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Abstract 

Roads are the largest component of infrastructure; they directly impact people’s life by providing mobility and connectivity.  To ensure consistent 

surface quality, roads must be monitored continuously and repaired when necessary. Presently, authorities spend substantial amount of time, finance and 

labor for pavement distress detection by employing traditional manual and instrumented methods which are generally tedious, and time-consuming. To 

overcome these drawbacks, various automated techniques like Ground Penetrating Radar, Laser-Imaging-Systems, etc. are deployed. Recently, image-

processing and smartphone-based systems are being devised for pavement distress detection. Here, a vibration-based method using smartphone accelerometer 

and gyroscope, and a vision-based method using video processing for automated pavement distress detection are designed and compared to identify the more 

suitable one. Both experiments are performed on same roads and results are validated by manual surveying. Accuracy of vibration-based method for detecting 

potholes, patches and bumps is found as 80%. Accuracy for detecting cracks, potholes and patches using vision-based method is identified as 84%. An 

additional effort is taken to estimate the extent of pavement distresses using vision-based approach and validate it using manual stripping method. The study 

reveals that, vibration-based-analysis is sufficient for routine monitoring purposes whereas vision-based-method is more appropriate for detailed analysis. 
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1. Introduction  

A rapidly developing country like India has relentless demand 

for good quality infrastructure offering reliable services, and an 

adequate transportation system. India’s road network of over 

5,903,293 kilometers is the second largest in the world and almost 

65% of freight as well as 80% of passenger traffic are carried by 

these roads. Therefore, well-maintained roads are mandatory for 

efficient transportation [1]. To guarantee a high-quality standard 

for the road network, frequent performance monitoring and 

maintenance operations are indispensable. 

Pavement condition survey is imperative in a structured 

maintenance and management program. Pavement condition 

monitoring with proper surveys helps in obtaining critical 

information on the prevailing state for pavement performance 

analysis. Roughness, structural adequacy, distress, material 

durability, drainage adequacy, the extent of past maintenance 

activities, etc. are primarily evaluated to determine the overall 

pavement  condition [2].  Pavement  distress  detection  is  deemed 
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critical since it directly affects the safety as well as the comfort of 

users. It also helps in optimizing road maintenance activities. 

Conventionally, manual methods are adopted for pavement 

distress detection and analysis. Inspectors traverse the roads to 

measure the distresses. These manual pavement distress analysis 

methods are tedious, subjective, costly, time-consuming, and 

labor-intensive [3]. To address these difficulties, various 

automated technologies such as Ground Penetrating Radar, Laser 

Road Imaging system, video or image processing, smartphone 

sensors, etc. are used for pavement distress detection by different 

transportation agencies and researchers all around the world [4–6].  

Among all the aforementioned automated distress detection 

methods, smartphone sensors, as well as video processing 

techniques, have gained popularity over the past few decades 

particularly as  other sophisticated methods require particular 

setups like special lights, lasers, etc. that significantly increase the 

cost of the survey. However, a comparative study of both methods 

has not been undertaken by any researchers thus far despite the 

pressing need to identify the most suitable automated approach to 

pavement distress detection. 

The number of smartphone users is exponentially increasing 

around the world and numerous researches have been conducted 

to explore the applicability of smartphones in various walks of 

transportation engineering, such as traffic congestion studies, 

travel time estimation, least cost or shortest route identification, 

vehicle speed monitoring, etc. [7–11]. Sharma et al. developed an 

innovative    distress     detection     technology     that     leverages 
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microphone sensors present in smartphones [12]. Kyriakou, 

Christodoulou, and Dimitriou studied the applicability of pitch and 

roll sensors in smartphones for detection and classification of 

pavement anomalies by using Artificial Neural Networks [13]. 

Pothole Patrol system proposed by Eriksson et al. uses a GPS and 

smartphone accelerometer that is attached to a car’s dashboard to 

detect potholes [14]. Zoysa et al. proposed a system called ‘BusNet’ 

that monitors environmental pollution and road surface condition 

[15]. This system places the smartphones on the roof of public 

buses. Nericell system developed by Mohan, Padmanabha, and 

Ramjee utilizes the microphone, GPS, and accelerometer 

embedded in smartphones to identify potholes and analyze traffic 

[16]. Kyriakou, Christodoulou, and Dimitriou, utilized smartphone 

sensors as well as on-board diagnostic devices for pothole 

detection [17]. 

Two-dimensional or three-dimensional images and videos are 

also harnessed in the field of pavement distress detection. 

Georgopoulos, Loizos, & Fiouda, Ho et al. and Ouyang, Luo, and 

Zhou, employed digital image processing technique to 

automatically and objectively determine the type, extent, and 

severity of cracks on flexible pavements [18–20]. Nienaber, 

Booysen, and Kroon, and Vigneshwar and Kumar, utilized simple 

image processing techniques and real-world footages to detect the 

potholes present on the pavement [21,22]. Lokeshwor, Das, and 

Goel employed video processing for detecting and quantifying 

pavement distresses [23,24]. 

Exploring past research works throws light on the fact that, most 

of the smartphone-based or video processing based researches 

have concentrated on detecting a single pavement distress; studies 

on the combined detection of multiple pavement anomalies are 

found to be less. Artificial Neural Network approach has not been 

explored earlier for smartphone-based pavement distress detection. 

In the present explorative work, an attempt is  made to detect 

multiple pavement distresses such as potholes, cracks, bumps, and 

patches by applying smartphone sensor-based vibration analysis as 

well as video processing. The accuracy of both the methods is 

checked and validated by comparing the results with that of 

manual distress survey. An effort is also taken to estimate the 

extent of each of the pavement distresses using video processing. 

To validate the results, the area and length of the distresses 

considered for the study are estimated manually by stripping 

method, and the results are  compared with that of the video 

processing method. Both vibration-based and vision-based 

analysis are performed on the same road network, and the accuracy 

of the methods is compared with a motive to identify the ideal and 

practical approach for automated pavement distress detection. The 

distresses detected by both the methods are incorporated into a GIS 

platform to develop geotagged distress maps that can be used not 

only to visualize the pavement condition data effectively but also 

for prioritizing the pavement rehabilitation needs. 

2. Study approach 

The major steps involved in the present study are depicted in Fig. 

1. 

2.1. Delineation of the study area 

As the primary objective of the current work is to compare two 

automated pavement distress detection techniques, viz. vibration-

based and vision-based methods, both the experiments are 

conducted   on   the    same   road   stretch,    and   the   results   are 

 

Fig. 1. Schematic of study approach. 

comparatively analyzed. The experimental road stretches taken up 

for the present study are situated inside the National Institute of 

Technology Tiruchirappalli campus, the total length of which is 

6.2 km. However, as the vibration-based method is employed 

using Artificial Neural Network technique, it warrants more 

amount of data for training the network. Therefore, smartphone-

based vibration data is collected for 19 roads having a total length 

of 15.25 km within Tiruchirappalli district, TamilNadu state of 

South India for training the ANN model. Fig. 2 and Fig. 3 shows 

the study road stretches selected for training the ANN model and 

for comparing the two automated methods, respectively. 

2.2. Data collection 

Smartphone-based data, as well as video-based data, are 

collected for the present work.  

2.2.1. Vibration-based data 

The smartphone is mounted using a GPS holder on the windshield 

of the car, as shown in Fig. 4,  with  its  accelerometer,  gyroscope, 

and GPS sensors turned on.   The video camera of the smartphone 
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Fig. 2. Study roads for training the ANN model. 

 

Fig. 3. Study roads for comparing vibration-based and vision-

based methods. 

is kept active throughout the experiment to visually verify the 

existence of all the pavement distresses detected by the sensor data. 

The smartphone accelerometer captures the linear accelerations 

along all the three axes as the vehicle is driven. The X, Y and Z 

axes correspond to longitudinal, lateral and vertical accelerations, 

respectively. The gyroscope sensor is used to measure the rate of 

rotation in each direction. The collected data pertains to both uni-

dimensional parameters such as X, Y, Z accelerations, speed, etc. 

and two-dimensional indicators such as the smartphone’s roll, 

pitch and yaw values that can be correlated with the corresponding 

values of the host car. Since, the roll of the car indicates its 

acceleration differential between the left and right front wheels, 

and  the   pitch   of   the  car  indicates  its  acceleration  differential  

 

Fig. 4. Data collection setup for vibration-based approach. 

between front and rear wheels, both roll and pitch in tandem 

elucidate how the host car is off-balance. The sensor data is 

collected at a frequency of 5 readings per second, and the speed of 

the vehicle is tried to be maintained within 40-60 km/hr. The 

location data is also collected using the GPS module present in the 

smartphones. 

2.2.2. Vision-based data 

Data on the pavement surface is collected by mounting a camera 

on the rear end of the car. The car model used is Tata Indica, and 

the camera is a Sony Handycam of 8.9 MP resolution. The video 

of the pavement surface is captured when the vehicle is moving at 

a speed of 10-15 km/hr. Fig. 5 shows the data collection setup for 

vision-based approach. For this, an arrangement consisting of a 

horizontal pipe of 2.2 m length and a vertical pipe of 1 m height is 

fabricated. The two rods are fastened using nuts and bolts. The pipe 

is extended from the car to avoid overlapping with the body of the 

car and also to capture the video of the road stretches without 

inclination. 

2.3. Detection and classification of pavement distress: 

2.3.1. Vibration-based method 

An attempt is made to detect patches, bumps, cracks, and 

potholes using smartphone vibration-based approach. An Artificial 

Neural Network (ANN) is modeled using a Python script to serve 

this purpose. The complete data collection was performed at a 

sampling rate of 5 readings/s. Initially, the model is trained by 

utilizing the data collected for 19 roads with a total length of 15.25 

km within Tiruchirappalli district. The time-stamped smartphone 

based accelerometer and gyroscopic data corresponding to the 

various distresses present in these road stretches are deployed for 

training the model. Almost 5690 readings were utilized for the 

training and testing purpose. Following this, the raw vibration data 

collected for the 10 study roads within National Institute of 

Technology Tiruchirappalli campus, with a total length of 6.2 km 

is  given  as  input  to   the ANN  model  to  detect  and classify the  

 

Fig. 5. Data collection setup for vision-based approach. 
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pavement distresses. Almost 1758 readings were utilized for the 

validation purpose. Therefore, almost 70% of the total data were 

used for the training and testing purpose and almost 30% of the 

total data were used for the validation purpose. 

2.3.2. Vision-based method 

The distresses detected using this approach are patches, cracks, 

and potholes. The video processing is performed using a 

MATLAB script. Initially, the videos of the road stretch collected 

are converted into image frames, and the noise present in the 

images is removed. The images are further enhanced, and an 

attempt is made to classify the pavement distresses according to 

the image texture and shape factor. Additional steps are also taken 

to identify the extent of the different pavement anomalies.  

2.4. Validation and comparison of results 

The results of both the methods are validated by conducting a 

manual distress survey of the study roads. The accuracy of both 

the methods in identifying each distress is quantified and compared. 

The length of the pavement cracks is measured manually, and it is 

compared with that obtained from the vision-based method. 

Similarly, a tracing of the potholes and patches is taken on a chart 

paper, and the area is calculated using the stripping method. This 

is compared with the area obtained using a vision-based approach 

to find out the accuracy of automated detection of the extent of 

pavement distresses.  

2.5. Generation of geo-tagged distress maps 

The pavement distresses detected by vibration-based as well as 

vision-based methods are exported to QGIS platform, and geo-

tagged maps are prepared. 

3. Vibration-based pavement distress detection 

In the present work, an attempt is made to deploy the readings 

captured using smartphone sensors to detect various pavement 

distresses. The events considered in the study are patches, bumps, 

cracks, and potholes. Artificial Neural Network (ANN) approach 

is selected for the present work since it has some major advantages 

like ease of usage, ability to model non-linear or complex relations, 

etc. ANN is a computational model that is analogous to the 

biological characteristics that simulate the decision processes in 

the brain. This method is helpful to estimate unknown functions 

depending upon the numerous input values [25]. Multilayer Feed-

forward Neural Network (MFNN) is one of the most widely used 

kinds of Artificial Neural Network. It consists of three different 

layers (input, hidden, and output) of interconnected neurons. The 

received signals are processed by each neuron, and as per a well-

defined activation function, the output is produced, and the same 

is transmitted to the neurons present in the upcoming layers 

through specific connections that define the network topology. 

Each of these connections is associated with a particular weight 

that is intended to either amplify or reduce the input.  

In a “supervised approach” like MFNN, when a broad set of 

input as well as output data is fed, the training procedure modulates 

the various weights to deliver an acceptable output. The results 

generated should be comparable to the output provided for the 

training. Levenberg-Marquardt is the most common training 

algorithm, and the corresponding error is evaluated by analysing 

the Mean Square Error (MSE) [26]. Fig. 6 depicts the internal 

skeleton of the building phase of an ANN model. It is clear that 

this method works on the principle of predicting the output by 

analyzing the trends of the input data. The training phase is usually 

performed with the aid of a back propagation model that permits 

the network to adjust the weights in a reverse direction by 

simultaneously distributing and minimizing the errors in the 

various neurons for each iteration.  

For training the ANN, smartphone sensor data is collected from 

19 roads having a total length of 15.25 km within Tiruchirappalli 

district. The smartphone sensor data and pavement distresses are 

given as the input and the output, respectively, of the ANN 

considered for the study, as shown in Fig. 7. The ANN deployed 

for the present study consists of 6 neurons in the input layer, 10 

neurons in the hidden layer and 5 neurons in the output layer. h1, 

h2, etc. in Fig.  7 indicate the neurons of the hidden layer. The 6 

neurons in the input layer are forward acceleration, lateral 

acceleration, vertical acceleration, vehicle pitch, vehicle roll and 

vehicle yaw. The 5 neurons in the output layer are no defects, 

potholes, patches, cracks and, bumps.  The ANN is trained for each 

case of distress and then trained with all four individual distresses 

in tandem. For each case, 70% of the data is utilized for training 

and the rest 30% of data is divided in half for testing as well as 

validation. Training sample is used for the learning process of the 

neural network and the test sample is used for analyzing the 

accuracy of the classifier. While training the ANN, different IDs 

are given for different events, as shown in Table 1. 

A test dataset consisting of distresses whose location is known is 

given as input and the obtained result is analyzed. The result from 

the ANN for a sample data is shown in Fig. 8. This sample data 

consists of 48 events including, 12 bumps, 17 patches, 9 potholes, 

3 cracks and 7 no defects. Out of this, 38 events are detected 

correctly by the ANN model. Even though all the bumps are 

detected by the ANN model, two patches are incorrectly identified 

as bumps. Six patches are also detected as no defect regions. Out 

of the three cracks, only one is detected by the model and one no 

defect area is wrongly identified as a crack.  

 

Fig. 6. Layers of MLPANN. 
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Similarly, the data for the whole 15.25 km road is used and the 

required network is trained. The final ANN model developed is 

identified to have an overall accuracy of 83%. Once the ANN 

model is trained, the data collected for the roads within NIT 

Tiruchirappalli campus is given as the input and the distresses 

present on the study roads are detected. The distresses detected are 

linked with the location data collected using the GPS module 

present in the smartphone and the whole data is exported to a QGIS 

platform. Finally, the geo-tagged map for all the ten study roads is 

prepared, as shown in Fig. 9. 

 

Fig. 7. ANN architecture for pavement distress detection. 

Table 1  

Distress and ID. 

ID Event 

1 Bump 

2 Patch 

3 Pothole 

4 Crack 

5 No Defect 

4. Vision-based pavement distress detection 

Vision-based pavement distress detection is performed on the 

same set of roads within NIT Tiruchirappalli campus where 

vibration-based experiment was conducted earlier. Potholes, 

patches and cracks are the distresses considered for vision-based 

distress detection in the present work. A MATLAB script is used 

to employ the video processing. The major steps involved in 

vision-based pavement distress detection are, converting the 

videos into image frames, image pre-processing, identifying and 

tracking the images consisting of pavement distresses and 

classifying the distresses detected. An additional effort is made to 

estimate the extent and severities of the distresses detected. 

4.1. Video to image frames 

Initially, the image frames are extracted from the video data at a 

frequency of 5 frames per second.  

4.2. Preprocessing 

Preprocessing is performed to remove the noise present in the 

image. The basic preprocessing steps performed are shown in Fig. 

10 with the help of a sample image of a pothole. 

RGB to Grayscale: Initially, the RGB images are converted to 

grayscale images and which are then filtered to enhance the 

features.  

Filtering: Median filtering is the filtering technique employed in 

this study. Median filter runs through every pixel of the image, and 

replaces each pixel with the median of the neighboring values. It 

aids in reducing the noise of the image to some extent.  

Binary Image: Once the filtering is performed, the grayscale 

image is converted to a black and white image so that the area of 

interest is represented using white pixels and the other areas are 

represented using black pixels. This can be considered as a form 

of reverse contrast stretching. Contrast stretching is changing the 

range of intensities of pixels from the original range to a higher 

range. Here, the intensity range of 0-255 of grayscale image is 

converted to 0-1 for the black and white image. In the present work, 

Otsu’s method is deployed to perform the binary thresholding. 

Otsu's thresholding is performed by iterating through all the 

possible threshold values and from this; a measure of spread for 

the pixel levels at each side of the threshold is calculated. It 

chooses a threshold that minimizes the intraclass variance of the 

thresholded black and white pixels. This helps in identifying the 

pixels that either falls in foreground or background. 

 

Fig. 8. Validation result of vibration-based pavement distress detection.
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Fig. 9. Distresses detected using vibration-based analysis. 

 

Fig. 10. Preprocessing steps. 

Noise Removal: When the image is converted from a grayscale 

to a black and white, there are possibilities of inaccuracies in 

identifying the threshold for conversion. This might result in the 

formation of discontinuities in the distressed areas or formation of 

noise in the image. To avoid this, a neighborhood of 5 x 5 pixels 

around each pixel is checked and if the majority of pixels are black, 

the pixel considered is converted to black and vice versa.  

Thinning: The next operation performed is thinning. It is a 

morphological operation that removes selected foreground pixels 

from the binary image. It creates a skeleton of the distressed area 

by removing pixels on the boundaries so that the complexity of the 

image is reduced. This also helps to remove the isolated pixels or 

their small clusters. 

4.3. Identifying and tracking the images with distresses 

Since videos are converted into frames at a frequency of five 

frames per second, a video clip of even one minute comprises of 

300 frames. Thus, it is necessary to restrict the number of video 

frames to reduce the computation time. This can be achieved by 

identifying the video frames that are suspected of containing any 

distress and removing all the other frames. This will also help in 

quickly predicting the general condition of road as per the total 

number of video frames with distress. For this, initially, the total 

area of pixels representing distressed areas is calculated by 

multiplying the total number of white pixels with the area of a 

single pixel. If the area obtained is greater than or equal to 177 cm², 

then that image is identified to be having a distress. This logic was 

developed by Lokeshwor, Das, and Goel, 2013 after conducting 

experiments on 200 frames with distress and 100 frames without 

distress [24]. Once a pavement distress is detected, the 

corresponding region is tracked in the subsequent frames until it 

leaves the viewport. 

4.4. Classification of distresses 

Classification of frames having potholes, patches and cracks is 

done based on a set of visual properties. The visual properties 

considered for the present study are image texture, shape factor 

and dimension. An image texture is defined as a set of metrics 

calculated to quantify the perceived texture of any image. Image 

texture provides the information regarding the spatial arrangement 

of color or intensities in an image or selected region of an image. 

In the present work, the spatial arrangement of the pixel intensities 

in the image is analyzed. The image texture of a pothole, crack and 

patch varies from that of the distress-free areas. However, the 

contrast variation of a pothole is much higher than that of a patch. 

Therefore, Standard Deviation (SD) of the pixel intensities is 

analyzed for the required purpose. Fig. 12 shows a raw and 

preprocessed image frame that consists of both pothole and a patch. 

The image after preprocessing clearly shows that the contrast 

variation within the pothole is high when compared to the patch. 

Shape factors are dimensionless quantities used in image analysis 

that numerically describes the shape of an object, independent of 

its size. Shape factors are calculated from measured dimensions, 

such as chord lengths, diameter, area, centroid, perimeter, 

circularity, etc. It is assumed that, the shape of the pothole or a 

patch is approximately circular and that of a crack is approximately 

elongated. Therefore, the shape factor is analyzed in terms of 

circularity (CIRC) and circularity varies depending upon the 

surface area and perimeter. The third factor considered in the 

analysis is dimension. The dimensions of an object in a digital 

image represent its length and width. It is usually measured in 

pixels. The width of a patch or pothole will be more than that of 

cracks. Therefore, the average width (W) of the distressed regions 

is analyzed. 

All frames that are identified to have a distress are categorized 

into frames with potholes, patches and cracks. The classification is 

performed if the image complies with any of the following 

categories [23]: 

If SD ≥ 10 & CIRC ≥ 0.10 & W ≥ 60mm - Pothole 

If 5 ≤ SD > 10 & CIRC ≥ 0.40 & W ≥ 60mm - Patch 

If SD ≥ 5 & CIRC ≤ 0.30 & W < 60mm - Crack 

where, SD = standard deviation of pixel intensities; CIRC = 

circularity of the distress; W = average width of the distress. 

Fig. 11 shows an example of a patch detected using MATLAB. 

 

Fig. 11. Distress detection example. 
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Fig. 12. Image frame with patch and pothole (a) raw image and (b) 

preprocessed image. 

 

Fig. 13. Distresses detected using vision-based method. 

Area of potholes, patches and the length of cracks are also 

determined by multiplying the total number of white pixels present 

in the corresponding pixels with the area of a single pixel. The area 

of one pixel is found to be 0.1236 mm2. The frame numbers of the 

images corresponding to the areas having distresses is matched 

with the location data collected using the smartphone. For example, 

since 5 frames are extracted per second, if a pothole is detected in 

the 55th frame of a video of 2 minutes, the event will have been 

encountered in the 11th second. The latitude and longitude 

corresponding to the 11th second of smartphone-based location 

data is matched to the respective distress. This synchronized data 

is exported to a QGIS environment and the maps are prepared, as 

shown in Fig. 13. 

5. Validation and comparison of results 

Manual distress survey is additionally performed for all the ten 

study road stretches. For vibration-based method, the location data 

of the distress is also identified by deploying the GPS in the 

smartphone. In vision-based method, five frames are extracted in 

one second. The frame number of the image containing distress is 

recognized and the corresponding time is identified. This is 

matched with the corresponding location that is collected using the 

smartphone GPS. The location data of the distresses identified 

using vibration as well as vision based distress detection method is 

matched with that of the manual distress survey. The true positives 

of vibration-based and vision-based distress detection survey when 

compared to the manual distress survey and the consolidated 

results are shown in Table 2. 

The accuracy in detecting each individual distress using both the 

methods is also compared and shown in Table 3.  

It is evident that, the accuracy of both the methods used for 

pothole detection is 90%. However, the accuracy for detecting 

patches and cracks is more for vision-based method. Out of 29 

cracks, only three are detected by vibration-based method. Cracks 

are mostly identified on the sides of roads during manual survey 

and the variation in sensor reading is too feeble to detect cracks. 

Even though the overall accuracy of vibration-based distress 

detection method is just 58 %, if cracks are not considered for the 

study, the accuracy is increased to 80 %. Bumps are detected only 

by using vibration-based method and all the 10 bumps present in 

the study roads are detected by the smartphone sensors. Even when 

bumps are not detected using vision-based method, the overall 

accuracy is found to be 75 % and when bumps are not considered, 

the accuracy is further increased to 84 %. The reason for the lower 

accuracy for the vibration-based method is that, it is able to detect 

only those distresses which are along the wheel path. Since the 

field of view for the vision-based method is more, a higher 

accuracy is attained by this method. 

An attempt is also made to validate the dimensions of the 

distresses detected using vision- based method. To do so, some 

typical distresses are traced over a chart paper and the area is 

determined by stripping method. A series of strips are created on 

the drawing sheet by drawing a series of parallel lines at regular, 

fixed  intervals.  The width of the strip is chosen according  to  the

Table 2 

Consolidated results of pavement distress detection. 

Road 

no. 

Number of distresses 

Potholes Cracks Patches Bumps 

Manual 

distress 

survey 

Vibration-

based 

method 

Vision-

based 

method 

Manual 

distress 

survey 

Vibration-

based 

method 

Vision-

based 

method 

Manual 

distress 

survey 

Vibration-

based 

method 

Vision-

based 

method 

Manual 

distress 

survey 

Vibration- 

based 

method 

1 2 1 2 2 0 1 1 0 1 3 3 

2 1 0 0 2 0 1 1 0 1 1 1 

3 0 0 0 2 0 2 4 4 4 0 0 

4 2 1 1 4 0 2 5 5 5 1 1 

5 4 5 4 4 2 3 6 2 4 0 0 

6 3 4 3 5 1 4 5 1 3 0 0 

7 2 1 2 4 0 3 2 2 2 0 0 

8 2 2 2 2 0 2 4 3 4 0 0 

9 2 2 2 2 0 2 4 4 4 1 1 

10 1 1 1 2 0 2 3 3 3 4 4 
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Table 3  

Accuracy of detection of individual distresses: vibration vs. vision 

method. 

Distress Vibration-based 

method (%) 

Vision-based 

method (%) 

Potholes 90 90 

Patches 69 89 

Cracks 10 76 

Bumps 100 - 

 

 

Fig. 14. Determination of area using (a) vision-based method and 

(b) manual method. 

scale. The length of each strip within the boundaries of the distress 

is measured along a centerline and the sum of these distances is 

multiplied by the equivalent field distance. This is again multiplied 

by the width of the strip to obtain the area of the distress. The area 

determined by both methods is  compared and validated.Fig. 14(a) 

and Fig. 14(b) show the area of a same pothole detected using 

video processing and stripping method. 

The area determined by the manual method is 897.23 cm2 and 

that by video processing is 890.72 cm2. 

6. Conclusions 

The study presents two automated low-cost methodologies for 

determining pavement distresses. The first is the smartphone 

sensor-based distress detection technique. An ANN model is 

developed to detect road bumps, potholes, cracks and patches. This 

innovative application using a smartphone can be integrated with 

an automobile to evaluate the overall road condition. Pavement 

maintenance agencies can enrich the condition and improve the 

operation of road networks with the aid of a smartphone-based 

Pavement Management System. The second method is based on 

image processing. MATLAB coding is used to detect and classify 

potholes, patches and cracks from video data of the pavement. 

Even though both the methods have the advantages of low-cost 

cost and adequate accuracy, the vision-based method is found to 

be more effective than vibration-based method as the latter detects 

only those distresses that are along the wheel path. However, the 

smartphone-based pavement distress detection methodology is 

applicable in both daytime as well as nighttime but image 

processing requires artificial lighting during nighttime. Since 

video processing is associated with heavy computational loads, it 

is very time-consuming. Therefore, the best option is for 

authorities to deploy vibration-based technique for collecting 

routine pavement condition data and for the maintenance work that 

warrants a high level of accuracy, the vision-based approach can 

be employed. Another possibility is to use the combination of 

vision and vibration method. In such a case, both the methods 

would complement each other and to some extent, it will also help 

in overcoming the disadvantages of using individually. Although 

the automated techniques like vibration based and vision based 

analysis can never entirely replace conventional manual distress 

detection methods, they do provide an opportunity to obtain a 

general idea of the condition of the pavement. Linking the data to 

a GIS platform and generating data rich maps will help pavement 

engineers, policy makers and planners to properly allocate and 

utilize the available funds for developing an optimal plan for cost-

effective corrective measures. 

The current investigative research work can be extended further 

by developing a smartphone application using these automated 

techniques that will make the process more user-friendly and 

efficient. The accuracy of the experiment shall be further improved 

by conducting the experiment in a denser sampling rate. Advanced 

techniques like Convolutional Neural Networks, ANN- Fuzzy 

hybrid techniques etc. may also be applied for vibration based 

pavement distress detection. A GPS navigation system can also be 

developed to automatically alert and forewarn road users about the 

approaching distresses in their path of travel.  
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