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Abstract
As a result of environmental issues, the use waste residue has gained much attention in the field of soil re-engineering, this is 
because of the feasibility of using waste derivatives in soil amelioration protocols. This necessitated the current study to deal 
with the utilization of an industrial residue termed as cement kiln dust (CKD) in enhancing the mechanical performance of 
black expansive clayey material. The amelioration protocols were as a result of the poor engineering performance of black 
cotton soil thereby becoming a road cancer material. The extreme vertex design (EVD) is a flexible approach and was adopted 
for the mixture experimental design and modelling of the mechanical properties of problematic black cotton soil—cement 
kiln dust blend. The statistical analyses and or approaches engaged in course of this study were carried out using Minitab 18 
and Design Expert statistical software. In the current study, the responses considered include California bearing ratio (soaked 
and unsoaked) and unconfined compressive strength test. The corresponding experimental responses were then achieved in 
the laboratory and used for analysis and model development. Statistical diagnostics and influence tests carried out on the 
developed model showed a good correlation with the actual results. However, using the EVD design of experiment approach, 
the peak performance of soil-CKD was achieved at the mixture combination of 0.45, 0.443 and 0.107% for soil, CKD and 
water, respectively. The strength outcomes indicate that cement kiln dust could be useful in ameliorating expansive soil for 
sub-base material of low trafficked roads and as well reduce cost of cement kiln dust residue disposal.

Keywords Black cotton soil · Desirability function · Constrained simplex method · Design expert

1 Introduction

Black cotton soil is largely an inorganic clay which possesses 
higher fraction of fine grained particles, higher plasticity, 
compressibility and expansive characteristics [1]. They are 
confined to the temperate climatic and semi-arid zones and 
very suitable for cotton cultivation [2]. Its mineralogical 
composition is dominated by montmorillonite clay mineral 
and is abundant in zones where the annual precipitation is 
less than the evaporation [3]. Quite number of studies have 
reported that this type of soil as well as other types deficient 

soil may not be suitable for engineering works due to the 
presence of soft sediments which makes them exhibit high 
volume change when there is significant change in moisture 
content [4–15].

The production of Portland cement which is an essen-
tial ingredient for construction works is accompanied by 
large quantities generation of by-product material in the 
form of cement kiln dust (CKD) which is not suitable for 
re-use in the cement production process and is disposed 
in millions of tons annually [16]. There has been great 
interest by researchers in providing applications for CKD 
so as to curtail the high cost associated with the disposal 
of these industrial waste and also related environmental 
degradation challenges [17–19]. It has been applied in 
various fields; first as a waste water streams stabilizer, as 
asphalts anti-stripping agent, soil fertilizer and masonry 
products. In the cement manufacturing process, the kiln 
rotates the cement ingredients (raw materials) gradually 
from the upper to the lower end and controlled by the 
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rotational speed and slope of the kiln. In the hotter end of 
the kiln, Chlorine, Potassium, Sodium and other elements 
present in the raw materials are wholly or partially volatil-
ize which are not allowed into the clinker [20, 21]. Rapid 
flow of air is supplied for combustion of the fuel which 
moves against the raw materials flow and the turbulent 
nature of raw feed agitation and swift gas flow results in 
large volume of particulate matter to be entrained during 
gases combustion. The gas flow takes up the volatilized 
and partially burned raw materials in the kiln while the 
entrained precipitates consists of CKD which is removed 
and collected from the exhaust gases of the kiln by pollu-
tion control equipment [22]. To achieve low alkali clinker 
from high alkali raw materials and also to ensure consist-
ent compliant operation, there is larger quantity of CKD 
generated as industrial waste. Additionally, there are high 
concentration of developed volatiles deposited at the kiln’s 
walls which causes plants shut down frequently. Therefore, 
CKD is generated from the cement manufacturing plants 
so as to eject volatile alkalis, sulphates and chlorides 
within the kiln system. Cement kiln dust (CKD) is a highly 
alkaline waste and fine grained by-product obtained from 
the cement exhaust gas control air pollution devices. The 
chemical and physical characteristics of CKD may vary 
from one cement manufacturing plant to another depend-
ing on the component ingredients (raw materials) utilized 
and method of collection in the plant [23, 24].

There is need to improve the engineering properties of 
expansive soils to be used as pavement subgrade material 
using industrial waste to encourage recycling and re-use of 
industrial waste. To make clear the relationship between the 
factor levels under investigation and their corresponding 
responses (correlations), advanced mixture design methods 
have been employed by several researchers [25–27]. Sala-
hudeen et al. [21] performed soil stabilization assessment 
in CKD blended black soil using artificial neural network 
(ANN) multilayer with perception back propagation algo-
rithm. Ten input variables which were obtained experimen-
tally and constitute the general engineering behaviour of the 
soil blended mixture in terms of effective grain size, grada-
tion coefficients, swell-shrinkage and specific gravity. The 
output variables are two, namely max dry density (MDD) 
and optimum mixture content (OMC). The developed model 
was validated using loss function parameters P value and 
MSE. The simulated network performance was satisfac-
tory with P value of 0.9884 and 0.983 for MDD and OMC, 
respectively. Also, Olubanwo et al. [28] investigated the uti-
lization of optimization techniques in the mixture of material 
experiments concept for designing and proportioning the 
cementitious portion of a bounded roller compacted fibre 
reinforcement polymer modified concrete (BRCFRPMC). 
By constraining the variability range of the constituent 
paste, a feasible design space was generated having 13 

experimental runs to derive the optimum consistency-time 
for composite and consolidation properties with the substrate 
OPC concrete at 34.10 and 34.90 sec. The apparent max 
density was obtained at the range of 97.10 to 98.0% of the 
free theoretical density.

In line with the foregoing, expansive soils are blended 
with stabilizing agents to enhance its performance in con-
struction works using several mixture experimental design 
techniques [29, 30]. Mixture experiment is a special case 
of response surface method where the property understudy 
compete with the existing ones. For the purpose of model-
ling, all sort after responses are first experimentally meas-
ured for each of the possible mixture combination in the 
design space after which the generated responses were mod-
elled as a function of the mixture components using polyno-
mial fractions based on mathematical formulations [31]. As 
simplex design for mixture experiments places lower bounds 
only on the factor levels, there are conditions where the use 
of complex constraints is appropriate or required. Extreme 
vertices design (EVD) is very important in this case as it is 
flexible enough to allow the imposition of additional con-
straints factor levels by specification of both upper and lower 
bounds on the components through the definition of linear 
constraints for blends [32]. EVD is a mixture design which 
occupies a smaller space or sub portion within the simplex. 
The design is important when the design factor space cho-
sen is not L-simplex design. This condition is imposed by 
both upper and lower bound constraints in the factor levels 
when there are series of inter-dependencies between the 
mixture components which result to setting of lower and 
upper bounds for the ingredients [33].

Table 1  Design constraints

Mixture coding: Actual
Low Constraint High

0.450 A: Soil 0.650
0.250 B: CKD 0.450
0.100 C: Water 0.250

A + B + C 1.000

Table 2  Design matrix 
evaluation for mixture special 
cubic model 3 factors: A, B 
and C

*** Mixture component coding 
is L-pseudo ***

Degrees of freedom for evalu-
ation

Model 6
Residuals 5
Lack of fit 4
Pure error 1
Corr. Total 11
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In design of experiments, optimal designs are experimen-
tal design types which are optimal compared to the required 
statistical criterion. Optimal designs permit variables or fac-
tors to be predicted with minimum variance and without 
bias. For non-optimal designs, more numbers of experimen-
tal runs would be needed using the same precision as opti-
mal designs to predict the factor variables. This would result 
to more experimentation cost. Statistical criteria are utilized 

to evaluate experimental designs. Design optimality depends 
on statistical model evaluated with respect to prescribed sta-
tistical criterion, which is associated with the estimator’s 
variance matrix. When several variables are assessed in the 
given statistical model, the inverse of the variance matrix is 
termed information matrix. The information matrix is com-
pressed or simplified with real valued summary statistics. 
D-Optimality which is a popular criterion which maximizes 
the information matrix X′X or minimizes the information 
determinant matrix |||

(
X�X−1

)||| of the design. However, 
I-Optimality is a criterion associated with the variance of 
predictions and minimizes the average prediction variance 
over the design factor space.

The objective of EVD is to select design points that 
appropriately cover the design space. This occurs due to 
imposition of additional constraints of lower and upper 
boundary conditions in the mixture components which result 
in the design points occupying smaller portion of the sim-
plex termed the constrained region [34]. The constrained 
mixture is of the general form for a single component con-
straints (SCC) where q is the total number of ingredients 
as presented in the Eqs. 1 and 2. When the component 

Table 3  Power calculations are performed using response type "Con-
tinuous"

1 Basis Std. dev. = 1.0

Power at 5% alpha level to detect signal/noise ratio of

Term Std. err.1 VIF Ri-square 2 Std. dev.

A 0.99 2.41 0.5851 21.7%
B 0.95 2.34 0.5734 21.8%
C 1.94 7.01 0.8574 13.7%
AB 4.67 2.85 0.6496 28.7%
AC 5.75 6.02 0.8338 20.6%
BC 6.54 5.31 0.8118 17.1%
ABC 26.55 2.84 0.6474 37.8%

Fig. 1  Contour space and factor 
space simplex
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Fig. 2  Experimental factor space of the components in a three-component mixture space
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proportions are imposed with SCC, the factor space will 
now take the shape of irregular polyhedron within the sim-
plex [35]. Thus, the thrust of this study is that despite the 
numerous deployment of CKD in improving deficient soils, 
to the best of the authors’ understanding they exist minute 
attempts in optimizing additives proportions for soil treat-
ment by means of EVD strategy.

where,  Lj ≥ 0 is the lower region and  Uj ≤ 1 is the upper 
region.

It is possible to define new set of components consisting 
of values ranging from 1 to 0 since the new constrained 
region of the experimental design space is still a simplex. 
This makes model fitting and design construction easier 
through the constrained interest region. These newly gen-
erated components (× j) are termed as pseudo components 
which is defined using the mathematical formula expressed 

(1)X1 + X2 + ... + Xq − 1 = 0

(2)
Lj ≤ Xj ≤ Ujfor j

= 1, 2 ... ... q.

in Eq. 3. Pseudo-components are essentially utilized for mix-
ture model fitting because there are relatively high levels of 
multicollinearity among the factor levels at the constrained 
design space and computer aided designs like D-optimal, 
I-optimal designs in mixture experiments [36, 37].

When constructing a design in pseudo components, we 
specify the design points in X∗

j
 terms and then convert to the 

corresponding original component setting using the formula 
in Eq. 4.

For a q-component experimental mixture with upper 
bound constraints with components where 0 ≤  × 1 ≤  Ui 
shown mathematically in Eq. 5.

The upper bound constraint causes the feasible experi-
mental portion to be situated entirely inside original simplex 
in inverted form only if; as stated mathematically in Eq. 6.

The minimum of q-upper bound is represented by 
 Umin and the experimental region in this case is termed 
U-simplex.

In this research study, a mixture experimental optimi-
zation and design were carried out using EVD method so 
as to optimize the utilization of cement kiln dust for the 
stabilization of expansive clay (black cotton soil) in terms 
of its mechanical characteristics. The optimal ingredients’ 
content are then determined using multiple optimization 
criteria through the desirability function and the complex 

(3)
X∗
j
=

Xj−Lj

1−L
where L =

q∑
j=1

Lj

< 1 and is the lower boards total sum.

(4)xj = Lj + (1 − L)X∗

j

(5)

U − pseudo components =
Uj−Xj

U−1

> 1
, j = 1, 2..., q where U =

q∑
j=1

Uj

(6)
q∑
j=1

Uj − Umin ≤ 1

Table 4  Measures derived from the information matrix

Run Leverage Space type Build type

1 0.3413 Interior Model
2 0.7698 Edge Model
3 0.3450 Center Center
4 0.3205 Interior Model
5 0.8971 Vertex Model
6 0.6700 Vertex Model
7 0.3194 Interior Lack of fit
8 0.4475 Edge Model
9 0.9747 Vertex Model
10 0.7879 Edge Model
11 0.6794 Vertex Model
12 0.4475 Edge Replicate
Average = 0.5833

Table 5  Design summary

File version 10.0.0.3

Study type Mixture Subtype Randomized
Design type I-optimal Coordinate exchange Runs 12
Design model Special cubic Blocks No blocks

Component Name Type Minimum Maximum Mean Std. dev.

A Soil Mixture 0.45 0.65 0.520484 0.0597638
B CKD Mixture 0.25 0.45 0.319125 0.0654976
C Water Mixture 0.1 0.25 0.160392 0.0528161
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nature of soil-additive blends has been simplified using EVD 
method. This work provides an insight into the application 
of constrained simplex method of experimental design for 
the evaluation of the soil-additive blend engineering proper-
ties [38].

2  Materials and Methods

2.1  Test Materials

The soil material was sourced via method of disturbed 
sampling from a deposit in Deba, Gombe State, Nigeria 
(which lies within latitude 10° 12ʹ 42.73ʹʹ N, longitude 11° 
23ʹ 13.56ʹʹ E). The soil material has a greyish black colour 
based on eye inspection. Prior to the usage of the greyish 

black expansive soil, it was broken into smaller fragments, 
air dried, pulverised and as well sieved with BS sieve No. 
4 (4.75 mm aperture). The cement kiln dust used for the 
laboratory exercise was collected from a “mole hill” of CKD 
dumped at the discharge unit of Lafarge Cement Company in 
Calabar. Specific gravity test performed on the cement kiln 
dust presented a value of 2.65.

2.2  Test Methods

The experimental examinations were investigated upon 
according to the guiding principles in BS 1377 [39] and 
BS 1924 [40] for both unaltered and treated soil mixtures, 
respectively. The tests executed on the natural soil include 
particle size analysis, Atterberg limits, specific gravity, 
compaction test, California bearing ratio test and uncon-
fined compressive strength test. This study presents a three-
component mixture experiment consisting of soil, CKD 
and water; due to the imposition of component constraint at 
upper and lower boundaries, the simplex is constrained with 
the experimental points positioned at the edges and vertices 
of the constrained region. The mixture component ratios and 
number of experimental runs were then determined using 
I-optimal design through which the unconfined compres-
sive strength (UCS) and California bearing ratio (CBR) tests 
were carried out in the laboratory. Data generated from the 
experimental responses and their corresponding factor levels 
were then analysed so as to model the soil-CKD mechani-
cal blend behaviour. Statistical diagnostics and influence 
tests were also carried out to validate the developed model; 
numerical and graphical optimization is finally conducted 
using desirability function computation to maximize the 

Table 6  Experimental mix proportions

Actual components Pseudo-components

Z1 Z2 Z3 X1 X2 X3

0.520108 0.316261 0.163631 0.350539 0.331307 0.318155
0.548282 0.351718 0.1 0.491408 0.508592 0
0.5125 0.3125 0.175 0.3125 0.3125 0.375
0.52269 0.324926 0.152384 0.363452 0.374629 0.261918
0.45 0.45 0.1 0 1 0
0.5 0.25 0.25 0.25 0 0.75
0.494652 0.397233 0.108115 0.22326 0.736166 0.040574
0.573786 0.25 0.176214 0.618928 0 0.381072
0.65 0.25 0.1 1 0 0
0.45 0.376859 0.173141 0 0.634297 0.365703
0.45 0.3 0.25 0 0.25 0.75
0.573786 0.25 0.176214 0.618928 0 0.381072

Table 7  Basic properties of the test soil

Description of soil Test results

Natural moisture content (%) 20.10
Specific gravity 2.40
Percentage passing BS No. 200 sieve (75 μm aperture) 70.978
Liquid limit (%) 56.30
Plastic limit (%) 27.60
Plasticity index (%) 28.70
Free swell (%) 53.50
Linear shrinkage (%) 18
AASHTO A-7-6 (14)
USCS CH
Maximum dry density (Mg/m3) 1.64
California bearing ratio (%) 3
Optimum moisture content (%) 18

Table 8  Particle size fraction of 
unaltered soil

D (mm) Passing (%)

4.755 99.60
2.000 99.09
1.700 96.915
0.850 95.095
0.425 89.15
0.300 87.025
0.212 84.75
0.075 70.978
0.039 45.000
0.029 30.555
0.020 27.917
0.016 22.566
0.011 18.333
0.008 15.575
0.007 13.083
0.005 9.980
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response criteria with respect to the factor levels to obtain 
the optimal mixture combination of problematic soil-CKD 
for the maximized mechanical strength response [41].

2.2.1  California Bearing Ratio

California bearing ratio test is an indicator of soil strength 
parameter and it was executed according to the guidelines 
in BS 1377 [39] and BS 1924 [40] for both unaltered and 
treated soil mixtures, respectively. The tests were carried 
out for soil materials compacted based on British Stand-
ard Light (BSL) compaction energy for both soaked and 
unsoaked conditions. The soil specimens were compacted 
in three layers with the aid of a 2.5 kg rammer and each of 
the three layers received 62 nos. of blows. The soil speci-
mens compacted during the CBR tests were cured for 6 days 
and after the sixth day the soil specimens were immersed 
in water for a period of 48 h. Thereafter, the cured speci-
mens were subjected to a static loading system by the CBR 
machine until failure took place [42].

2.2.2  Unconfined Compressive Strength

The method documented in BS 1377 [39] was used to deter-
mine the unconfined compressive strength (UCS) of the soil 
specimens. Both the natural soil and cement kiln dust treated 
soil mixtures were used for the UCS experimentation. The 
soil specimens were compacted using BSL and cured for a 
duration of 7 days. After the curing exercise, soil specimens 

were placed inside the loading frame of the UCS testing 
machine [43].

2.3  Components Mixture Design Formulation

The determination of the actual ratio of the ingredients to 
be mixed for each particular experimental run and also the 
total number of experimental runs were carried out here. The 
effective ratios obtained here form fundamental bases for the 
model development so as to derive the optimal combination 
ratio for the soil-additives blend and achieve improvement 
in the problematic soil engineering properties [44].

2.3.1  Formulation of Constraints

The mixture components are imposed with upper and lower 
bounds established through the ingredient material charac-
teristics which constitute the experimental blend. In most 
cases, economical, practical and environmental or physical 
considerations impose most of these boundary limits. For a 
three-component mixture investigated in this state constitut-
ing of the problematic soil, CKD and water; here the soil 
is treated with the CKD as admixture at varying values of 
moisture content to enhance its mechanical properties. From 
relevant literatures [45, 46], the component constraints were 
formulated using single component constraints (SCC) are 
presented in Table 1.

Table 9  Basic properties of the 
test soil

*Attah et al. [9]

Oxides SiO2 CaO SO3 MgO TiO2 Fe2O3 Al2O3 Na2O K2O LOI

Mass fraction (%) Soil* 48.50 0.90 – 2.22 – 2.20 18.60 1.55 0.70 10.10
CKD* 18.82 66.82 2.01 0.01 0.40 2.05 6.34 0.20 1 1.03

Table 10  Experimental results Runs Experimental ratios Mass conversion (Kg) Test results

Soil CKD Water Soil CKD Water CBR (S) CBR (US) UCS (7D)

1 0.52 0.32 0.164 2.158447 1.312485 0.679068 21 46 454
2 0.55 0.35 0.100 2.275368 1.459632 0.415 23 48 463
3 0.51 0.31 0.175 2.126875 1.296875 0.72625 20 47 448
4 0.52 0.32 0.152 2.169165 1.348442 0.632392 22 46 456
5 0.45 0.45 0.100 1.8675 1.8675 0.415 27 58 501
6 0.50 0.25 0.250 2.075 1.0375 1.0375 17 34 399
7 0.49 0.40 0.108 2.052806 1.648518 0.448677 26 53 478
8 0.57 0.25 0.176 2.38121 1.0375 0.73129 15 33 388
9 0.65 0.25 0.100 2.6975 1.0375 0.415 12 30 380
10 0.45 0.38 0.173 1.8675 1.563967 0.718533 24 54 470
11 0.45 0.30 0.250 1.8675 1.245 1.0375 19 45 442
12 0.57 0.25 0.176 2.38121 1.0375 0.73129 14 33.5 385
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Table 11  Model summary 
statistics for UCS response

 + Case(s) with leverage of 1.0000: PRESS statistic not defined
"Model Summary Statistics" Focus on the model maximizing the "Adjusted R-Squared" and the "Predicted 
R-Squared"

Source Std. dev. R-squared Adjusted R-square Predicted R-square PRESS

Linear 0.31 0.9193 0.9013 0.8570 1.50
Quadratic 0.17 0.9835 0.9698 0.8325 1.76
Special cubic 0.097 0.9955 0.9901 0.8312 1.77
Cubic 0.057 0.9994 0.9966  + 
Special quartic 0.063 0.9988 0.9958 0.9237 0.80 Suggested
Quartic 0.054 0.9997 0.9969  + Aliased

Table 12  Lack of fit tests for 
UCS response

"Lack of Fit Tests" Want the selected model to have insignificant lack of fit

Source Sum of squares df Mean square F value P value Prob > F

Linear 0.84 8 0.11 36.22 0.1278
Quadratic 0.17 5 0.034 11.65 0.2187
Special cubic 0.044 4 0.011 3.78 0.3657
Cubic 3.508E-003 1 3.508E-003 1.21 0.4704
Special quartic 9.166E-003 2 4.583E-003 1.57 0.4909 Suggested
Quartic 0.000 0 Aliased
Pure error 2.911E-003 1 2.911E-003

Table 13  Sequential model sum 
of squares [Type I] for UCS 
response

"Sequential Model Sum of Squares [Type I]": Select the highest order polynomial where the additional 
terms are significant and the model is not aliased

Source Sum of squares df Mean Square F value P value Prob > F

Mean vs total 5253.52 1 5253.52
Linear vs mean 9.64 2 4.82 51.23  < 0.0001
Quadratic vs linear 0.67 3 0.22 7.82 0.0170
Sp. cubic vs quadratic 0.13 1 0.13 13.35 0.0147
Cubic vs Sp. cubic 0.041 3 0.014 4.21 0.1978
Quartic vs cubic 3.508E-003 1 3.508E-003 1.21 0.4704 Aliased
Residual 2.911E-003 1 2.911E-003
Sp. quartic vs quadratic 0.16 3 0.053 13.28 0.0308 Suggested
Quartic vs Sp. quartic 9.166E-003 2 4.583E-003 1.57 0.4909 Aliased
Residual 2.911E-003 1 2.911E-003
Total 5264.00 12 438.67

Table 14  Model summary 
statistics for CBR response

 + Case(s) with leverage of 1.0000: PRESS statistic not defined

Source Std. dev. R-squared Adjusted 
R-squared

Predicted 
R-squared

PRESS

Linear 0.20 0.9349 0.9205 0.8634 0.76
Quadratic 0.075 0.9939 0.9888 0.9606 0.22 Suggested
Special cubic 0.074 0.9951 0.9892 0.8825 0.65
Cubic 0.022 0.9998 0.9991  + 
Special quartic 0.053 0.9985 0.9943 0.8668 0.74
Quartic 0.031 0.9998 0.9981  + Aliased
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2.3.2  Design of Factor Space and Simplex

The developed constraints which defined the upper and 
lower limits of the SCC imposed on the factor levels cause 
the factor space to take the shape of a hyper-polyhedron sim-
plex. The feasible experimental region within the simplex 
termed the constrained space is then obtained through the 
SCC evaluation [47]. The degree of freedom evaluation is 
also carried out through the design matrix assessment com-
putation for the mixture design using special cubic model 
as shown in Table 2. A minimum of three lack of fit degrees 
of freedom is recommended which ensures fit test validity. 
Fewer degrees of freedom will lead to a test that may not 
detect lack of fit [48].

Power computation tests were carried out on the gener-
ated mixture component constraints using Minitab 18 and 
design expert software to determine the standard error, vari-
ances and standard deviations on the mixture terms which 
represent the model coefficients situated at the vertices, 
edges, design planes and centroid of the simplex at 5% level 
of alpha as shown in Table 3.

• Standard errors should be smaller and similar within 
coefficient type.

• The Best variance inflation factor (VIF) value is 1. VIFs 
higher than 10 are cause for concern. VIFs higher than 
100 are cause for alarm, signifying poor estimation of the 
coefficients as a result of multicollinearity.

• Best Ri-squared is 0. Higher Ri-square indicates corre-
lation of the terms which would possibly lead to poor 
models.

• For the experiment mixture designs the ratios of ingredi-
ents must sum to one.

• This is a constraint on the system and causes multicol-
linearity to exist, thus increasing the VIFs and the Ri-
squares, rendering these statistics useless.

• Use precision-based metrics provided in this program via 
fraction of design space (FDS) statistics.

The design expert software also developed the three-
component simplex contour plot and conditions as shown 
in Figs. 1 and 2, showing the positioning of the actual 
experimental points within the feasible design space. There 

Table 15  Lack of fit tests for 
CBR response

"Lack of Fit Tests": Want the selected model to have insignificant lack of fit

Source Sum of squares df Mean square F value P value Prob > F

Linear 0.36 8 0.045 47.90 0.1113
Quadratic 0.033 5 6.615E-003 7.04 0.2783 Suggested
Special cubic 0.026 4 6.547E-003 6.97 0.2760
Cubic 1.707E-005 1 1.707E-005 0.018 0.9147
Special quartic 7.646E-003 2 3.823E-003 4.07 0.3309
Quartic 0.000 0 Aliased
Pure error 9.399E-004 1 9.399E-004

Table 16  Sequential model sum 
of squares [Type I] for CBR 
response

"Sequential Model Sum of Squares [Type I]": Select the highest order polynomial where the additional 
terms are significant and the model is not aliased

Source Sum of squares df Mean square F value P value Prob > F

Mean vs total 521.95 1 521.95
Linear vs mean 5.19 2 2.59 64.65  < 0.0001
Quadratic vs linear 0.33 3 0.11 19.23 0.0018 Suggested
Sp. cubic vs quadratic 6.886E-003 1 6.886E-003 1.27 0.3111
Cubic vs Sp. cubic 0.026 3 8.724E-003 18.23 0.0524
Quartic vs cubic 1.707E-005 1 1.707E-005 0.018 0.9147 Aliased
Residual 9.399E-004 1 9.399E-004
Sp. quartic vs quadratic 0.025 3 8.477E-003 2.96 0.1982
Quartic vs Sp. quartic 7.646E-003 2 3.823E-003 4.07 0.3309 Aliased
Residual 9.399E-004 1 9.399E-004
Total 527.50 12 43.96
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are four space types through which these points where ran-
domly disposed which include, interior, edge, center and 
vertex. Information matrix showing the leverages, build and 
space type were calculated. Lack of fit were recorded on one 
point at the interior space type while the replicates were also 
observed at one point on the edge space type of the simplex 
as shown in Table 4. From the results, average leverage of 
0.5833 was calculated [49, 50].  

The software determines data statistics for the experi-
mental design and performs the multicollinearity design, 
G-efficiency, scaled D-optimality and I-optimal design. 
I-optimal designs, also known as IV (integrated variance), 

provide minimum average estimation of the variance across 
the experimental regions. It is desirable for (RSM) Response 
Surface Methods where estimation is very important and its 
algorithm selects the points which minimize the prediction 
variance across the design space [49, 50]. Condition Number 
of Coefficient Matrix = 61.376.

• If this value is 100–1000, there is moderate to strong 
multicollinearity.

• Values above 1000 indicate severe multicollinearity.

Maximum Variance Mean = 0.975.
Average Variance Mean = 0.376.
Minimum Variance Mean = 0.205.
G Efficiency = 59.8%

• G Efficiency is inversely related to maximum variance.
• Lack of fit runs and replicates tend to reduce the G Effi-

ciency of a design.
  Scaled D-optimality Criterion = 82.331.
• When comparing designs, a smaller value is better.
  Determinant of (X′X)−1 = 7.156E + 5.
  Trace of (X′X)−1 = 808.230.

Table 17  ANOVA results for UCS response

1 Inference for linear mixtures uses Type I sums of squares
The Model F value of 325.08 implies the model is significant. There is only a 0.03% chance that an F value this large could occur due to noise
Values of "Prob > F" less than 0.0500 indicate model terms are significant
In this case A, B, C and AB are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are 
many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model
The "Lack of Fit F value" of 1.57 implies the Lack of Fit is not significant relative to the pure error. There is a 49.09% chance that a "Lack of Fit 
F value" this large could occur due to noise. Non-significant lack of fit is good the essence is for the model to fit

Response 1 UCS

Transform: Square root Constant: 0

ANOVA for Special Quartic Mixture model

*** Mixture Component Coding is L-Pseudo. ***

Analysis of variance table [Partial sum of squares—Type III]

Source Sum of squares Df Mean square F value P value Prob > F

Model 10.47 8 1.31 325.08 0.0003 Significant
Linear  mixture1 9.64 2 4.82 1196.70  < 0.0001
AB 0.21 1 0.21 51.38 0.0056
AC 0.027 1 0.027 6.80 0.0798
BC 1.444E-003 1 1.444E-003 0.36 0.5915
A2BC 0.032 1 0.032 7.97 0.0666
AB2C 0.026 1 0.026 6.35 0.0863
ABC2 2.914E-006 1 2.914E-006 7.239E-004 0.9802
Residual 0.012 3 4.026E-003
Lack of fit 9.166E-003 2 4.583E-003 1.57 0.4909 Not significant
Pure error 2.911E-003 1 2.911E-003
Cor total 10.48 11

Table 18  Statistical summary for UCS

The "Pred R-Squared" of 0.9237 is in reasonable agreement with the 
"Adj R-Squared" of 0.9958; i.e. the difference is less than 0.2

Std. dev. 0.063 R-squared 0.9988
Mean 20.92 Adj R-squared 0.9958
C.V. % 0.30 Pred R-squared 0.9237
PRESS 0.80 Adeq precision 52.119
− 2 log likelihood − 48.76 BIC − 28.88

AICc 15.24
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  I = 0.37922.
• These can be used in design comparisons with same 

number of runs, a smaller value is better. From the com-
putation results the design summary is thus presented in 
Table 5.

2.3.3  Experimental Mixture Proportion Design

The number of runs was assigned from the informa-
tion matrix where there are spaced at the corners of the 

Table 19  ANOVA results for CBR response

1 Inference for linear mixtures uses Type I sums of squares
The Model F value of 194.55 implies the model is significant. There is only a 0.01% chance that an F value this large could occur due to noise
Values of “Prob > F” less than 0.0500 indicate model terms are significant
In this case A, B, C, AB and BC are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are 
many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model
The “Lack of Fit F value” of 7.04 implies the Lack of Fit is not significant relative to the pure error. There is a 27.83% chance that a “Lack of Fit 
F value” this large could occur due to noise. Non-significant lack of fit is required

Response 2 CBR

Transform: Square root Constant: 0

ANOVA for Quadratic Mixture model

*** Mixture Component Coding is L-Pseudo. ***

Analysis of variance table [Partial sum of squares—Type III]

Source Sum of squares df Mean square F value P value Prob > F

Model 5.51 5 1.10 194.55  < 0.0001 Significant
Linear  mixture1 5.19 2 2.59 457.53  < 0.0001
AB 0.15 1 0.15 25.82 0.0023
AC 0.018 1 0.018 3.11 0.1281
BC 0.16 1 0.16 27.36 0.0020
Residual 0.034 6 5.669E-003
Lack of fit 0.033 5 6.615E-003 7.04 0.2783 Not significant
Pure error 9.399E-004 1 9.399E-004
Cor total 5.55 11

Table 20  Statistical summary for CBR

The “Pred R-Squared” of 0.9606 is in reasonable agreement with the 
“Adj R-Squared” of 0.9888; i.e. the difference is less than 0.2

Std. dev. 0.075 R-squared 0.9939
Mean 6.60 Adj R-squared 0.9888
C.V. % 1.14 Pred R-squared 0.9606
PRESS 0.22 Adeq precision 39.180
− 2 Log Likelihood − 36.34 BIC − 23.91

AICc − 16.34

Table 21  Model coefficient 
estimates for UCS

Component Coefficient estimate Df Standard error 95% CI low 95% CI high VIF

A—Soil 19.51 1 0.063 19.31 19.71 2.42
B—CKD 22.37 1 0.063 22.17 22.57 2.54
C—Water 20.44 1 0.12 20.05 20.83 7.02
AB 2.23 1 0.31 1.24 3.21 3.14
AC − 0.95 1 0.37 − 2.11 0.21 6.02
BC 0.25 1 0.42 − 1.07 1.57 5.34
A2BC 82.36 1 29.18 − 10.50 175.23 99.19
AB2C − 57.03 1 22.64 − 129.08 15.02 61.55
ABC2 − 0.42 1 15.77 − 50.61 49.76 25.58
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experimental region termed space type. Twelve (12) run of 
experiments were computed in the process and the number 
of runs can be modified to reduce the lack of fit effects 
and screen for errors within the factor space. The mix-
ture components are bounded by developed constraints to 
generate proportions for the run of experiments required. 
The mix proportion matrix is presented in Table 6. Show-
ing the actual and pseudo components proportions for the 
mixture experiments. The results obtained for the run of 
experiments which is the response would be utilized for 
the model development process of the soil-additive blend 
overall behaviour [51].

3  Results, Discussion and Model Validation

3.1  Characterization of Test Materials

The general classification and engineering behaviour of 
the test soil is presented in Table 7. The results indicate 
that it possesses high plasticity and swelling potential; it is 
also poorly graded and exhibit expansive properties with 
soft materials. Furthermore, the classification by AASHTO 
approach [52] and USCS [53] produced A-7–6 (14) and CH, 
respectively, which shows an unsuitable soil for engineering 
works with low CBR of 3%, MDD of 1.64 Mg/m3 and OMC 
of 18%. The studied soil has a specific gravity of 2.40 and 
from the grain size distribution test of the unaltered soil, 

72% of the soil particles fall within the silt–clay fraction 
(Table 8).

The chemical composition of CKD and test soil is pre-
sented in Table 9. The results showed that CKD has a high 
content of lime at 66.82%, silica 18.82%, alumina 6.34%, 
iron oxide 2.05% and a very low content of magnesium 
oxide 0.01% while the black cotton soil has a high content 
of silica 48.5%, alumina 18.6%, iron oxide 2.2% and very 
low lime content 0.9%. From the result obtained in terms 
of elemental oxides present in the problematic soil, the 
higher content of lime present in CKD would react when 
hydrated with the alumina and silica that is abundant in the 
problematic soil to produce calcium silicate hydrate. The 
hydration products obtained from this reaction process are 
expected to enhance the mechanical behaviour that would 
probably culminate to improvement of the problematic 
black cotton soil [54].

Table 22  Final equation in 
terms of L-pseudo components

Sqrt(UCS)  = 

 + 19.51 *A
 + 22.37 *B
 + 20.44 *C
 + 2.23 *AB
− 0.95 *AC
 + 0.25 *BC
 + 82.36 *A2BC
− 57.03 *AB2C
− 0.42 *ABC2

Table 23  Model coefficient 
estimates for UCS

CI Confidence interval

Component Coefficient 
estimate

df Standard error 95% CI low 95% CI high VIF

A—Soil 5.48 1 0.073 5.30 5.66 2.32
B—CKD 7.56 1 0.069 7.39 7.73 2.21
C—Water 5.85 1 0.13 5.52 6.17 5.79
AB 1.52 1 0.30 0.79 2.25 2.06
AC 0.65 1 0.37 − 0.25 1.56 4.40
BC 2.10 1 0.40 1.12 3.08 3.53

Table 24  Final equation in 
terms of L-pseudo components

Sqrt(CBR)  = 

 + 5.48 *A
 + 7.56 *B
 + 5.85 *C
 + 1.52 *AB
 + 0.65 *AC
 + 2.10 *BC

Table 25  Final equation in 
terms of real components

Sqrt(CBR)  = 

− 2.11110 *Soil
− 2.86936 *CKD
− 9.62606 *Water
 + 37.88364 *Soil *CKD
 + 16.34046 *Soil *Water
 + 52.45508 *CKD *Water
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3.2  Mechanical Properties of the Treated Soil

From the formulated mixture component proportions 
through the twelve runs of experiment, the actual ratios 
were converted to the effective mass (Kg) and the mix-
ture ingredients are then weighed according to the mass 
conversion values for each experimental run. The Califor-
nia bearing ratio (CBR) and unconfined compressive test 
(UCS) were carried out on the soil-additive blend with the 
experimental results presented in Table 10. The results 
indicate an improved mechanical strength performance 
due to the blending of CKD from 30–40%, soil at 40–50% 
and water at 5–10% [55].

4  Model Development and Validation

For the experimental response data processing, the 
required transformation for the analysis quadratic (square 
root) with the response ranges from 380 to 501 with a ratio 
of max to min 1.31842 for the UCS response and response 

ranges from 30 to 58 with max to min ratio 1.9333 for 
CBR responses. The fit summary, diagnostic tests, numeri-
cal and graphical optimization were carried out to deter-
mine the optimal mixture proportion of the problematic 
soil-CKD blend so as to maximize the mechanical strength 
response. Post analysis, confirmation and coefficient tables 
were then generated to validate the model results using 
design expert and Minitab 18 software [56, 57].

4.1  Fit Summary

Fit summary is a collection of relevant statistical tools 
which helps to choose the required final model initial 
or starting point. The results presented include sum of 
squares, lack of fit, R-squared and summary statistics. 
Several relevant statistical computation table which 
would enable us to determine which model to select for 
in-depth study. The full-order model which meets the cri-
teria specified is ‘suggested’. Aliased models are derived 
through the software computation if there are not adequate 

Fig. 3  Normal plot of studentized residuals for UCS response
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unique experimental design points for the model coeffi-
cients prediction. Through the sequential sum of squares 
computation, the sum of squares and P value Prob > F is 
expected to be minimum to indicate which polynomial 
model improved the result the most. The total number of 
model coefficients added sequentially is equal to degree 
of freedom for each source. The lack of fit sum of squares 
utilizes the F value which is compared with the variations 
in average response differences at the design points. The 
lack of fit tests compare the error residual with the error 
(pure) due to replicated design points. When lack of fit 
error is bigger than error (pure), it indicates the residual 
error contains some values that can be taken care of by 
more appropriate model.

4.1.1  Fit Summary for UCS Response

The fit summary for UCS response is presented in Tables 11, 
12, 13 and showed preference for the special quartic model 
with R-squared, adjusted and predicted R-squared of 0.9988, 
0.9958 and 0.9237, respectively. The lack of fit test results 
showed sum of squares of 9.166 ×  10–003, mean square of 
4.583 ×  10–003 and lack of fit p value (Prob > F) of 0.4909 
higher significant lack of fit p value is selected and used as 
the response predictor [49, 50].

4.1.2  CBR Fit Summary

The fit summary for CBR response is presented in 
Tables 14, 15, 16 showed preference for the quadratic 
model with R-squared, adjusted and predicted R-squared 
of 0.9939, 0.988 and 0.9606, respectively. The lack of fit 
test results showed sum of squares of 0.033, minimum 

Fig. 4  Normal plot of studentized residuals for CBR response
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Fig. 5  Residuals vs. predicted plot for UCS response

Fig. 6  Residuals vs. predicted plot for CBR response
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mean square of 6.615 ×  10–003 and lack of fit p value 
(Prob > F) of 0.2783 [49, 50].

4.2  Analysis of Variance (ANOVA)

Analysis of variance was carried out with respect to the 
model source selecting during fit summary computations. 

Special quartic model was prescribed for UCS response 
while quadratic model was selected for CBR response to 
determine the statistical significance for the mixture fac-
tor levels using pseudo coding. The ANOVA computation 
results using square root transformation is presented in 
Tables 17 and 18 for UCS response and Tables 19 and 20 
for CBR response [58].   
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"Adeq Precision" measures the signal to noise ratio. 
A ratio greater than 4 is desirable. The ratio of 52.119 
indicates an adequate signal. This model can be used to 
navigate the design space [49, 50].

4.2.1  Coefficient Estimates and Model Equations for UCS

The components, coefficient estimate, degrees of freedom, 
standard error, variance inflation factor (VIF) and final 
equations terms of L-pseudo components computation 
results are presented in Tables 18 and 21. VIF measures 
the extent to which the variance of the coefficient estimate 
(predictor) is inflated by the lack of orthogonality in the 

design points. If the factor is orthogonal with respect to 
all other factors in the model, the VIF = 1 [59] (Table 22).

The equation in terms of coded factors can be used to 
make predictions about the response for given levels of 
each factor. By default, the high levels of the factors are 
coded as + 1 and the low levels of the factors are coded 
as − 1. The coded equation is useful for identifying the 
relative impact of the factors by comparing the factor coef-
ficients [49].

“Adeq Precision” measures the signal to noise ratio. 
A ratio greater than 4 is desirable. The ratio of 39.180 
indicates an adequate signal. This model can be used to 
navigate the design space [49, 50].
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4.2.2  Coefficient Estimates and Model Equations for CBR

The components, coefficient estimate, degrees of freedom, 
standard error, variance inflation factor (VIF) and final equa-
tions terms of L-pseudo components computation results for 
the CBR response are presented in Tables 23, 24, 25.  

The equation in terms of coded factors can be used to 
make predictions about the response for given levels of each 
factor. By default, the high levels of the factors are coded 
as + 1 and the low levels of the factors are coded as − 1. The 

coded equation is useful for identifying the relative impact 
of the factors by comparing the factor coefficients.

The equation in terms of actual factors can be used to 
make predictions about the response for given levels of each 
factor. Here, the levels should be specified in the original 
units for each factor. This equation should not be used to 
determine the relative impact of each factor because the 
coefficients are scaled to accommodate the units of each 
factor and the intercept is not at the center of the design 
space [60].
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4.3  Diagnostics Plots

The regression diagnostics utilized for the verification of 
regression model assumptions and state if there are obser-
vations with huge or undue influence on the analysis using 

studentized residual which is quotient of the residual and 
its predicted standard deviation. Studentized residuals are 
essentially used as outliers’ detector; Outlier is group of data 
which differs significantly from other observations due to 
measurement variability or as an indication of experimental 
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error. Studentizing the residuals maps all the different nor-
mal distributions to a single standard normal distribution. 
Diagnostic statistical tests were carried out with respect to 
UCS and CBR responses [61].

4.3.1  Normal Probability Plot

Normal probability plot checks that the errors are normally 
roughly distributed which indicates that many of the residu-
als are positioned near the line of fit and not far away. It has 
very essential significance for the model estimation. Look 
only for definite patterns, like an “S-shaped” curve, which 
indicates that a transformation of the response may provide 

a better analysis [62]. Normal probability plot for UCS and 
CBR responses are presented in Figs. 3 and 4.

4.3.2  Residual vs. Predicted Plot

This statistical diagnostic test verifies the assumption of 
constant variance with the externally studentized residuals 
on the y-axis and the predicted values on the x-axis. The 
plot for UCS and CBR responses is presented in Figs. 5 and 
6, respectively. The result implies an expanding variance 
which indicates the need for a transformation. The scattered 
plot were very close to the zero studentized residual points 
with the maximum and minimum of 15.4435 and − 15.4435, 
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respectively for UCS responses and 4.98253 and − 4.98253 
for CBR responses [63].

4.3.3  Residuals vs. Run Plot

This diagnostic statistic shows a plot of the externally stu-
dentized residuals on the y-axis versus the run order of 

experiments on the x-axis. Lurking variables are checked 
which may have influenced the response during the experi-
ment in this statistical computation. The plot for the two 
response cases are presented in Figs. 7 and 8. The plot shows 
the studentized residuals are close to the line which indicates 
a time-related variable lurking in the background [64].
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Table 26  Report summary for the diagnostic plots and influence statistics for UCS

1 Exceeds limits

Response 1 UCS Transform: Square root Constant: 0.000
Diagnostics case statistics

Run order Actual value Predicted 
value

Residual Leverage Internally 
studentized 
residual

Externally 
studentized 
residual

Cook’s dis-
tance

Influence on 
fitted value 
DFFITS

Standard order

11 21.02 20.97 0.053 0.682 1.491 2.395 0.529 3.5041 12
6 19.97 20.03 − 0.054 0.671 − 1.489 − 2.382 0.503 − 3.4031 11
12 19.62 19.64 − 0.017 0.448 − 0.354 − 0.295 0.011 − 0.266 10
8 19.70 19.64 0.060 0.448 1.265 1.511 0.144 1.362 9
3 21.17 21.17 − 4.972E-

003
0.908 − 0.258 − 0.213 0.073 − 0.668 8

10 21.68 21.72 − 0.043 0.792 − 1.492 − 2.399 0.942 − 4.6821 7
1 21.31 21.29 0.012 0.422 0.258 0.213 0.005 0.182 6
4 21.35 21.36 − 8.457E-

003
0.733 − 0.258 − 0.213 0.020 − 0.353 5

7 21.86 21.86 3.571E-003 0.952 0.258 0.213 0.148 0.953 4
5 22.38 22.37 0.013 0.973 1.229 1.424 6.0451 8.5461 3
9 19.49 19.51 − 0.013 0.980 − 1.439 − 2.110 11.4971 − 14.9161 2
2 21.52 21.52 − 1.582E-

003
0.991 − 0.258 − 0.213 0.785 − 2.194 1

Constant 95% CI 95% CI Best Rec
K Low High Lambda Transform

0.000 3.00 None

Table 27  Report summary for the diagnostic plots and influence statistics for CBR

1 Exceeds limits

Response 2 CBR Transform: Square root Constant: 0.000
Diagnostics case statistics

Run order Actual value Predicted 
value

Residual Leverage Internally 
studentized 
residual

Externally 
studentized 
residual

Cook’s dis-
tance

Influence on 
fitted value 
DFFITS

Standard order

11 6.71 6.67 0.039 0.677 0.907 0.892 0.288 1.292 12
6 5.83 5.88 − 0.046 0.661 − 1.051 − 1.063 0.359 − 1.483 11
12 5.79 5.77 0.016 0.370 0.260 0.239 0.007 0.183 10
8 5.74 5.77 − 0.028 0.370 − 0.465 − 0.433 0.021 − 0.331 9
3 6.86 6.74 0.12 0.206 1.750 2.282 0.133 1.164 8
10 7.35 7.42 − 0.074 0.597 − 1.547 − 1.821 0.592 − 2.2181 7
1 6.78 6.76 0.026 0.210 0.392 0.362 0.007 0.187 6
4 6.78 6.83 − 0.048 0.217 − 0.717 − 0.684 0.024 − 0.360 5
7 7.28 7.35 − 0.066 0.304 − 1.044 − 1.054 0.079 − 0.696 4
5 7.62 7.56 0.052 0.844 1.762 2.314 2.8031 5.3871 3
9 5.48 5.48 − 2.113E-

004
0.939 − 0.011 − 0.010 0.000 − 0.041 2

2 6.93 6.92 0.011 0.604 0.235 0.215 0.014 0.266 1

Constant 95% CI 95% CI Best Rec
K Low High Lambda Transform

0.000 0.31 5.07 2.79 None
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4.3.4  Predicted vs. Actual

This diagnostic plot presents the estimated model response 
values on the y-axis versus the actual values on the x-axis. 
This plot help to determine a value, or group of values, that 
are not easily predicted by the model in terms of accuracy 
and is shown in Figs. 9 and 10 for the two response cases. 
The result deduced from the plotted results indicates a strong 
correlation between the experimental and the model pre-
dicted values [65].

4.3.5  Box‑Cox Plot for Power Transforms

This diagnostic plot test provides guidelines for power law 
transformation selection. Based on the derived best value for 
lambda, a recommended transformation is then listed which 
is situated at the lowest point of the curve generated by the 
natural log of the sum of squares of the residuals. Box-Cox 
Power Transforms plot for CBR and UCS responses are pre-
sented in Figs. 11 and 12. The result showed best lambda at 
3 and 2.79 for UCS and CBR, respectively [66, 67].

Table 28  Optimization criteria 
definition

Name Goal Lower limit Upper limit Lower 
weight

Upper weight Importance

A: Soil is in range 0.45 0.65 1 1 3
B: CKD is in range 0.25 0.45 1 1 3
C: Water is in range 0.1 0.25 1 1 3
UCS Maximize 380 501 1 1 3
CBR Maximize 30 58 1 1 3

Table 29  Optimization 
solutions

Number Soil CKD Water UCS CBR Desirability

1 0.450 0.443 0.107 497.758 57.376 0.977 Selected
2 0.450 0.450 0.100 500.430 57.211 0.976

Fig. 19  Optimization ramps
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4.4  Influence Plots

The statistical influence is evaluated through the cook’s 
distance, leverage vs. experimental run and difference in 
fits (DFFITS) statistics vs. experimental run. The results 
are presented in graphical plots which provide a better 
perspective on the data points.

4.4.1  The Cook’s Distance

The cook’s distance is used commonly for the determina-
tion of the data point influence when carrying out ordi-
nary least square regression analysis. The influential points 
which are particularly worth for validity checks and also 
to show planes of the feasible experimental design space 
where better performance can be achieved. The cook’s 
distance vs. experimental run plot for the two response 
cases are shown in Figs. 13 and 14. The plotted result indi-
cates that the cook distance score for the UCS response are 
mostly within 0 and 1 with run number 5 and 9 dispersed 
while the same was observed for CBR response plot where 
only run number 5 was dispersed [68].

4.4.2  Leverage vs. Run

Leverage measures how much each point influences the 
model fit. If a point has a leverage of 1.0, then the model 
exactly fits the observation at that point. Experimental run 
with leverage greater than 2 times the average is generally 
regarded as having high leverage, such runs have few other 
runs near them in the factor space [69]. The average leverage 
is the number of terms in the model divided by the number 
of experimental runs in the design and the plot for UCS and 
CBR is presented in Figs. 15 and 16.

4.4.3  DFFITS vs. Runs

DFFITS is a statistical diagnostic tool which shows how 
influential experimental points are in a regression analy-
sis computation. It is the change in the estimated value 
for experimental point derived in regression when that 
point is left out and also the product of the leverage fac-
tor and externally studentized residual shown in Figs. 17 
and 18 for UCS and CBR responses. The plotted results 
indicate DFFITS points with respect to the experimental 
runs lie very close to the zero points within the regions of 
± 2.59808 and ± 2.12132 for UCS and CBR, respectively 
[70].

4.4.4  Diagnostic Plots and Influence Statistics Summary 
Report

The summary report for statistical diagnostic plots and 
influences presenting the predicted and actual values, 
lambda values, the leverage, internally and externally stu-
dentized residuals with respect to the generated standard 
order for the two response cases as shown in Tables 26 
and 27.

4.5  Numerical Optimization

In a constrained design mixture both upper and lower 
bounds were at priori through a list of all combinations 
expressed in the term [q(2)q−1 + 1] . For possible blends and 
in addition to the model choice, desirability function using 
multi-criteria optimization criteria were incorporated. 
For each of the criteria, values ranging from 0 and 1 are 
defined with the scale of desirability satisfying the condi-
tion 

(
0 ≤ d

(
yj
)
≤ 1

)
 , in which 1 signifies corresponding 

Fig. 20  Optimization bar graph
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ideal response while 0 shows that one or some of the cri-
teria lie outside the acceptable values. The rejection or 
acceptance condition depends generally on the set aim 
which is optimization direction to either minimization, 
maximization or target [71, 72].

Where the maximization of the response shows that the 
bigger value performs better and its desirability function 
determined using Eq. 7.

The minimization of the response indicates that the 
lesser values performed better and its desirability func-
tion is determined using Eq. 8.

(7)d
�
yj
�
=

⎧
⎪⎨⎪⎩

0 yj < L�
y−L

T−L

�rj
L ≤ yj ≤ T

1 yj > T

⎫⎪⎬⎪⎭

Fig. 21  Trace (piepel) plot
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Fig. 22  Contour plot
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While the target shows the best response where its 
desirability function is computed using Eq. 9.

where T is the target value, yj is the estimated result of 
jth response, L is the minimum acceptable result, U is the 
maximum acceptable result and rj is the weight parameter of 
jth desirability function. Based on the above stated boundary 
conditions, a numerical multi-response optimization were 
conducted where the optimum mixture ratio maximizes the 
weight average of the individual desirability function d

(
yj
)
 

within the feasible design space. In this process, an equally 
weighted model is selected utilization, the composite desir-
ability of the form expressed in Eq. 10.

where the total individual response number is denoted 
by n.

After analysis of variance (ANOVA) and diagnostic test 
statistics, numerical optimization is carried out through 
which appropriate ratio combination of factor levels which 
simultaneously satisfy the criteria (maximize, minimize, 
in range, equal to and target) for each of the predictors and 
response parameters with the imposition of the formulated 
single components constraints as shown in Table 28. In 
range and maximize, criteria were assigned to the predic-
tors and response variables, respectively [73–75].

(8)d
�
yj
�
=

⎧
⎪⎨⎪⎩

0 yj < T�
U−yj

U−T

�rj
T ≤ yj ≤ U

0 yj > U

⎫
⎪⎬⎪⎭

(9)d
�
yj
�
=

⎧
⎪⎪⎨⎪⎪⎩

0 yj < L

0 yj < U�
U−yj

U−T

�rj
T ≤ yj ≤ U�

y−L

T−L

�rj
L ≤ yj ≤ T

⎫⎪⎪⎬⎪⎪⎭

(10)D = [d
(
y1
)
× d

(
y2
)
× ... × d

(
yn
)
]
1

n

The mixture optimization solution is presented in 
Table 29. From the desirability function computation, the 
solution with the highest score is selected as the optimal 
solution based on the desirability criteria score of 0.977 
with mix proportion 0.45:0.44259:0.1071 for the ratio of 
soil, CKD and water, respectively.

4.5.1  Optimization Ramps and Bar Graph

The numerical optimization ramps show the optimal solution 
graphical view with the optimal predictor parameter factor 
settings in red and the optimal response parameter factor in 
blue. This factor tool helps to make required selection of the 
optimal solution in a graphical view presentation as shown 
in Fig. 19.

The bar graph showing the desirability of the predictor 
and response variables in blue and red colors, respec-
tively, is presented in Fig. 20. From the desirability bar 
graph, the predictor parameters produced a desirabil-
ity scores of 1 while the response variables produced 
0.973206 and 0.977709 for UCS and CBR, respectively. 
Finally the overall durability score of 0.976957 was gen-
erated [76, 77].

4.5.2  Optimization Trace Plot

Trace plots are used to evaluate all the mixture compo-
nents effects in the factor space. The essence of this plot 
is to find out sensitivity of the response function compared 
to the deviation from the formulation close to the reference 
blend [78, 79]. The trace Piepel plot which has U-pseudo 
coding units on the x-axis for the CBR, UCS and optimal 
desirability responses is shown in Fig. 20. The contour 
plot is an important tool for the visualization of the fea-
sible experimental region’s functional points in iteration 
solution of mixture optimization. It is a graphical tool for 
3D-surface representation by contour plotting in terms of 
constant slice in 2-D form [80]. The contour plots for the 

Table 30  Confirmation report

Two-sided 
component

Confidence = name 95% level n = low level 1 high level Coding

A Soil 0.45 0.45 0.65 Actual
B CKD 0.43 0.25 0.45 Actual
C Water 0.12 0.1 0.25 Actual

Total = 1

Predicted Predicted
Response Mean Median Std. dev. N SE Pred. 95% PI low 95% PI high

UCS 493.536 493.532 2.8191 1 N/A 482.244 504.951
CBR 57.4739 57.4682 1.14161 1 N/A 54.036 61.006
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Fig. 23.  3D-Surface plot



747Mechanical Properties Optimization of Soil—Cement Kiln Dust Mixture Using Extreme Vertex Design  

1 3

CBR, UCS and optimal desirability responses are shown 
in Fig. 21

Three dimension surface plots are diagrammatic pres-
entation of the three mixture component relationships with 
respect to the response variables and also for the desir-
ability function shown in Fig. 22

4.6  Post Analysis

The post analysis computation results showing the confir-
mation report at two-sided confidence of 95%, the descrip-
tive statistics of the model predicted results and the com-
ponent constraints which must sum to one is presented in 
Table 30. The results indicate a component level of 0.45, 
0.43 and 0.12 for soil, CKD and water, respectively [81] 
(Fig. 23).

4.6.1  Coefficient Table

The coefficient table showing the factor level combina-
tion optimization coefficients of the black cotton soil-
CKD blend is presented in Table 31. The special quartic 
and quadratic models were simultaneously adapted for 
the complex mixture optimization computation where the 
former was used for UCS response modelling while the 
later was for CBR response modelling [82, 83].

5  Conclusion

From the foregoing mixture optimization research using 
EVD to evaluate the mechanical properties of problematic 
black cotton soil-CKD blend the following conclusions 
can be drawn.

The treatment of the problematic soil with CKD leads 
to improvement in the soil’s mechanical property produc-
ing a maximum response of 501 kN/m2 and 58% for UCS 
and CBR, respectively, at 45% ratio of CKD and 10% 
ratio of water. Using I-optimal design for factor space, 
the mixture ratios and run of experiments were derived 
from the vertex, interior, center and edge of the simplex. 
The single component constraints were imposed on the 

mixture ingredients bounded by upper and lower lim-
its while the sum of the ingredients must be unity. The 
mix ratio designed in this process is utilized for labora-
tory methodology to derive their respective responses in 
terms of CBR and UCS characteristics. Data gotten from 
this process are utilized for the model development for 
the soil-CKD behaviour. The results obtained showed an 
improvement in the mechanical properties of the studied 
soil makes it useful for pavement subgrade materials while 
also encouraging the recycling and re-use of industrial 
waste a very fundamental aspect of waste management 
for safe environment. Statistical fit test, ANOVA, diag-
nostic and influence tests were carried out after generat-
ing experimental response where model coefficients were 
derived with respect to UCS and CBR responses. UCS 
response modelling was carried out using special quar-
tic model while quadratic model was utilized for CBR 
response modelling. Numerical and graphical optimiza-
tions were further conducted so as to derive the optimal 
solution using the desirability scale ranging from 0 to 1. 
A desirability score of 0.977 was obtained at optimal mix 
ratio of 0.45:0.44259:0.1071 for soil, CKD and water, 
respectively, to produce optimal response of 497.758 kN/
m2 and 57.3758% for UCS and CBR, respectively. Based 
on the upshot of this study, the incorporation of cement 
kiln dust in the amelioration of mechanical performance 
of an expansive clay has occasioned a considerable level 
of enhancement. However, the optimization of other 
inherent soil parameters like resilient modulus could as 
be investigated upon using EVD method and this is part 
of the limitation of the study. Finally, from the economic 
assessment point of view of the current study, it entails 
in numerous folds: (i) the reutilization of waste materials 
in soil re-engineering as either cement or lime surrogate 
materials facilitates reduction in cost of infrastructural 
constructions, (ii) it will reduce the amount of  C02 emana-
tion during cement production process thereby promoting 
sustainable environment and (iii) it will eliminate the rate 
of waste in the society and as well reduce the trouble of 
inadequate waste management practices.

Table 31  Coefficient table

P < 0.01; 0.01 <= p < 0.05; 0.05 <= p < 0.10; p >= 0.10

Response A B C AB AC BC A2BC AB2C ABC2

Sqrt(UCS) 19.5064 22.3702 20.4415 2.22512 − 0.952446 0.249054 82.3648 − 57.0304 − 0.424288
p =  < 0.0001  < 0.0001  < 0.0001 0.0056 0.0798 0.5915 0.0666 0.0863 0.9802
Sqrt(CBR) 5.47744 7.56342 5.84685 1.51535 0.653619 2.0982
p =  < 0.000  < 0.0001  < 0.0001 0.0023 0.1281 0.0020
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