral restraints and 
prevent lateral spreading of the base aggregate, as well as 
increase the elastic modulus of the base layer. This report 
was because of the increase in the confining stresses of the 
interlocking and shears interaction between the geogrids and 
aggregate. Chen et al. [12] confirmed that the use of the 
geosynthetic materials had showed appreciable benefit to 
reducing the permanent deformation of subgrade, imposing 
some effect on the resilient properties of subgrade. Sahaf 
et al. [13] extensively discussed the benefit of accurate deter-
mination of stiffness modulus of pavement subgrade. They 
described important loading parameters including loading 
waveform, loading time, and rest time in subgrade layer. 
They showed that the effect of loading time could be intensi-
fied due to the increase in depth and decrease in the quality 
of the materials. In addition, they argued that owing to the 
elasto-plastic nature of subgrade material, the rest period 
should be considered in determination of stiffness modulus.

The use of geopolymer materials for treating soil for opti-
mal pavement subgrade performance has proven an excellent 
binder that attains high strength by curing at room tempera-
ture [14]. Javdanian [15] evaluated for clayey soil speci-
mens stabilized with fly ash and blast furnace slag based 
geopolymer, the unconfined compressive strength (UCS) of 
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improved fine-grained soils by utilizing a large database of 
unconfined compressive strength. Many published works 
have demonstrated that for geopolymer cement-treated sub-
grade, the super bonding between aluminosilicate and alkali 
solution, which produce high compressive strength, low 
shrinkage [16], and resistance toward acid, resistance to fire 
and enhance the pavement subgrade stiffness and resilient 
deformation characteristics.

As stochastic algorithms whose search methods model 
some natural phenomena, evolutionary computational tech-
niques such as genetic programming (GP) sorts a popula-
tion of computer programs genetically to resolve a problem 
([17]). Whereas GP are domain-independent techniques 
that transmutes an assembly of computer programs into a 
new scheme by iteration and incorporation of genetic opera-
tions, artificial neural networks (ANNs) simulate the way the 
human brain analyzes and processes information via a col-
lection of connected units or nodes called artificial neuron. 
An optimization of the ANN and genetic algorithm (GA), 
a natural selection where the fittest individuals are selected 
for reproduction to produce offspring or solutions of the next 
generation referred to as evolutionary polynomial regression 
(EPR) has also been largely investigated. Many researches in 
civil engineering have make use of the services of GP, ANN 
and EPR for making their predictions [14, 18–22].

The pavement subgrade stiffness and resilient deforma-
tion can be predicted using the physical properties such as 
liquid limit, plastic limit, plasticity index, maximum dry 
density, optimum moisture content, including state vari-
ables such as, degree of compaction, and stress variables 
like confining pressure and deviatoric stress [3]. Zhang et al. 
[23] proposed an optimized artificial neural network (ANN) 
approach based on the multi-population genetic algorithm 
(EPR) to effectively determine the resilient modulus of 
compacted subgrade soils. Coleri and Ahmet [24] reported 
the applicability of genetic algorithm and curve shifting 
methodology to the estimation of the resilient modulus at 
various stress states for subgrade soils using the results of 
triaxial resilient modulus tests. Due to the viscoelastic nature 
of asphalt mixes, the stiffness of these materials depends 
on temperature, loading time duration, rest period, and 
loading waveform. The interest in pavement deformations 
under static and dynamic loads as a measure of pavement 
performance and the need for a procedure whereby these 
deflections might be predicted in advance using reliable 
evolutionary prediction models such as genetic program-
ming, artificial neural networks (ANN) and evolutionary 
polynomial regression (EPR) techniques fed from suitable 
experimental investigations of Bui Van et al. [10] has neces-
sitated this study. Despite the numerous investigations on 
the application of geopolymer materials, attention has not 
been focused on incorporating ordinary Portland cement 
with the geopolymer for pavement subgrade stiffness and 

resilient deformation using multiple sets of soft computing 
techniques. The present study aims at employing GP, ANN 
and EPR soft computing techniques for predicting pavement 
subgrade stiffness and resilient deformation of geopoly-
mer cement-treated lateritic soil with conventional cement 
addition using the various predictor variables: geopolymer 
cement proportion, capillary rise, suction, compressive 
strength, and California bearing ratio to predict stiffness, 
and modulus of resilient deformation of the geopolymer-
cement treated lateritic soil. It is also important to ensure the 
sustainability of the entire operation; transport geotechnics 
and soft computing aspects of the work.

Solid waste-based ash and powder materials utilized as 
geomaterials or as supplementary cementing materials are 
generated from the combustion and/or pulverization of agro-
industrial-wastes obtained from farm, household or indus-
tries. Meanwhile, sustainable materials are such that could 
be used by the present generation to meet their needs without 
affecting the ability of future generations to meet theirs [25]. 
Low embodied energy (EE) is used for the calcination by 
combustion or pulverization of these waste materials such as 
quarry dust (QD), rice husk (RH), sugarcane bagasse (SB), 
palm bunch (PB), GGBFS, fly ash (FA), etc. to generate poz-
zolana-based green construction materials unlike the huge 
EE expended for the production of conventional materials 
like OPC [26]. The sustainability of the waste-based con-
struction materials depends on the advantages derived from 
converting waste to useful supplementary cementing materi-
als (SCM) as well as the use of lower EE for the process. In 
other words, using activated waste-based ash or powder for 
the treatment of expansive pavement subgrade in place of 
the conventional building materials is very sustainable. Con-
versely, in the sustainability of materials and system, the cost 
is a vital parameter to consider. Experimental procedures in 
Civil Engineering could be time, energy and resource con-
suming [27] and so, there is a need to develop good predic-
tive and intelligent models capable of forecasting the per-
formance of waste-based cementing materials. Some of the 
predictive models that have been used to design and analyze 
the performance of construction materials include ANN [21] 
and Support vector machine [20, 28], genetic programming 
(GP [21]), etc. The utilization of waste-based materials, 
which are unconventional construction materials, has the 
challenge of an inexact understanding of the material prop-
erties and behaviors. These inexactitudes are due to the use 
of conventional materials procedures for the determination 
of their materials’ properties [28]. Application of different 
machine learning-based predictive models such as SVM, GP, 
ANN and EPR techniquesto study the performance of these 
unconventional materials for building and road subgrade 
construction is vital to reduce the challenges of conducting 
repeated experiments to obtain the properties of materials. 
These developed models are sustainable because they save 
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time, energy and resources that would have been used for 
recurrent experimental procedures aimed at obtaining the 
performance of green construction materials. Generally, the 
present work tries to use intelligent models to predict the 
behavior of waste-based materials-treated lateritic soil for 
use for the construction of sustainable pavement subgrades.

2 � Materials and Methods

2.1 � Materials Preparation

Figure 1 shows the map location at Amaba from where 
the soil sample was collected, sundried for 5 days, 

rubber-pestle-mashed to remove lumps, sieved through 
6.35 mm aperture sieve and stored in bags for use. The above 
was done in line with the requirements of BS1377-2 [29]. 
The quarry dust (QD), fly ash (FA) and ground granulated 
blast furnace slag (GGBFS) or metallurgical slag (MS) 
were collected as solid waste materials and prepared for use 
[10]. The activator needed for the formulation of geopoly-
mer cement (GPC) was generated with NaOH in aqueous 
solution with mole concentration of 11 M (for eco-friendly 
handling) and NaSiO2 mixed in the ratio of 1:1 according 
to the GPC design requirements of Davidovits [30] and uti-
lized in the work of Bui Van et al.  [10]. 5% of the activator 
solution was mixed with 50% of QD, 25% of FA and 20% 
of GGBFS by weight to formulate the quarry dust based 

Fig. 1   Amaba location map of 
soil sample
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geopolymer cement (QD-GPC) designated as G in this work 
for the purpose of clarity. G-treated uncemented soil was 
achieved by deeply mixing the predetermined proportions 
of the formulated geopolymer cement with the soil while 
G-treated cemented soil was achieved by deeply mixing the 
predetermined proportions of the formulated geopolymer 
cement with soil and adding 5% of ordinary Portland cement 
to the mixed G plus soil blend. The X-ray fluorescence test 
was conducted on the Soil, QD, FA, GGBFS and OPC (Dan-
gote brand of Portland cement) to characterize the materials 
based on the weight of chemical oxides each contains [10] 
in accordance with appropriate design standards (ASTM) 
E1621-13 [31, 32]). Figure 2 shows the schematic path of 
the methodology of the research work [10].

2.2 � Experimental Methods and Data Collection 
and Analysis

2.2.1 � Collected Database

Multiple 3 × replicate experiments were conducted and an 
average of 99 specimens were tested and an average of each 
set of three (3) was estimated to have 33 outcomes on the 
following physical and mechanical properties of G-treated 
lateritic soil [33] (geopolymer cement (G) was added to the 
soil in the proportions of 0%, 1.5%, 2.5%, 3.5%, …, 40% as 
presented in the supplementary material):

•	 Capillary rise at 72 h curing of G-treated soil (C) %,
•	 Suction at 72 h curing of G-treated soil (S) %,

•	 Compressive strength at 72 days curing of G-treated soil 
(U) MPa,

•	 California bearing ratio at 24 h soaking of G-treated soil 
(B) %,

•	 Stiffness at 24 h soaking of G-treated soil (T) GPa,  [10],
•	 Modulus of resilient deformation of G-treated soil (D) 

kg/m2 [10],
•	 Capillary rise at 72 h curing of G-treated soil modified/

cemented with OPC (C^) %,
•	 Suction at 72 h curing of G-treated soil modified/

cemented with OPC (S^) %,
•	 Compressive strength at 72 days curing of G-treated soil 

modified/cemented with OPC (U^) MPa,
•	 California bearing ratio at 24 h soaking of G-treated soil 

modified/cemented with OPC (B^) %,
•	 Stiffness at 24 h soaking of G-treated soil modified/

cemented with OPC (T^) GPa,
•	 Modulus of resilient deformation of G-treated soil modi-

fied/cemented with OPC (D^) kg/m2

The 33 data items from the multiple experiments, which 
gave rise to five (5) input parameters and two (2) output 
parameters were used to in the predictive model exercise in 
line with the models’ functional equations (Eq. 1 and 2) to 
predict two sets of treatment conditions (G- treated unce-
mented lateritic and G- treated cemented lateritic soil).

(1)T;D = f (G, C, S, U, B)

(2)T∧;D∧ = f (G,C∧, S∧,U∧,B∧)

Dangote Ordinary
Portland Cement DOPC

Fly Ash
(FA)

Test Soil
Samples

Ground Granulated Blast
Furnace Slag (GGBSF) Activators Quarry Dust

(QD)

Particle Size
Distribution (PSD) Compaction California Bearing

Ratio (CBR)
Unconfined Compressive

Strength (UCS)
Atterberg

limits

QD-Based GP

 GP -Treated
Soils

Capillary Rise, Suction and
Strength Development
(UCS, CBR and MRD)

Tabulated
Results

Fig. 2   Schematic path of the research methodology [10]
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2.2.2 � Statistical Reliability Analysis

The reliability or the internal consistency of the input param-
eters with the statistical influence on the entire system for 
the cases of uncemented and cemented geopolymer cement 
treated lateritic soil was tested and analyzed with the Cron-
bach’s alpha reliability technique and the results are pre-
sented in Tables 1, 2, 3, 4, 5, 6, 7, 8. In Tables 1, 3, 5, and 7, 
the Cronbach’s alpha of the consistency of the uncemented 
input parameters with T and D and those of the cemented 
input parameters with T^ and D^ were observed to be 0.658, 
0.228, 0.581 and 0.219 respectively. According to Pallant 
[34], the Cronbach’s alpha for any system with items greater 
than 10 in a scale must be ≥ 0.7 for the internal consistency 
between the studied parameters to be acceptable. This shows 
that the consistency of the parameters was not agreeable and 
Tables 2, 4, 6, and 8 allows an opportunity to improve the 
Cronbach’s alpha level [34]. In the case of Table 2, the capil-
lary rise (C) item alpha level shows that if C is removed from 
the entire system, the alpha level will improve from 0.658 
to 0.721. However, in the cases of Tables 4, 6 and 8, the 
item alpha levels to be removed to improve the alpha level 
of the entire system are all below 0.7 and this means that for 
the reliability of the parameters in both cemented and unce-
mented cases to be consistent and influential to the output 
parameters, the 33 items have to be recoded or reshuffled in 
accordance with the requirements of Pallant [34]. Finally, 
the data items were reshuffled and analyzed to achieve maxi-
mum consistency as presented in Tables 1 and 2.

The reshuffled data items recorded in Tables 1 and 2 
divided into training set (21 records) and validation set (12 
records). Tables 9, 10, 11, 12 summarize their statistical 
characteristics and the Pearson correlation matrix. Finally, 
Fig. 3 and 4 show the histograms for both inputs and outputs. 

The California bearing ratio (B) showed the highest means 
in both training and validation analysis of the items for the 
uncemented and cemented conditions while suction showed 
the least mean as shown in Tables 9 and 10. This shows the 
high influence of B on the output parameters of the models T 
and D and T^ and D^. The unconfined compressive strength 
showed the least variance and standard deviation from the 
output parameters compared to any other parameter in both 
the uncemented and cemented conditions. Figure 3 and 4 
show good distribution of the items consistent with the out-
put parameters (the targets). In Tables 11 and 12, B and B^ 
showed the highest correlation with T and D and T^ and D^ 
respectively for both cement conditions (uncemented and 
cemented) and this agrees with the mean, standard deviation 
and variance outcome of the parameters. This correlation is 
followed by the effect of the geopolymer cement (G) on the 
targets (T, T^, D, and D^). The third in terms of the influ-
ence in correlation is the unconfined compressive strength 
(U). Capillary rise (C) and suction (S) equally showed good 
correlation with the targets and this shows that all five (5) 
input parameters are important and should be given a chance 
to be eliminated in the full model exercise through step wise 
approach.

2.2.3 � Predictive Models Research Program

Three different Artificial Intelligent (AI) techniques were 
used to predict the shear strength parameters of the tested 
soil samples. These techniques are Genetic programming 
(GP), Artificial Neural Network (ANN) and Polynomial Lin-
ear Regression optimized using Genetic Algorithm which 
is known as evolutionary polynomial regression (EPR). All 
the three developed models were used to predict the val-
ues of both Stiffness (T), Portland cemented Stiffness (T^), 
Modulus of resilient deformation (D) and Portland cemented 

Table 1   Cronbach’s alpha reliability statistics of uncemented input 
parameters (G, C, S, U, and B) with the output, T 

Cronbach's Alpha Cronbach's alpha based on standard-
ized items

N of Items

0.658 0.338 6

Table 2   Item total statistics of 
uncemented input parameters 
(G, C, S, U, and B) with the 
output, T 

Scale mean if 
item deleted

Scale variance if 
item deleted

Corrected item-
total correlation

Squared multiple 
correlation

Cronbach's 
alpha if item 
deleted

G 406.1576 55,911.690 0.973 0.996 0.631
C 395.8485 64,664.627 − 0.314 0.343 0.721
S 425.3212 61,918.402 − 0.869 0.950 0.688
U 338.0303 56,700.580 0.895 0.975 0.639
B 287.6242 17,708.425 0.988 0.999 0.234
T 277.6545 17,478.421 0.989 0.999 0.234

Table 3   Reliability statistics of uncemented input parameters (G, C, 
S, U, and B) with the output, D 

Cronbach's alpha Cronbach's alpha based on standard-
ized items

N of items

0.228 0.356 6
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Modulus of resilient deformation (D^) of G-treated soil 
using the measured geopolymer cement proportion (G), 
uncemented sets of; Capillary rise (C), Suction (S), Com-
pressive strength (U) and California bearing ratio (B) and 
cemented sets of; Capillary rise (C^), Suction (S^), Com-
pressive strength (U^) and California bearing ratio (B^). 
This was executed to study the influence ordinary Port-
land cement (OPC) addition has on the studied parameters 
treated with GPC and on the predicted models as a com-
parative study. Each model on the three developed models 
was based on different approach (evolutionary approach for 
GP, mimicking biological neurons for ANN and optimized 
mathematical regression technique for EPR). However, for 
all developed models, prediction accuracy was evaluated in 
terms of Sum of Squared Errors (SSE).The following sec-
tion discusses the results of each model. The Accuracies of 
developed models were evaluated by comparing the (SSE) 

between predicted and calculated shear strength parameters 
values. The results of all developed models are summarized 
in Table 4.

3 � Results and Discussion

3.1 � General Remarks

Table 13 shows the basic properties of the soil used in this 
research work. The soil was a highly plastic soil though clas-
sified as A-2-6 group soil according to AASHTO system of 
soil classification. The CBR (B) of the soil was observed to 
be 8%, which falls below the minimum CBR standard for 
soil to be used as a compacted pavement subgrade material 
(< 10% according to AASHTO [35]). In Fig. 5, other prop-
erties of the soil were presented. Table 14 shows the oxide 

Table 4   Item total statistics of 
uncemented input parameters 
(G, C, S, U, and B) with the 
output, D 

a The value is negative due to a negative average covariance among items. This violates reliability model 
assumptions. You may want to check item codings

Scale mean if 
item deleted

Scale variance if 
item deleted

Corrected item-
total correlation

Squared multiple 
correlation

Cronbach's 
alpha if item 
deleted

G 257.9941 14,581.215 0.959 0.998 0.045
C 247.6850 18,991.092 − 0.320 0.339 0.347
S 277.1578 17,681.898 − 0.852 0.990 0.246
U 189.8668 14,991.407 0.874 0.974 0.076
B 139.4608 615.735 0.604 0.989 − 0.290a

D 277.6545 17,478.421 0.919 0.968 0.234

Table 5   Reliability statistics of cemented input parameters (G^, C^, 
S^, U^, and B^) with the output, T^

a The value is negative due to a negative average covariance among 
items. This violates reliability model assumptions. You may want to 
check item codings

Cronbach's alpha Cronbach's alpha based on standard-
ized itemsa

N of items

0.581 − 0.375 6

Table 6   Item total statistics of 
cemented input parameters (G^, 
C^, S^, U^, and B^) with the 
output, T^

Scale mean if 
item deleted

Scale variance if 
item deleted

Corrected item-
total correlation

Squared multiple 
correlation

Cronbach's 
alpha if item 
deleted

G^ 667.2115 120,162.161 0.989 0.998 0.561
C^ 664.3782 134,683.520 − 0.928 0.985 0.635
S^ 685.0370 129,183.166 − 0.959 0.995 0.608
U^ 589.0661 120,966.218 0.966 0.988 0.566
B^ 538.7185 58,867.553 0.993 0.998 0.129
T^ 291.4948 16,977.231 0.992 0.998 0.224

Table 7   Reliability statistics of cemented input parameters (G^, C^, 
S^, U^, and B^) with the output, D^

a The value is negative due to a negative average covariance among 
items. This violates reliability model assumptions. You may want to 
check item codings

Cronbach's alpha Cronbach's alpha based on standard-
ized itemsa

N of items

0.219 -0.349 6
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composition by weight of the experimental materials, which 
shows that FA, QD. GGBFS and OPC had high pozzolanic 
ability according to the conditions of ASTM C618 [31]. It 
is observed in Tables 1 and 2 that the capillary rise (C) and 
suction (S) reduced with increased geopolymer cement (G) 
in both the non-cemented and cemented conditions. At 15% 

by weight addition of the G, the trial test cured at 72 h fell 
below the minimum allowable critical capillary rise of 25% 
proposed by Austroads [36]. This is due to increased release 
of Ca2+, Si4+ and Al3+ by the silicate of sodium compo-
nent of the activator from the FA, GGBFS and QD blend 
which sped up cation exchange reaction rate [16, 23]. The 

Table 8   Item total statistics of 
cemented input parameters (G^, 
C^, S^, U^, and B^) with the 
output, D^

a The value is negative due to a negative average covariance among items. This violates reliability model 
assumptions. You may want to check item codings

Scale mean if 
item deleted

Scale variance if 
item deleted

Corrected item-
total correlation

Squared multiple 
correlation

Cronbach's 
alpha if item 
deleted

G^ 272.0218 14,074.418 0.979 0.998 0.026
C^ 269.1885 19,233.107 − 0.910 0.986 0.350
S^ 289.8472 17,238.119 − 0.939 0.990 0.240
U^ 193.8763 14,347.092 0.956 0.989 0.047
B^ 143.5288 210.623 0.961 0.987 − 0.853a

D^ 291.4948 16,977.231 0.975 0.972 0.224

Table 9   Statistical analysis 
of collected database for 
uncemented condition

(G) (C) (S) (U) (B) (T) (D)
% % % MPa % GPa kg/m2

Training set
 Max 0.00 0.11 0.00 0.07 0.08 0.01 0.10
 Min 0.40 0.78 0.02 0.11 3.20 0.33 0.90
 Avg 0.21 0.28 0.01 0.09 1.47 0.16 0.34
 SD 0.13 0.17 0.01 0.01 1.19 0.12 0.26
 Var 0.62 0.61 0.85 0.14 0.81 0.76 0.76

Validation set
 Max 0.03 0.14 0.00 0.07 0.08 0.02 0.12
 Min 0.34 0.45 0.02 0.10 2.99 0.31 0.61
 Avg 0.19 0.26 0.01 0.09 1.15 0.12 0.27
 SD 0.10 0.10 0.01 0.01 1.12 0.11 0.16
 Var 0.53 0.39 0.70 0.10 0.97 0.90 0.62

Table 10   Statistical analysis of 
collected database for cemented 
condition

(G) (C^) (S^) (U^) (B^) (T^) (D^)
% % % MPa % GPa kg/m2

Training set
 Max 0.00 0.11 0.01 0.07 0.10 0.08 0.19
 Min 0.40 0.40 0.04 0.12 3.31 0.72 0.98
 Avg 0.21 0.23 0.02 0.10 1.57 0.41 0.52
 SD 0.13 0.09 0.01 0.01 1.20 0.24 0.26
 Var 0.62 0.41 0.40 0.12 0.76 0.58 0.50

Validation set
 Max 0.03 0.14 0.01 0.09 0.16 0.10 0.24
 Min 0.34 0.40 0.04 0.11 3.07 0.68 0.72
 Avg 0.19 0.23 0.02 0.10 1.24 0.35 0.43
 SD 0.10 0.08 0.01 0.01 1.11 0.21 0.17
 Var 0.53 0.34 0.33 0.09 0.89 0.61 0.40
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substantial reduction in suction with increased addition of G 
was due to the ability of G to react and reduce the porosity 
of the G-treated uncemented and cemented soil. The UCS 
(U) also behaved in an improved consistency with increased 
addition of G due to the increased Ca2+ release [10]. This 
equally increased the intergranular contact between the soil 
structures and consequently reduced the porosity in the 
treated soil thereby increasing densification, flocculation 
and strength gain, which is translated as improved USC (U). 
Figures 6 and 7 show the effect of the G on stiffness (T) and 
the modulus of resilient deformation (D) of both uncemented 
and cemented lateritic soil. It can be observed that the T 
and D improved substantially with increased G and with 5% 
addition of cement on the second case. This serves as a good 
data to predict the behavior of stabilized lateritic subgrade 
soils for sustainable construction.

3.2 � Prediction of Output Parameters (T, T^, D, 
and D^)

3.2.1 � Model (1): Using (GP) Technique

The developed GP model has only two levels of complexity. 
The population size, survivor size and number of generations 
were 30,000, 10,000 and 50 respectively. Equation (3) and 
(4) present the output formulas for (T) and (D) respectively, 
while Figs. 10a and 12a show their fitness respectively. The 

average error % of total set for (T) and (D) are (2.9%) and  
(6.9%), respectively, while the (R2) values are (0.999) and 
(0.993), respectively.

Equation (5), (6) present the output formulas for (T^) and 
(D^) respectively, while Figs. 11a and 13a show their fit-
ness respectively. The average error % of total set for (T^) 
and (D^) are (6.9%) and (6.5%) respectively, while the (R2) 
values are (0.990) and (0.980) respectively, which agrees 
with El-Bosraty et al. [37] and Ebid [38].

3.2.2 � Model (2): Using (ANN) Technique

A back propagation ANN with one hidden layer and nonlin-
ear activation function (Sigmoid) was used to predict both 
Stiffness (T) and modulus of resilient deformation (D). The 

(3)T =
U + B

10

(4)D =
1 + U

8.25 − 2.2B

(5)T∧ = 4.5 U∧ + 0.16 B∧ − 0.27

(6)D∧ =

(

G∕C∧
)

+ 2 e3.66 G∧

13
+ 0.055

Table 11   Pearson correlation 
matrix for the uncemented 
condition

G C S U B T D

G 1
C − 0.88535 1
S − 0.94366 0.938107 1
U 0.966472 − 0.92352 − 0.95875 1
B 0.978181 − 0.78947 − 0.87628 0.903727 1
T 0.981187 − 0.79833 − 0.88334 0.909506 0.999309 1
D 0.875373 − 0.64864 − 0.68157 0.797245 0.90261 0.902738 1

Table 12   Pearson correlation 
matrix for cemented condition

G C^ S^ U^ B^ T^ D^

G 1
C^ − 0.95432 1
S^ − 0.97969 0.978052 1
U^ 0.983593 − 0.91982 − 0.96911 1
B^ 0.981371 − 0.90099 − 0.93653 0.95613 1
T^ 0.991227 − 0.93746 − 0.9683 0.968506 0.992826 1
D^ 0.970186 − 0.88781 − 0.91628 0.945919 0.973241 0.963394 1
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Fig. 3   Distribution histograms for inputs and outputs
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Fig. 4   Distribution histograms for inputs and outputs

Table 13   Basic properties of the lateritic soil

Property %Passing 200 sieve NMC, % WL, % WP, % IP, % SG MDD, g/cm3 OMC, % CBR (B), % AASHTO

Result 5.4 13 40 18 22 2.6 1.83 16.2 8 A-2-6
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used networks layout and their connation weights are illus-
trated in Fig. 8. Equations (7) and (9) present the equivalent 
functions of the developed ANN models. The average error 
% of total dataset for these equations are (3.6%) and (6.0%) 
and the (R2) values are (0.998) and (0.993) respectively. The 
relations between calculated and predicted values are shown 
in Figs. 10b and 12b.

A back propagation ANN with one hidden layer and non-
linear activation function (Sigmoid) was used to predict both 
stiffness (T^) and modulus of resilient deformation (D^). The 
used networks layout and their connation weights are illus-
trated in Fig. 9. Equations (15) and (16) present the equiva-
lent functions of the developed ANN models. The average 
error % of total dataset for these equations are (3.1%) and 
(5.2%) and the (R2) values are (0.997) and (0.987) respec-
tively, which agrees with El-Bosraty et al. [37] and Ebid 
[38]. The relations between calculated and predicted values 
are shown in Figs. 11b and 13b.

(7)T = 0.01 +
0.32

1 + e−Y1

(8)Y1 = 0.048 +
6.26

1 + e−X1
−

3.00

1 + e−X2

Fig. 5   Grain size distributions of materials  [10]

Table 14   Chemical oxides composition of experimental materials [10]

*IR is insoluble residue; LOI is loss on ignition, FA, fly ash
QD, quarry dust; GGBFS, ground granulated blast furnace slag; DOPC, Dangote ordinary portland cement or OPC; ordinary portland cement

Materials Oxides composition (content wt %)

SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O TiO2 LOI P2O5 SO3 IR Free CaO

Soil 77.73 16.65 1.42 3.22 0.07 0.89 0.02 - - - - - -
QD
FA
GGBFS

63.48
63.45
33.45

17.72
4.14
12.34

5.56
12.11
42.10

1.77
1.23
0.05

4.65
0.78
11.45

2.76
1.09
–

0.01
0.01
-

3.17
1.78
-

0.88
1.89
0.21

-
0.71
-

-
0.11
-

-
-
-

-
0.03
0.40

OPC 21.45 4.45 63.81 3.07 2.42 0.83 0.20 0.22 0.81 0.11 2.46 0.16 0.64

*GP is geopolymer 
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cemented lateritic soil treated with geopolymer cement (GPC or GP) 
[10]. *GP is geopolymer
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(9)D = 0.10 +
0.80

1 + e−Y2

(10)Y2 = − 1.95 +
8.42

1 + e−X1
−

0.77

1 + e−X2

(11)
X1 = −5.31 + 2.48G� − 2.58C� − 2.19S� + 1.67U� + 1.28B�

(12)
X2 = 0.37 − 1.49 G� + 1.02 C� + 1.79 S� − 1.21 U� − 1.97 B�

Fig. 8   Layout for the developed 
ANN’s and their connection 
weights

Fig. 9   Layout for the developed 
ANN’s and their connection 
weights
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(13)G� =
G

0.40
;C� =

C − 0.11

0.67
;S� =

S − 0.001

0.02
;U� =

U − 0.065

0.04
;B� =

B − 0.08

3.12

(14)T∧ = 0.077 +
0.645

1 + e−Y1

(15)Y1 = 7.263 −
4.576

1 + e−X1
−

6.204

1 + e−X2

(16)D∧ = 0.190 +
0.790

1 + e−Y2

(17)Y2 = 4.697 −
3.143

1 + e−X1
−

4.604

1 + e−X2

(18)
X1 = 0.797 − 1.675 G� + 0.052 C� + 1.323 S� − 1.536 U� − 2.032 B�

(19)
X2 = 6.363 − 4.551G� + 5.566C� + 4.885S� − 0.630U� − 1.631B�

Fig. 10   Relation between predicted and calculated (T); a GP, b ANN, and c EPR values using the developed models
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3.2.3 � Model (3): Using (EPR) Technique

Finally, to predict (T) and (D) values, the developed EPR 
model was limited to quadratic level, for five inputs, there 
are 21 possible terms 

�

∑i=5

i=1

∑j=5

j=1
Xi.Xj +

∑i=5

i=1
Xi + C

�

 . GA 
technique was applied on these 21 terms to select the most 

(20)G� =
G

0.40
; C� =

C∧ − 0.11

0.29
; S� =

S∧ − 0.011

0.026
; U� =

U∧ − 0.07

0.045
; B� =

B∧ − 0.10

3.21

effective 3 terms. On the other hand, to predict the values of 
(T^) and (D^) the developed EPR model was limited to cubic 
level, for five inputs, there are 56 possible terms 
�

∑i=5

i=1

∑j=5

j=1

∑k=5

k=1
Xi.Xj.Xk +

∑i=5

i=1

∑j=5

j=1
Xi.Xj +

∑i=5

i=1
Xi + C

�

 . 
GA technique was applied on these 56 terms to select the 
most effective 4 terms. The outputs are illustrated in 
Eqs. (21)–(24) and their fitness are shown in Figs. 10c, 11c, 
12c, 13c. The average error % (SSE) and (R2) values in the 

Fig. 11   Relation between predicted and calculated (T^); a GP, b ANN, and c EPR values using the developed models
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case of uncemented model were improved to (2.6%)–(0.999) 
and (6.7%)–(0.992) for the total datasets respectively while 
for the case of the cemented model, the average error% 
(SSE) and (R2) values were improved to (2.1%)–(0.999) aand 
(4.6%)–(0.990) for the total datasets respectively, which 
agrees with El-Bosraty et al. [37] and Ebid [38].

(21)T = 0.098B − 0.591S + 0.0179

(22)D = 6.865G2 − 0.913C ⋅ B + 0.157

The general summary of the performance of the mod-
els for cemented and uncemented predicted parameters of 
the geopolymer cement treated lateritic soil is presented in 
Tables 15, 16.

(23)T∧ = 0.068 + 3.31 U∧
⋅ B∧ − 0.055 B∧2

(24)
D∧ = 0.094 + 23.1 S∧ ⋅ B∧ +

(

0.249 G − 8.52 S∧
)

B∧2

Fig. 12   Relation between predicted and calculated (D); a GP, b ANN, and c EPR values using the developed models
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4 � Conclusions

This research presents three models using three artificial 
intelligent (AI) techniques (GP, ANN and EPR) to predict 
values of both stiffness (T) and modulus of resilient defor-
mation (D) of G-treated soil using the measured geopoly-
mer cement proportion (G), and the uncemented parameters; 
capillary rise (C), Suction (S), Compressive strength (U) and 
California bearing ratio (B) and the cemented parameters; 
capillary rise (C^), suction (S^), compressive strength (U^) 
and California bearing ratio (B^). From the performance 
accuracy evaluation conducted on the proposed models, the 
following can be concluded (Tables 17, 18);

Fig. 13   Relation between predicted and calculated (D^); a GP, b ANN, and c EPR values using the developed models

Table 15   Performance accuracies of developed models for the unce-
mented parameters

Soil propriety Technique Developed Eq. Error % R2

T GP Equation (3) 2.9 0.999
ANN Equation (7) 3.6 0.998
EPR Equation (21) 2.6 0.999

D GP Equation (4) 6.9 0.993
ANN Equation (9) 6.0 0.993
EPR Equation (23) 6.7 0.992
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•	 Prediction accuracies of (T) for all models are so close 
(between 96.4 and 97.4%),which gives an advantage 
to the simplest model(GP model), while the prediction 
accuracies of (D) are ranged between 93.1 and 94.0% and 
the simplest model equation is the (EPR) model. Also, 
prediction accuracies of (D^) for all models are so close 
(between 94.5 and 95.5%), which gives an advantage 
to the simplest model equation (GP model), while the 
prediction accuracies of (T^) are ranged between 93.0 
and 98.0% and the simplest model equation is the (EPR) 
model.

•	 (GP) model illustrated that both (T) and (D) values are 
governed by (B) and (U). On the other hand, the (EPR) 

Table 16   Performance accuracies of developed models for the 
cemented parameters

Soil propriety Technique Developed Eq Error % R2

T^ GP Equation (5) 6.9 0.990
ANN Equation (14) 3.1 0.997
EPR Equation (22) 2.1 0.999

D^ GP Equation (6) 6.5 0.980
ANN Equation (16) 5.2 0.987
EPR Equation (24) 4.6 0.990

Table 17   The used database G C S U B T D
% % % MPa % GPa kg/m2

Training set
 0.385 0.121 0.0017 0.1042 3.145 0.3291 0.81
 0.21 0.211 0.005 0.0902 1.31 0.1486 0.191
 0.05 0.44 0.017 0.07 0.12 0.021 0.14
 0.035 0.445 0.019 0.0685 0.098 0.0183 0.12
 0.4 0.11 0.001 0.105 3.2 0.331 0.9
 0.1 0.35 0.013 0.084 0.25 0.033 0.16
 0 0.78 0.021 0.065 0.08 0.01 0.1
 0.06 0.431 0.015 0.076 0.141 0.0234 0.14
 0.315 0.164 0.0029 0.0971 2.685 0.2705 0.48
 0.015 0.58 0.021 0.066 0.081 0.0134 0.11
 0.275 0.18 0.003 0.095 2 0.21 0.3
 0.25 0.2 0.003 0.094 1.75 0.192 0.25
 0.35 0.14 0.002 0.1 3.02 0.31 0.65
 0.115 0.312 0.012 0.0849 0.311 0.0387 0.17
 0.29 0.175 0.003 0.0954 2.32 0.2305 0.34
 0.375 0.13 0.002 0.103 3.1 0.326 0.75
 0.365 0.133 0.0021 0.101 3.06 0.3215 0.72
 0.185 0.222 0.0055 0.0871 1.095 0.1214 0.185
 0.15 0.24 0.01 0.085 0.56 0.068 0.18
 0.235 0.208 0.0034 0.093 1.654 0.1813 0.22
 0.175 0.23 0.006 0.086 0.8 0.095 0.18

Validation set
 0.3 0.17 0.003 0.096 2.5 0.257 0.4
 0.085 0.387 0.014 0.083 0.196 0.0301 0.15
 0.2 0.21 0.005 0.088 1.24 0.135 0.19
 0.34 0.142 0.002 0.0992 2.99 0.3084 0.61
 0.325 0.15 0.002 0.098 2.85 0.293 0.5
 0.075 0.42 0.015 0.082 0.16 0.027 0.15
 0.135 0.26 0.0108 0.0851 0.434 0.0515 0.175
 0.125 0.28 0.011 0.085 0.38 0.045 0.17
 0.025 0.45 0.02 0.068 0.08 0.016 0.12
 0.16 0.231 0.0075 0.0858 0.686 0.0785 0.185
 0.225 0.21 0.004 0.092 1.5 0.165 0.2
 0.26 0.191 0.0031 0.0947 1.91 0.2004 0.26



1131Different AI Predictive Models for Pavement Subgrade Stiffness and Resilient Deformation…

1 3

model showed that they mainly depend on (B) besides 
(S) and (G). On the second case (cemented), both (GP) 
and (EPR) models illustrated that both (T^) values are 
governed by (B^) and (U^). On the other hand, the (D^) 
values are mainly dependence on (G) besides (B^), (S^) 
and (C^).

•	 Although the ANN model had very simple configurations 
(one hidden layer with two neurons and sigmoid activa-
tion function), but it was still able to capture the rela-
tionship between the inputs and the outputs accurately. 
It almost shared the same accuracy level with (GP) and 
(EPR) models.

•	 Since the three models share almost the same level of 
accuracy, (ANN) models are considered the worst of 
them due to its complicated equivalent equations.

•	 GA technique successfully reduced all possible polyno-
mial terms of conventional PLR the only effective terms 
without significant impact on its accuracy.

•	 Like any other intelligent regression technique, the gen-
erated formulas are valid within the considered range 
of parameter values, beyond this range; the prediction 
accuracy should be verified.

•	 Prediction accuracies of (T) for all models are so close 
(between 96.4 and 97.4%),which gives an advantage 
to the simplest model(GP model), while the prediction 

Table 18   The used database G C^ S^ U^ B^ T^ D^
% % % MPa % GPa kg/m2

Training set
 0.385 0.125 0.0115 0.11425 3.275 0.71805 0.975
 0.21 0.19 0.0181 0.0986 1.5102 0.43076 0.53
 0.05 0.38 0.032 0.086 0.21 0.12352 0.25
 0.035 0.395 0.033 0.0854 0.183 0.11144 0.241
 0.4 0.11 0.011 0.115 3.31 0.72144 0.98
 0.1 0.3 0.028 0.09 0.33 0.16495 0.27
 0 0.35 0.037 0.07 0.1 0.07683 0.19
 0.06 0.366 0.0312 0.0874 0.24 0.1309 0.255
 0.315 0.153 0.0133 0.1095 2.695 0.6429 0.643
 0.015 0.37 0.037 0.0805 0.14 0.08865 0.21
 0.275 0.17 0.016 0.105 2.1 0.53918 0.58
 0.25 0.18 0.017 0.102 1.92 0.50913 0.56
 0.35 0.13 0.013 0.112 3.1 0.69181 0.79
 0.115 0.268 0.0261 0.091 0.404 0.1815 0.282
 0.29 0.171 0.0153 0.1061 2.3405 0.5864 0.6
 0.375 0.13 0.012 0.114 3.26 0.71445 0.96
 0.365 0.13 0.0122 0.1135 3.205 0.7014 0.86
 0.185 0.201 0.0202 0.0961 1.184 0.37643 0.45
 0.15 0.23 0.024 0.094 0.68 0.26201 0.36
 0.235 0.184 0.0172 0.1013 1.788 0.4813 0.543
 0.175 0.21 0.021 0.095 0.95 0.32453 0.42

Validation set
 0.3 0.17 0.014 0.107 2.57 0.61358 0.62
 0.085 0.321 0.0295 0.0891 0.3 0.1541 0.271
 0.2 0.19 0.019 0.098 1.35 0.40637 0.49
 0.34 0.14 0.0131 0.11085 3.065 0.6785 0.72
 0.325 0.14 0.013 0.11 2.93 0.66728 0.68
 0.075 0.34 0.031 0.088 0.27 0.14507 0.27
 0.135 0.245 0.0247 0.0931 0.523 0.2346 0.332
 0.125 0.25 0.025 0.092 0.45 0.20117 0.31
 0.025 0.4 0.035 0.085 0.16 0.10379 0.24
 0.16 0.22 0.0231 0.0943 0.783 0.2929 0.392
 0.225 0.19 0.018 0.1 1.65 0.46206 0.54
 0.26 0.176 0.0161 0.1038 2.017 0.52065 0.575
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accuracies of (D) are ranged between 93.1 and 94.0% and 
the simplest model equation is the (EPR) model. Also, 
prediction accuracies of (D^) for all models are so close 
(between 94.5 and 95.5%), which gives an advantage 
to the simplest model equation (GP model), while the 
prediction accuracies of (T^) are ranged between 93.0 
and 98.0% and the simplest model equation is the (EPR) 
model.

•	 (GP) model illustrated that both (T) and (D) values are 
governed by (B) and (U). On the other hand, the (EPR) 
model showed that they mainly depend on (B) besides 
(S) and (G). On the second case (cemented), both (GP) 
and (EPR) models illustrated that both (T^) values are 
governed by (B^) and (U^). On the other hand, the (D^) 
values are mainly dependence on (G) besides (B^), (S^) 
and (C^).

•	 Although the ANN model had very simple configurations 
(one hidden layer with two neurons and sigmoid activa-
tion function), but it was still able to capture the rela-
tionship between the inputs and the outputs accurately. 
It almost shared the same accuracy level with (GP) and 
(EPR) models.

•	 Since the three models share almost the same level of 
accuracy, (ANN) models are considered the worst of 
them due to its complicated equivalent equations.

•	 GA technique successfully reduced all possible polyno-
mial terms of conventional PLR the only effective terms 
without significant impact on its accuracy.

•	 Like any other intelligent regression technique, the gen-
erated formulas are valid within the considered range 
of parameter values, beyond this range; the prediction 
accuracy should be verified.
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