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Abstract 

Raveling is one of the most common asphalt pavement distresses that occur on US highway pavements. Raveling results in safety  concerns such as 

loose stones and hydroplaning; poor ride quality and road/tire noise; and shortened pavement longevity. Traditional raveling survey methods involve manual 

visual inspection, which is time consuming, subjective, and hazardous to highway workers. With the research project competiti vely selected and sponsored 

by the National Cooperative Highway Research Program (NCHRP) Innovation Deserving Exploratory Analysis (IDEA) program, the objective of this study 

is to develop an accurate raveling detection and classification algorithm using 3D pavement data that has become mainstream t echnologies for state 

Department of Transportations (DOTs) in the US for pavement condition evaluation, and to comprehensively validate these methods using large-scale, real-

world data based on actual transportation agencies’ distress protocol (Severity levels 1, 2, and 3). A total of 65 miles of 3 D pavement data was collected on 

I-85 and I-285 in Georgia for training and testing. Three supervised machine learning techniques—AdaBoost with decision trees, support vector machine 

(SVM) and random forests—were developed for the detection and classification of raveling in the collected data. The random forest classifier had the best 

performance, with precision values ranging from 75.6% for level 3 raveling to 97.6% for level 0 (no) raveling and recall values ranging from 86.9% for level 

1 raveling to 96.1% for level 0 raveling on real world large-scale data. The developed raveling detection and severity level classification method has been 

successfully implemented to entire Georgia’s interstate highway system with1452.5 survey miles of asphalt pavements after the  large-scale validation and 

refinement. The proposed method for raveling detection can be deployed to other transportation agencies for safer and more ef ficient assessment of roadway 

raveling conditions. 
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1. Introduction  

Raveling is defined as the “wearing away of the pavement 

surface caused by the dislodging of aggregate/stone particles and 

loss of asphalt binder” in the distress identification manual for the 

long-term pavement performance program [1], and it is one of the 

most common asphalt pavement distresses that occur on US 

highways.  Fig. 1 shows some examples of raveling.  Raveling will 

reduce pavement integrity, evenness, water tightness and skid 

resistance. This results in poor ride quality and road/tire noise. 

Raveling presents safety concerns, such as loose stones that may 

break windshield glass and can cause hydroplaning. Raveling also 

shortens pavement longevity.  Thus, a raveling detection and 

classification  is  an  important  component  of  road infrastructure 
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condition surveys for highway agencies so the appropriate 

preservation or rehabilitation treatment can be applied. 

In most US highway agencies’ practices, raveling is classified 

based on its severity, which is typically a qualitative definition. For 

example, Fig. 2 illustrates the raveling classification followed by 

the Georgia Department of Transportation (GDOT), which 

consists of three raveling severity levels [2] based on surface 

appearance.  

It is critical for highway agencies to identify raveling in its early 

stage so that preventive maintenance treatments (e.g. fog seal) can 

 

Fig. 1. Raveling on interstate highway and non-interstate road. 
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Fig. 2. Raveling classification in GDOT [2] (a) Severity Level 1, 

(b) Severity Level 2, and (c) Severity Level 3. 

be applied before the pavement deteriorates further and requires 

more expensive treatments. However, current methods of raveling 

detection and classification suffer from the following 

shortcomings: 

1. The current practices for state transportation agencies are a 

manual survey. The manual survey process is very time-

consuming, labor-intensive, subjective, and error prone. 

2. For high-traffic volume interstate highways, a manual 

raveling survey is often omitted by highway agencies 

because it is dangerous to highway workers.  

3. Another approach is semi-automated surveys, where the 

pavement condition is recorded via vehicle-mounted 

cameras at highway speeds, then analyzed manually later. An 

video-logging based survey is unreliable because raveling is 

the change of pavement surface texture, and its appearance is 

susceptible to ambient lighting conditions. For example, 

under direct sunshine, it is hard to recognize lightly-raveled 

surfaces. 

4. Automated surveys involve highway speed data collection 

followed by automated raveling detection and classification. 

Again, image processing based surveys are sensitive to 

lighting conditions. Algorithms for automated raveling 

detection and classification exist but these existing 

algorithms have their own shortcomings, which are 

discussed later in this section. 

With the advancement of sensor technology, 3D laser technology 

with line-laser imaging and triangulation range computation, has 

become a mainstream technology to collect high-resolution, 3D 

pavement surface data. A survey in 2017 shows eighteen US state 

transportation agencies have used a 3D automated data collection 

system, and seventeen state transportation agencies said they plan 

to use it within two years [3]. These agencies expect to use 3D 

technology and 3D pavement surface data to automatically and 

semi-automatically extract different pavement distresses, 

including cracking, rutting, faulting, raveling, etc. The 3D 

pavement surface data has been used for detecting and measuring 

cracking [4,5] and its deterioration [6], rutting [7,8], concrete joint 

faulting [9], project-level micro-milling pavement surface texture 

construction quality control [10], automated raveling detection and 

classification [11], automatic pothole detection [12], and a new 

area-based faulting measurement with an enhanced accuracy [13]. 

Using automated surveys on 3D pavement data overcomes most 

of the shortcomings discussed above. Ooijen et al. [14] started to 

use laser data (3.2 m Field of View (FOV), 25 points per scan) in 

detecting and classifying raveling.  Since then, laser sensors with 

increasing FOV and resolution have been applied in raveling 

detection and classification. McRobbie et al. [15-17] used laser 

data with 3.6 m FOV and 25 points per scan.  However, 25 data 

points in one transverse profile (4 meter wide pavement) cannot 

provide sufficient data resolution to detect raveling. Laurent et al. 

[18,19] worked on range data with 4 m FOV and 4,096 points per 

scan. Laurent et al. [18,19] developed a Raveling Index (RI) to 

quantify raveling.  The RI is calculated by measuring the volume 

of aggregate loss (holes due to missing aggregates) per unit of 

surface area (square meter). The use of a laser scanner with 

longitudinal profiles collected 1mm apart enabled a much better 

representation of the pavement surface. However, systematic 

validation of the RI algorithm using a large-scale dataset is needed. 

In addition, raveling severity classification is still not available. 

Ooijen et al. [14] developed the “Stoneway” algorithm to detect 

raveling on porous asphalt pavement, where raveling was detected 

by analyzing each longitudinal laser profile for gaps that were both 

above a length and depth threshold, indicating a possible loss of 

aggregate. It was found that this approach generally 

underestimated raveling severity, scheduling maintenance 

operations later than recommended by visual condition surveys. 

Additionally, this method analyzed longitudinal profiles 500 mm 

apart which may be too sparse to obtain the representative 

condition of the road. Another method based on a similar concept 

was developed by Scott [17].  These approaches only worked when 

the assumption that the pavement surface was flat (no incline) held. 

McRobbie used a feature called Root Mean Square Texture 

(RMST) derived from 3D pavement data [15,16]. The comparison 

of the distribution of RMST values at two different scales provided 

an estimate of the raveling condition. A group of sites totaling 

approximately 90 km was selected, representing a combination of 

different surface types (thin surface course, porous asphalt, hot 

rolled asphalt, etc.) and surface conditions. However, the pair of 

scales needed to be calibrated for each site which made this method 

not practical for implementation. Further research is needed to 

obtain the pair of scales which work for all pavement types.  

Mathavan et al. [20] presented a method to detect raveling from 

3D pavement image (intensity and range).  First, a texture 

descriptor method called Laws’ texture energy measure is used in 

conjunction with the Gabor filter and other morphological 

operation to distinguish road areas from others.  Then raveled road 

areas are detected by estimating the standard deviation (STD) on 

the corresponding range data. By heuristically setting the 

thresholds for STD values, the raveling condition (within a limited 

grid) can be characterized into good, average, or bad. However, 

there is a lack of comprehensive validation in this paper. Detailed 

information on the validation dataset, such as the location of data 

collection, the distribution of raveling conditions in these data, is 

not mentioned in this paper.  Moreover, the outcome of raveling 

quantification is not compared with the ground truth (e.g. visual 

survey results) specified based on transportation agencies’ distress 

protocol (e.g. severity levels 1, 2, 3 or low, medium and high). 

An enhanced raveling detection and severity level classification 

method is urgently needed to replace the current visual inspection 

practices. Although there are some raveling detection and severity 

level classification algorithms developed, it still remains a 

technical challenge to reliably and accurately detect and classify 

raveling when they are validated with real-world pavement surface 

data based on actual transportation agencies distress protocols (e.g. 

raveling severity levels 1, 2, 3 or low, medium and high).  Thus, it 

is still difficult for transportation agencies to implement any of 

these algorithms.  Therefore, there is an urgent need to develop 

robust algorithms for automatic pavement raveling detection, 

classification, and measurement. 

To address the problems in existing raveling detection and its 

severity level classification methods, the objectives of this study 

are to develop successful and effective raveling detection, 

classification, and measurement algorithms using 3D pavement 

data and macro-texture analysis, and to comprehensively validate 

these methods using large-scale, real-world data. 

(a) (c) (b) 
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Our research group has manually classified raveling on 12 miles 

of diverse 3D pavement data. This allowed our research group to 

explore supervised machine learning based approaches for 

raveling classification, which generally require a large number of 

labeled data points for training and testing. In this study, features 

based on the 3D pavement data were provided to classifiers with 

the task to predict the GDOT raveling severity level (0, 1, 2 or 3). 

Multinomial logistic regression, Naive Bayes and support vector 

machines (SVMs) are commonly used linear classifiers. Naive 

Bayes classifiers assume that the features are mutually 

independent, which was not the case in this study. SVMs were 

explored in this study as they are more robust against outliers in 

the data than multinomial logistic regression. Among non-linear 

classifiers, nearest neighbors and decision trees are often used. In 

manual testing, nearest neighbors and k-nearest neighbors 

classifiers were found to be infeasible for this problem due to the 

presence of outliers. Decision trees are often combined with the 

concept of AdaBoost and random forests (RF) to improve their 

performance. Therefore, the scope of this study was limited to 

three popular classifiers: SVMs, AdaBoost with decision trees and 

random forests. 

Without loss of generality, the developed algorithms were tested 

and validated using the pavement condition survey protocol in the 

Georgia Department of Transportation [2]. The developed raveling 

detection and severity level classification method was successfully 

implemented on Georgia’s entire interstate highway system with 

1452.5 survey miles of asphalt pavements after a large-scale 

validation and refinement. The algorithms can be extended to other 

highway agencies’ pavement condition survey protocols by re-

training the classification components using corresponding ground 

truth data.  This paper is organized as follows. This section 

presents the research need and objectives. The following section 

presents the proposed methodology. The third section presents 

validation and test results. Finally, conclusions and 

recommendations for future research are made. 

2. Methodology 

2.1. Data collection 

The Georgia Tech Survey Vehicle (GTSV) [21], sponsored by 

the US DOT, was used to collect 3D pavement surface data (Fig. 

3(a)). This vehicle is equipped with a 2D imaging system, a 3D 

laser system (for collecting 3D pavement surface data), a mobile 

LiDAR system, an Inertial Measurement Unit (IMU), and a 

Differential GPS.  IMU and GPS systems establish very high-

accuracy location references. Laser profilers use laser beams with 

fixed directions in the frame of reference of the vehicle. As a result, 

laser profilers collect only a few longitudinal profiles of the 

pavement surface as the vehicle moves forward. In contrast, the 

3D line laser imaging system uses a rapidly spinning laser beam to 

capture transverse profiles of the pavement surface. As the vehicle 

moves forward, the collected transverse profiles are stacked to 

provide 3D full-lane-width pavement surface data.  There are 

4,096 points at each transverse line, and the interval between two 

adjacent points is 1 mm.  In the longitudinal direction, the interval 

between two adjacent transverse lines is 5 mm if the vehicle is 

operated at 100 km/hr.  A sample surface texture image is 

visualized in Fig. 3(b). The full-lane-width-coverage 3D pavement 

surface data has already been used to automatically detect and 

measure cracking [22,23] and its deterioration [24], rutting [25,26],  

 

Fig. 3. The Georgia Tech Sensing Vehicle (GTSV) and 3D 

pavement data (a) Georgia Tech Survey Vehicle and (b) 3D Image 

from laser scanner.  

concrete joint faulting [27], project-level micro-milling pavement 

surface texture construction quality control [28], and automatic 

pothole detection [29]. 

2.2. Data processing 

3D pavement data is stored in individual files; each image covers 

a 5 m pavement section.  To consider the non-uniformity of a 3D 

pavement image, it is divided into six equal-size sub-sections: 

three in each wheel path. The number of subsections in each wheel 

path is determined as a balance between two factors: the non-

uniformity of raveling, and the manual rating effort.  Each image 

is processed independently and outputs subsection-level raveling 

severity levels.  The flowchart in Fig. 4 summarizes the data 

processing steps. The following paragraphs describe each step in 

detail. 

2.2.1. Data preprocessing 

Before the detection algorithms can be applied, the raw 3D laser 

data needs to be preprocessed.  First, the invalid data points, which 

are indicated by invalid depth values in the data file are removed.  

Second, the pavement marking needs to be detected because only 

the portion between two pavement markings is used for raveling 

detection and classification.  Because of their high reflectivity, 

pavement markings produce higher laser reflectance values. 

Therefore, they can be easily detected by using intensity data 

which is collected alongside the depth data.  The area of the image 

in the pavement edge drop-off area are also removed because they 

might trigger false-positives. 

 

Fig. 4. The Georgia Tech Sensing Vehicle (GTSV) and 3D 

pavement data. 

(a) 
(b) 
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Finally, the preprocessing algorithm rectifies the range data in 

order to eliminate the impact of cross slope of the pavement.  

Asphalt pavement surfaces are curved along the transverse 

direction for drainage. They can also have depressions under the 

wheel path due to rutting. The curvature of the transverse 

pavement surface profile can induce false positives and negatives.  

A high-pass filter based on a normalized box filter is used to 

remove the curvature of the pavement surface. This operation 

removes the local mean from the data and makes edges and 

raveling easier to identify. Fig. 5 illustrates this preprocessing step. 

The blue line represents the depth of points in a transverse profile 

of the range image. The red line represents the depth filtered with 

a moving average filter to demonstrate the effect of the high-pass 

filter. 

2.2.2. Feature extraction 

As previously discussed, each 5-m pavement section (4 meter 

wide and 5 meter long), which is stored in a data file, is divided 

into six cells in a 2×3 grid, as show in Fig. 6.  In each cell, two 

types of statistical factors (i.e. features) are calculated based on the 

range data that indicate the pavement surface texture: 

1. Pavement surfaces with light raveling (e.g. severity level 1) 

have the isolated aggregate loss: the distributions of range 

data collected on these surfaces will be less uniform than 

pavement surface without raveling.  As the raveling 

conditions deteriorate to severity level 2, more aggregate loss 

occurs and gets channelized.  Therefore, the distributions of  

 

Fig. 5. Before and after rectification of range data (from left to the 

right figures) using high-pass filtering. 

range data become non-uniform.  When the pavement 

surfaces  have  severe  raveling  (e.g.  severity  level  3),  the 

distribution of range data on these surfaces will be uniform 

again (since the entire surface layer is lost).  Thus, the 

selected statistical features need to capture the characteristics 

of surface texture changes under different severity levels of 

raveling.  Based on the characteristics of different raveling 

severity levels, 7 statistical features are selected and 

extracted from each cell in our study, as listed in Table 1. 

2. To better capture the statistical characteristics of a raveled 

surface, the distribution of the indicators on small patches of 

a cell are calculated and applied as features.  For example, 

the distribution of standard deviation values along all 0.1m × 

0.1m patches within a cell can be used to distinguish raveling 

severity levels 0 and 1. Each cell had 333 patches with each 

patch consisting of 2,000 data points. This provided sample 

data points to calculate the indicators for each patch and 

provide a rich distribution for each indicator in each cell. The 

distributions of STD on raveled cell are likely to expand 

wider than those of non-raveled sub-sections, which might 

be because the raveled surface is more non-uniform.  The 

distributions are estimated for each one of the 7 features 

mentioned above. The indicators are all scalar values (one-

dimensional). Each distribution is discretely represented by 

a histogram where the distribution is discretized into 100 

equally sized intervals. So each distributions consist of 100 

scalar values. Therefore, in total, 700 features are computed 

to capture the distributions of the 7 defined features. 

2.2.3. Raveling classification 

According to GDOT’s pavement condition survey protocol [2], 

raveling is classified as three types of severity levels (Level 1, 

Level 2, and Level 3).  For convenience, we used Level 0 to 

indicate the conditions of no raveling. A ground truth dataset with 

23,467 feature vectors (15,118 vectors for raveling severity level 

0; 5,091 for raveling severity level 1; 3,053 for raveling severity 

level 2; and 205 for raveling severity level 3) was used for the 

testing and training of the classifiers. The development of the 

ground truth dataset is described in more detail in the next section.  

Three    popular    classification    techniques   using    supervised  

Table 1 

Features estimated using range data of each cell. 

Feature  Physical meaning Dimension of 

statistical value 

Dimension of 

distribution 

Standard deviation Standard deviation of range values: 𝜎 = √
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1   1 100 

Interquartile range  Distance between 75 th percentile and 25th percentile range values. 1 100 

Arithmetic average 

of absolute values 
Average of absolute range values: 

1

𝑛
∑ |𝑥𝑖|

𝑛
𝑖=1  1 100 

Root mean square  Root of mean of square of range values: √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1  1 100 

Skewness  A measure of symmetry, or more precisely, the lack of symmetry of 

the range values: 
1

𝑛𝜎3
∑ (𝑥𝑖 − 𝑥̅)3𝑛

𝑖=1  

1 100 

Kurtosis A measure of whether the range values are peaked or flat relative to 

a normal distribution: 
1

𝑛𝜎4
∑ (𝑥𝑖 − 𝑥̅)4𝑛

𝑖=1  

1 100 

Aggregate loss 

volume 

Directly estimate the volume of aggregate loss by differentiating 

range image with reference surface (assumed to have no raveling): 
1

𝑛
∑ 𝑚𝑎𝑥(𝑥̅ − 𝑥𝑖 , 0)𝑛

𝑖=1  

1 100 

Note: n = number of samples; xi: i
th sample; 𝑥̅ = mean of samples. 
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learning—AdaBoost with decision trees, support vector machines 

(SVM) and random forests—were trained and tested for their 

ability to accurately provide the raveling severity level (0, 1, 2 or 

3) of a cell given the features of the cell. 

A decision tree classifier repeatedly splits the feature space based 

on the value of one of the features. This generates a flowchart of 

decisions, resembling a tree, where the ends (leaf nodes) belong to 

one of the classes. Thus, for any given input data point, the 

flowchart of decisions can be followed to reach a leaf node that 

will give the predicted class of that data point. A random forest 

classifier is a classifier which reports the consensus from a group 

of decision trees. AdaBoost with decision trees is similarly a 

strategy for combining the predictions from multiple decision trees 

based on the performance of each tree on the target classes. An 

SVM assumes that there exists a hyperplane in the feature space 

that separates two classes and classifies input data points based on 

which side of the hyperplane their features lie within. When there 

are more than two classes, by training a binary SVM classifier for 

each target class, the strongest positive classification (or least 

negative one) can be taken as the predicted class. 

2.2.4. Aggregation 

Each cell represents an approximately 6 ft × 6 ft pavement 

surface area as shown in Fig. 6. According to GDOT’s raveling 

survey protocol, one predominant raveling severity level and the 

raveling extent has to be assigned to every 1 mile segment. 

Incorrectly classified cells can be identified and removed by 

checking isolated cells based on the assumption that raveling 

pavements are continuous to some certain extent.  In addition, 

small spot of raveling (e.g. raveling in an isolated cell) is normally 

neglected in a practical survey, which would not affect the decision 

making on network-level pavement maintenance.  Therefore, in 

the proposed aggregation method, an isolated cell with raveling is 

not counted at the segment level.  Based on the extensive 

discussion with GDOT’s engineers, the aggregation algorithms 

were developed to aggregate the cell-level raveling into the one at 

the segment level (say 1-mile).  The algorithms are divided into 

two phases.  The first phase removes outliers, such as the isolated 

cells with raveling and the second phase smoothens the raveling 

distribution. Finally, the outcomes are aggregated to 1-mile 

segments to support GDOT’s pavement management system.  The 

steps for outlier removal are described below: 

1. For a given sub-section, compare its assigned severity level 

to the severity levels of its direct neighbors. 

2. Each cell has 5 neighbors, as shown in Fig. 6. A neighbor can 

be in the next or previous image.  For cells at the boundary 

(first and last image), there are only 3 neighbors instead of 5. 

3. If the severity level of the cell is isolated among its neighbors 

(e.g., Level 1 surrounded by five at Level 0), then it is 

considered an outlier. Its severity level is changed to the 

majority severity level in the neighbors.  

4. Repeat the above steps for all cells.  Fig. 7 shows examples 

of outlier removal. 

After outliers are removed, the next step retains a continuous, 

predominant raveling portion by mimicking the actual field survey 

practice.  Based on the field survey practice, it is assumed that the 

length of pavement with a uniform raveling condition is 

approximately 200 ft. This interval can be adjusted for other state 

DOTs.  Therefore, a window of approximately 202 ft., with 37 

continuous cells, is used for smoothing.  The major steps are 

described below: 

 

Fig. 6. Cells and its neighbors (each 5-meter image is sub-divided 

into 6 cells). 

 

Fig. 7. Outlier removal example. 

1. Treat the left wheel path and right wheel path separately.  For 

each cell in a wheel path, as shown in Fig. 8, compute a 

weighted average on a (2×18)+1 window centered on the cell 

(18 cells backwards, the cell itself, and 18 cells forward; 

therefore, the total length of the window is 202 ft.). 

2. The weights are defined as a Gaussian distribution along the 

window with 37 cells, so that the cells that are further away 

from the center cell have less influence in the weighted 

average.  The generated weighted average will be a real 

number in [0, 3] that is further discretized into 0, 1, 2, or 3.  

The key parameter here is the variance of Gaussian, which 

determine how much the nearby section influences the 

raveling severity level of the center cell.  The variance was 

determined via manual trial-and-error with the objective to 

minimize the difference between the resultant severity levels 

of the blocks and the ground truth as described in the next 

section. 

3. For cells at boundary (i.e., cells that are less than 18 positions 

away from the beginning or the end of the mile), the number 

of cells within the side of the windows will be less than the 

required number of 18.  In order to generate consistent 

weighted average on boundary cells, a technique that is 

commonly used in signal processing is applied here; some 

cells are padded over the boundary using mirroring; then the 

weighted average can be consistently applied over the entire 

wheel path.  Mirroring consists of extending the length of the 

array by reversing the data.  

4. Repeat the above steps for each cell.  Fig. 9 shows an 

example of cell smoothness. 

Finally, within each one-mile section, the outcomes are 

aggregated and summed–up; the total percentage of each raveling 

severity level is generated. 
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3. Validation and test results 

The developed algorithms have been tested and validated using 

the 3D pavement data, collected on I-85 and I-285 near Atlanta, 

Georgia.  All the asphalt pavements are open-graded friction 

course (OGFC), which is the most common type of pavement used 

in  Interstate  Highways  in  Georgia.   On  I-85,   four  1-mile  test 

sections were selected.  In each test section, a 500-ft sample section 

was further marked and investigated with a GDOT pavement 

engineer’s assistance.  The aggregated test results were compared 

with the one obtained from GDOT’s pavement condition database.  

On I-285, raveling detection was conducted on the entire highway 

in the clockwise and counterclockwise directions.  A GDOT 

engineer also performed an in-field validation. To ensure the 

richness of the ground truth, data from 65 miles (4 miles on I-85 

and 61 miles on I-285) of Asphalt Concrete pavements to be rated 

manually, were selected. The ground-truth data with cell level 

severity level 

 

Fig. 8. Cell smoothness. 

 

Fig. 9. Smoothness example. 

labeling were then randomly divided into training and testing sets. 

90% of the cells were used for training the models. The trained 

models were then tested on the remaining 10% of the cells which 

the models had never encountered beforehand. 

The three classifiers were trained on this field data and used to 

predict the raveling severity level. The hyperparameters of each 

classifier were optimized using brute force search i.e. each 

classifier was trained several times using different 

hyperparameters and only the best performing trained model from 

each classifier was saved. The confusion matrix of all three 

classification techniques are given in Table 2. Each quantity in 

Table 2 denotes the number of cells with actual ground truth 

raveling severity level given by the row that were classified as the 

raveling severity level given by the column. The last two columns 

provide the precision and recall for each class. The precision and 

recall are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑥 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑥

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑥
  

𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑥 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑥

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑥
  

From the precision and recall rates listed above, we can see that 

the performance of SVM and RF are both much better than the 

AdaBoost classification.  Based on the fact that most of the asphalt 

pavements have no raveling and the rest of them have mostly with 

level 1 raveling, the number of misclassification cases between 

Class 0 (no raveling) and Class 1 (level 1 raveling) provide us a 

hint for the comparison between SVM and RF.  RF slightly 

outperforms SVM in terms of the misclassification cases between 

Class 0 and Class 1 (577+375=952 vs. 653+359=1012).  Therefore, 

RF is selected as the classification technique in our raveling 

detection and severity level classification algorithm.  

The RF classifier was then used to classify the raveling severity 

level of pavement data collected on I-285, followed by the 

aggregation step to obtain a raveling extent for each 1-mile 

segment. In the GDOT protocol, the raveling extent is defined as 

the total percentage length of roadway affected by raveling of any 

severity level. This can be easily calculated from the proposed 

method by calculating the percentage of subsections classified as 

raveling severity level 1, 2 or 3. The raveling extent estimated on 

I-285 is shown in Figs. 10 and 11 (I-285 is a divided Interstate 

Highway  which  loops  around  Atlanta,  hence  the directions are 

Table 2 

Evaluation results of AdaBoost, SVM and random forest classification. 

Classified ground truth Class 0 Class 1 Class 2 Class 3 Precision Recall 

Adaboost 

Class 0 14,531 576 11 0 0.961 0.933 

Class 1 1,014 3,388 689 0 0.665 0.833 

Class 2 5 97 2,951 0 0.966 0.772 

Class 3 25 8 172 0 0 0 

SVM 

Class 0 14,757 359 0 2 0.976 0.956 

Class 1 653 4,129 304 5 0.811 0.878 

Class 2 3 208 2,817 25 0.923 0.897 

Class 3 19 4 19 163 0.795 0.836 

Random forest 

Class 0 14,756 375 1 4 0.976 0.961 

Class 1 577 4,169 327 2 0.819 0.869 

Class 2 3 241 2,791 16 0.914 0.888 

Class 3 15 11 24 155 0.756 0.876 
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Fig. 10. Segment-level comparison for I-285 clockwise test sites 

(one mile per segment). 

 

Fig. 11. Segment-level comparison for I-285 counter clockwise 

test sites.  

clockwise and counterclockwise). It can be subjectively observed 

that the predicted raveling extent closely approximates the actual 

raveling extent. This highlights the usefulness of the proposed 

method from an engineering perspective. The proposed method 

can be used to accurately estimate the raveling severity level from 

a highway speed survey, independent of lighting conditions. 

4. Conclusions and recommendations 

An enhanced raveling detection and severity level classification 

method is urgently needed to replace the current visual inspection 

practices. Although there are some raveling detection and severity 

level classification algorithms developed, it still remains a 

technical challenge to reliably and accurately detect and classify 

raveling when they are validated with real-world pavement surface 

data with actual transportation agencies distress protocols (e.g. 

raveling severity levels 1, 2, 3 or low, medium and high). Thus, it 

is still difficult for transportation agencies to implement any of 

these algorithms.  Therefore, there is an urgent need to develop 

robust algorithms for automatic pavement raveling detection, 

classification, and measurement. Contributions of this paper 

include 1) development of raveling detection, severity level 

classification and measurement algorithm based on actual 

transportation agencies’ distress protocols with real-world 

pavement surface data, and 2) validation of raveling detection and 

severity level classification with real-world data with performance 

comparison of different raveling detection and severity level 

classification methods. 

The objectives of this study were to develop an accurate and 

reliable raveling detection and classification algorithm using the 

3D pavement data that has already collected by majority of state 

DOTs in the US for other pavement condition evaluation (e.g. 

cracking, rutting, faulting, etc.), and to comprehensively validate 

these methods using large-scale, real-world data. A total of 65 

miles of 3D pavement data was collected on I-85 and I-285 in 

Georgia for training and testing. Three supervised machine 

learning techniques—AdaBoost with decision trees, SVM and 

random forests—were developed for the detection and 

classification of raveling in the collected data. The random forest 

classifier had the best performance, with precision values ranging 

from 75.6% for level 3 raveling to 97.6% for level 0 (no) raveling 

and recall values ranging from 86.9% for level 1 raveling to 96.1% 

for level 0 raveling on real world large-scale data.  

The proposed algorithms have demonstrated promising 

capabilities to automatically detect and measure asphalt pavement 

raveling.  The proposed algorithms can be used to first quickly 

assess the pavement condition.  Then, manual effort can be 

drastically reduced by ignoring segments with little to no raveling 

and focusing on segments with significant raveling detected.  

Using the proposed algorithms will save tremendous amounts of 

manual effort in field surveys, improve data accuracy, and help 

highway agencies make more informed decisions on pavement 

maintenance and rehabilitation using the 3D data already available 

for transportation agencies in detecting cracking, rutting, faulting, 

etc. 

The developed raveling detection and severity level 

classification method has been successfully implemented to entire 

Georgia’s interstate highway system with1452.5 survey miles of 

asphalt pavements after the large-scale validation and refinement. 

The proposed method for raveling detection can be deployed to 

other transportation agencies for safer and more efficient 

assessment of roadway raveling conditions. 

The recommendations for future research are as follows: 

1. Further refinement is suggested to reduce the impact of other 

distresses, such as cracking and flat-tire scratches, on 

raveling detection and classification.  It will require the 

detection of those unrelated distresses and performance of a 

removal process.  

2. Although the developed method is promising and already 

been successfully implemented to detect and classify 

raveling on Georgia’s interstate highway by the Georgia 

Department of Transportation, more advanced deep learning 

methods can be explored in the future. 

3. Beyond state DOT’s qualitative pavement condition survey 

protocol, it is recommended to develop a quantitative 

raveling indicator. For example, percentage of aggregate loss, 

is recommended.  The current raveling classification method 

(Severity Levels 1, 2, and 3) is somewhat coarse for depicting 

the loss of aggregate on asphalt pavements, which might not 

be sufficient to indicate the best timing for a preventive 

maintenance method, e.g. fog seal. 
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