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Abstract
In emerging countries’ expanding megacities, traffic is currently the main source of air pol-
lution. Vehicles are the primary source of air pollution in Addis Ababa, the capital city of 
Ethiopia, because of the unimproved age of cars and bad road conditions. One of the city’s 
major hub squares, Megenagna (between the Bole and Yeka sub-cities of Addis Ababa), 
has six significant road crossings that clog up traffic. The purpose of this study was to eval-
uate and forecast air pollution levels in the Megenagna region using the dispersion model 
(AERMOD). A sample campaign was run for 2 months (January and February) at 43 sam-
pling stations. Hand-held Air-test Model-CW-HAT2005 and Aeroqual series 5000 devices 
were used to measure gaseous pollutants (SO2 and NO2) and particulate matter (PM2.5 and 
PM10). There is a lot of spatial variation throughout the study site, as shown by the statisti-
cally significant difference between sampling locations (p < 0.05). The sensitivity variation 
of 1 m/s and the 45° wind direction with respect to the horizontal of the receptor of the 
self-monitored sample location were ideal for the prediction, calibration, and validation of 
pollutants in AERMOD. It was anticipated that gaseous and particulate pollution would 
vary from site to site, with SO2 exceeding the threshold. This study demonstrates the need 
for additional research into the spatiotemporal variance of emissions due to traffic in Addis 
Ababa.
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1  Introduction

Indoor air pollution causes the majority of air pollution in Africa (Piqueras and Vizenor 
2016; Dida et al. 2022). Carbon monoxide, carbon dioxide, gaseous pollutants, and other 
primary pollutants are released into the environment when charcoal is burned uncontrol-
lably and used as fuel for various purposes, such as food preparation (Abera et al. 2021) 
(Obanya et al. 2018). Today, vehicle transportation is also recognized as a significant con-
tributor to air pollution in newly developing megacities (Nieuwenhuijsen 2016; Singh et al. 
2021; Haslina et  al. 2022); this contributes to both immediate health effects and future 
climate change (Caserini et al. 2013; Takuchev et al. 2014).

The African Union’s (AU) conference headquarters are located in Addis Ababa, the capital 
of Ethiopia and one of the continent’s emerging megacities (Habtamu. 2020). Urbanization and 
industrialization are growing alarmingly quickly today (Addis Ababa urban planning report, 2018) 
due to this people migrate from rural to the city. As a result, a strong annual population increase 
rate was seen, with an estimated 4.79 million people in the 2017 census (UN 2017). This has 
directly raised the demand for the city’s transportation system (Kume et al. 2010). The total num-
ber of vehicles was 8264 in 2005, and there were three times as many automobiles in 2015 as 
there were in 2005 due to significant investment in the transportation and other services indus-
tries (Wondifraw 2019). According to the Addis Ababa Transport Authority report from 2016, the 
city’s annual growth rate for imported vehicles is 9.88%. Air pollution caused by traffic is now a 
serious issue in Addis Ababa (Fekadu 2017). Another obstacle to reducing traffic-related air pol-
lution is the main driver of increased long-distance travel (Kumie et al. 2021), improper mainte-
nance of older vehicles, and slowly expanding road networks and design (Kebede et al. 2022).

According to the United Nations (2017), Megenagna is one of the cities of Addis Ababa’s 
main gathering places where most people congregate to exchange goods and services, travel in 
various directions, and communicate. People are sensitive to exposure to traffic air emissions 
due to mixed (transport and population) enormous amounts of transportation systems. Because 
of the extreme traffic congestion in the street and Megenagna Square, there is a serious prob-
lem with this traffic-related air pollution. It is critical to assess the effects of receptor exposure 
because it is difficult to accurately predict how pollutants will disperse in this dispatch region 
given the current traffic situation. Since air pollution is the primarily distributed contaminant, 
it is challenging to numerically analyze and make precise predictions (Mehrdad. 2013).

Basic dependent and independent input variables for the ADMs model include meteoro-
logical, emission rate, topography data, building, and elevation data (Sunil et al.,2015). The 
most popular model is the USEPA-approved American Environmental Regulatory Model 
(AERMOD), which relies on steady-state conditions, continuous emission, and environmental 
considerations (US EPA 2015). Indicating the line source model with the mixing of pollutants 
in line, line-area, and line-volume circumstances is another application of the AERMOD (Wei 
et al. 2016). In determining the emission rate, this dispersion model was employed (Milando 
and Batterman 2018) and was developed (Wang et al. 2008) (Equation (1)).
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where C stands for the pollutant concentration (μg/m3), Q for the emission rate per unit 
length (g/m.s), ue for the effective wind speed (m/s), h0 for the plume center height (x from 
the road) distance (m), and z for the receptor’s height above the ground (m). Pollutant’s y 
and z are the standard deviations in a crosswind’s horizontal and vertical directions (m). 
L is the length of the source (in meters), h is the angle between the ambient wind and the 
road, erf is the error function, x is the receptor’s distance from the source line (in meters), 
and y is the receptor’s distance from the centerline of the road together with the source line 
(m). The total emission of the pollutant (Ep) for each source is estimated by the model as 
Equation (2) (Kumar et al. 2016).

where eip(V) is the emission factor for pollutant p and vehicle class I as a function of aver-
age speed V; Ni is the number of vehicles of class I; and L is the length of the road seg-
ment. The emission rate is also influenced by the average speed, the mass of the vehicle, 
and the technology used to reduce emissions.

It is crucial to properly aggregate cars by classes and categories to obtain an accurate 
estimate of air pollutant emissions (Caserini et al. 2013). To improve the simulated data, 
the sensitivity test and data validation are used (Kerr et al. 2014). The simulated data are 
improved by using dispersion modeling to model and validate concentration in various sce-
narios for the second independent variable (Bachtiar et al. 2020). To solve Addis Ababa 
city’s poor air quality issue and provide an explanation to the regulatory authority, moni-
toring, and forecasting traffic-related pollution is crucial. As a result, this study was an 
oversight of the use of AERMOD to measure the dispersion of traffic-related air pollution 
in Megenagna, Addis Ababa, over a 1.5 km by 1.5 km region.

2 � Methods

2.1 � Description of the study areas

The city of Addis Ababa, the capital of Ethiopia, which is located at 8° 55′ N, 38° 45′ E, 
was the site of this study. Addis Ababa City is around 20 km long from north to south and 
about 25 km long from east to west. It is located between longitudes 380 43′ and 380 50′ 
east and latitudes 80 56′ and 90 05′ north. The Megenagna region of Addis Ababa, which 
is halfway between Bole and Yeka, was chosen as the study location. According to their 
respective densities of 5165.1 and 3190.7 people per square kilometer, Yeka and Bole’s 
sub-cities have a total population of 424,217 and 378,104, respectively (Aklilu and Necha 
2018).

2.2 � Site selection

The six road lines of Megenagna that are shown in Fig. 1a, the sampling station, are where 
the sampling points were chosen. Megenagna has two main rings (R1 and R2) in the sta-
tion, and the sample was collected in two different ways, namely at a root sample site near 
the bus station areas and on a road line outside of the root. The entrance of Bole-Goro road 
(Ring road), CMC road, Meskel square road, and Kenenisa road are all found in the first 
square (R1), which is situated in the lower elevation (Kenenisa Avenue). The second square 

(2)Ep =
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(R2) is situated above the bridge entrance of Bole-Goro road (Ring road) and Asmara road, 
at the upper station of Megenagna, which connects Sidst Kilo road (Fikremariam Aba 
Techan str.) and Sidst Kilo road (Kotebe road). Further line source samples were collected 
at each intersection of the road that leads away from Megenagna’s root. Images of the bus 
station’s traffic flow can be seen in Fig. 1b. There were 43 sample locations, 16 of which 
were taken in the bus terminal, and the remaining 27 sampling points were occupied along 
each road line while taking into account the concentration of road sensitive points.

Table 1 lists the 27 sampling locations from the six road lines, which are, in order, road 
1 (Six-Kilo Road Line), road 2 (Kenenisa Avenue Road Line), road 3, (Meskel square road 
line), road 4 (Bole-Goro Road Line), road 5 (CMC Road Line), and road 6 (Kotebe Road 
Line).

2.3 � Sample collection

Over the study period, data from various scenarios, both qualitative and quantitative, were 
gathered. The sampling period ran from January 1 to February 28, 2021. Ethiopia is cur-
rently experiencing its dry season. The first month’s sample, January, was utilized for 
model simulation and calibration, while the second month’s sample, February, was used for 
model validation by cross-monitoring of the first sample points. Three peak hours morning, 
noon, and afternoon were chosen for sample measurement. To cover sample measurement 
at all of the chosen sample points during sampling, both transit walk and transport systems 
were employed. The street stands’ average height of 1.5 m was used for the sample analysis 
because that height is what is advised for human respiratory intake.

PM2.5 and PM10 aerodynamic diameters were measured on the field using Air-test porta-
ble sensing equipment (Model-CW-HAT2005). The portable Air-test sensor was created to 
measure the PM2.5 and PM10 concentrations in the air for 60 s at a 500 mL flow rate using 
the accepted methodology (Lin et al. 2015). On the other hand, gaseous pollutants (SO2 
and NO2) were measured using Aeroqual (Model Series 500 (2016)) within the same port 
in the various sensors. All of the vehicles that went by the sample points during the busiest 

(a) (b)

Fig. 1   Sampling station. a Root sample site and b bus station (source: Google Earth Pro 2.3)
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Table 1   Sample point, the 
distance between the sample 
point, and respective coordinate

Sr is the root sampling point in the bus station area. Whereas, S1n, S2n, 
S3n, S4n, S5n, and S6n represent the sample points in the six road lines, 
with n describing the index of the sample point in each sample station

Sample station Distance between sample 
points (m)

Coordinates

UTMX UTMY

R 0 478,214.3 997,033.6
Sr1 80 478,456 997,068.4
Sr2 67.5 478,448.1 997,121.1
Sr3 89 478,379.4 997,068.3
Sr4 67.2 478,381.8 997,080.9
Sr5 68 478,314.7 997,137.6
Sr6 65 478,292.7 997,112.2
Sr7 65.5 478,260.2 997,080
Sr8 45.5 478,276.9 996,980.9
Sr9 68 478,269.6 996,978.7
Sr10 70 478,281.1 997,009.9
Sr11 49.5 478,176.4 997,044.4
Sr12 46.5 478,241.7 997,089.5
Sr13 63.25 478,263.7 997,114.6
Sr14 57.5 478,251.7 997,192.4
Sr15 105 478,185.1 997,246.6
Sr16 58.5 478,157.6 997,187.7
S11 146 478,093 997,333.4
S12 233 477,991.6 997,335.9
S13 345 477,701.4 997,520.3
S14 335 477,586.9 997,520.7
S15 332 477,046.3 997,592.6
S21 267 478,042.9 997,905.3
S22 306 477,906.3 997,103.2
S23 258 477,533.9 997,132.9
S24 281 477,444.7 997,162.7
S25 388 476,770 997,189.5
S31 373 478,031.9 998,478.9
S32 360 477,709.3 996,939
S33 352 477,503.8 996,902.6
S34 376 477,435.4 996,837.5
S35 227 477,991.6 997,335.9
S41 165 478,255.7 996,814.9
S42 268 478,214.6 996,914.8
S43 156 478,301.2 996,810
S44 365 478,450.2 996,726.7
S51 234 478,982.5 997,067.6
S52 454 479,698.1 997,113.9
S53 521 478,474.1 997,024.9
S61 160 478,637.6 997,156.8
S62 348 479,338.6 997,223.4
S63 373 479,538.2 997,191.1
S64 277 478,093 997,333.4
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time of the day were counted. Cars were divided into heavy-duty, medium-duty, and light-
duty categories for the study. Overall, the Air-test instrument (Model-CW-HAT2005) and 
Aeroqual are both effective tools for measuring particle and gaseous contaminants Table 2.

2.4 � Data analysis and model setup

2.4.1 � Data analysis

The average concentrations of each parameter were used as input for the AERMOD soft-
ware after the raw data was compiled and summarized using an MS Excel sheet. The aver-
age daily traffic (ADT) and average monthly traffic (AMT) were calculated and examined, 
together with the traffic flow at the sample places, wind speed, wind direction, surface tem-
perature, meteorological temperature, and wind speed. Results were compared to the rec-
ommended value, which was established by the Ethiopian Environmental Protection Com-
mission and WHO’s 24-h air quality monitoring.

2.4.2 � Meteorological data preparation

The meteorological agency supplied the metrological information, which included the fol-
lowing variables: temperature, relative humidity, cloud cover, precipitation, wind speed, 
and wind direction. A site-based air test sensor also measured temperature and relative 
humidity in addition to these facts. To assess its impact on the level of pollution in the 
research locations, meteorological data was employed as an independent variable. Since 
meteorological factors are the primary element determining the dispersion of emissions 
in the ambient environment, the impact of climatic variables such as wind speed and wind 
direction was highlighted to assess the condition and extent of air pollution in Megenagna 
(Bachtiar et al. 2020). Using WRPLOT view 9.8 to locate the eight directions of wind flow 
in the east, west, north, or south as well as the corresponding nearby direction of the wind 
in the study areas, the wind rise was calculated. The meteorological bureau provided data 
for the 2 months’ variation in wind speed and wind direction during the day.

The colorful legend in Fig. 2a depicts how often wind speeds are present in the indi-
cated direction. A wind rise shows wind direction and frequency in the Megenagna region. 
In the Megenagna region, a wind rose shows wind speed and direction frequently. The 
majority of wind probabilities were in an east-to-west direction rising at a 248° bend. The 
majority of wind direction predominated to the west at Megenagna bus station, and the per-
centage contribution of wind speed was 41%. Maximum wind speeds more than or equal to 
11.1 m/s were frequently reported, while minimum speeds of 0.5 m/s were as well.

Table 2   Detection threshold, the data range, and some characteristics of the Air-test instrument (Model-
CW-HAT2005) and Aeroqual (McKercher et al. 2017)

Instrument Pollutants Detection threshold Data range

Air-test instrument (Model-CW-HAT2005) PM2.5 0.1 μg/m3 0 to 1000 μg/m3

Air-test instrument (Model-CW-HAT2005) PM10 0.5 μg/m3 0 to 1000 μg/m3

Aeroqual portable monitor SO2 0.1 ppb 0 to 500 ppb
Aeroqual portable monitor NO2 0.1 ppb 0 to 500 ppb
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In Fig. 2b, buildings were classified according to their height as highest, medium, and 
small, ≥ 30 m, 15 m ≤ b < 30 m, and <15 m, respectively. The length of the buffer zone 
from the major road was estimated. The sample point’s elevations as well as the demo-
graphics of the Yeka and Bole sub-cities per-residence density were used as inputs. Using 
WRPLOT software on top of Google Earth Pro, the primary preset meteorological vari-
ables of wind speed and wind direction were added as the independent variable.

2.4.3 � Model setup

Using AERMOD software, an observational study of air pollution concentration was repli-
cated. There are five paths in AERMOD’s environmental system. They are the output path-
way, meteorological pathway, source pathway, and control pathway. The steps for operating 
AERMOD were sequential. The new project was launched at its focal point (47,723.20, 
997,169.40) using the World Geodetic 1984 projected 1.5 km by 1.5 km coordinate system 
in the 37N universal time zone. In the source route, a template format for the first stage 
impact of the parameter from the Excel sheet was created in the chosen station of line 
source ID. Average building height, width, and cross-flow were taken into consideration in 
the second step of the source pathway. In the source route, a template format for the first 
stage impact of the parameter from the Excel sheet was created in the chosen station of line 
source ID. Average building height, width, and cross-flow were taken into consideration 
in the second step of the source pathway. Maximum hourly background concentration is 
assessed at the starting and finishing numbers for further validation purposes. Except for 
the reference point in the root, this pathway’s base elevation (0 m) and road width were 
measured in increments of 20 to 30 m. With 43 sampling points and a user-specified aver-
age human height of 1.5 m, the number of receptors on the receptor pathway is identical 
to the number of receptors allocated by default. Starting at the root of Megenagna, the dis-
tance between receptors was estimated to be 25.5 m. The terrains chosen were flat, raised, 
and uniformly Cartesian. AERMET software was employed on the meteorological pathway 
as an independent variable of the AERMOD input value. Surface file (SFC) and profile 
file (PFL) formats were utilized as the result of AERMET meteorological preprocessing 
of the data. From the archived data file, the raw met data was taken out and organized. 
Twelve-hour data were retrieved from a 24-h collected data file. For the AERMET input 

a
b

Fig. 2   a Wind rose in January and February and b dominant of wind rose in sample location
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data file, all required data files were prepared. Wind speed, wind direction, relative humid-
ity, precipitation, dry temperature, and cloud cover were the primary variables that AER-
MET processed.

Eventually, the output of the AERMET program contains one or more levels of the pro-
file of wind speed, wind direction, temperature, and standard deviation of the fluctuation 
component of the wind. The surface data file (sfc) is utilized for boundary layer scaling 
parameter height of wind and temperature. The counter profile as it had been automatically 
generated by AERMOD was examined. The entire procedure from the projection to the 
metadata was double-checked on the output pathway. The last step is run before determin-
ing whether the progression is successful, and the run is then verified using the message’s 
instructions for the error and warning messages.

In the AERMOD software environment, the model’s output is executed in three-time 
intervals for a chosen control hour (rush time, morning, and afternoon). The plot AER-
MOD was used to predict particulate matter and gaseous pollutants from vehicle emis-
sions for average time options of 3, 6, and 12 h. These times were chosen because they 
represented the traffic’s peak. Pollutant concentration and dispersion are influenced by the 
contour line; the higher the contour line, the higher the concentration of pollutants. The 
first scenario must represent the period from 1:00 to 3:00 AM local time, and the second 
scenario must represent the average of 6 h from 1:00 to 6:00 AM. Typically, incoming data 
processes a variable to produce an outcome, as seen in Fig. 3. According to the color-coded 
legend with the concentrations of contaminants, simulations of certain concentrations were 
done. According to the contour line surface simulation for the categorization in the AER-
MOD environment, there was a considerable amount of pollution.

2.5 � Calibration and validation of the model

The model evaluation is required to raise the level of trust in the observed data before the 
research findings are reported for a decision-maker to implement the socio-economic impli-
cations of air pollution. Model prediction requires research findings after the examination 
of statistical analysis. Different calibration techniques have an impact on the sensitivity 
change as the independent variable changes. The expected concentration, the dependent 

Fig. 3   Model setup and data analysis
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variable, and the observed value were contrasted. The model was then tested using the final 
set of simulated data for the second-month data. As one variable was checked, the simula-
tion’s first value was compared to the data that had been collected. The projected value was 
simulated in various ways by altering the independent variable of the metadata value while 
keeping the dependent input variable fixed. In comparison to relative humidity and precipi-
tation, wind speed and wind direction were chosen for model testing since they are the key 
factors impacting the dispersion of pollutants during the dry season (US EPA 2003).

Dispersion modeling was used to simulate the investigation modeling and validation of 
PM10 concentration. This was done twice for the sample that was collected (Bachtiar et al. 
2020). The second sample was used to validate the pollutants while the first sample was 
utilized to simulate PM10 at the default values of 0°, 30°, and 60°. In terms of traffic vol-
ume and density, the angle of 0° < ɑ < 90° revealed the highest concentration of PM10, 
with 61% and 51%, respectively. This first thought led to the validation of the research uti-
lizing a try-and-error value adjustment of the dependent and independent variables of wind 
speed and wind direction with the concentration outcome in the January and February data.

3 � Result and discussion

3.1 � Dispersion of particulate matter (PM)

The contour line determines the dispersion and concentration of contaminants; the higher 
the contour line, the more pollutants are present. The highest simulated value was dis-
played in a significant level red color with a high contour line, while the lowest concentra-
tion was displayed in a violet color with a lower contour line. To adjust the multiplication 
factor of the result in the AERMOD environment, the emission rate for the output pathway 
was employed as a user-defined factor of 10. The pink color was anticipated to have the 
lowest value far from the Megenagna root, while red was predicted to have the highest 
value close to it. To foretell the concentration difference in the peak hour variation, the 
AERMOD simulation was given the go-ahead. The first 3-h average of PM2.5 was expected 
to have a maximum concentration of 34.8 μg/m3 and a minimum concentration of μg/m3, 
as illustrated in Fig. 4a. The highest and lowest predictions for the first average 6-h PM2.5 
concentration were 34.9 μg/m3 and 0.7 μg/m3, respectively.

The projected maximum and minimum PM10 concentrations for the first 3 h were 
68.8 μg/m3 and 0.7 μg/m3, respectively (Fig. 4b). According to Table 3, the maximum 
and minimum expected PM10 concentrations for the 6-h concentration were 63.3 and 1.0 
μg/m3, respectively, while for the 12-h prediction, the maximum predicted concentration 
was 40.6 μg/m3 and the lowest predicted concentration was simulated at 0.4 μg/m3. The 
maximum predicted values for the first 24-h average from area, line, and point sources 
were 339 μg/m3, 24 μg/m3, and 11 μg/m3, respectively, in the investigation on PM10 dis-
persion model prediction that was carried out in the high-rise metropolis (Onat 2016). 
The line source model’s predicted concentration of PM10 was lower than the actual 
results. This could be a result of the traffic intensity or the difference in time. In cities in 
India and the UK near roads, a comparison of the dispersion model of PM2.5 was con-
ducted (Gulia et al. 2015). It was predicted that Delhi, Chennai, and Newcastle city will 
have first-hour average PM2.5 concentrations of 114.14 μg/m3, 87.10 μg/m3, and 14.26 
μg/m3, respectively. In comparison to the current findings, Delhi and Chennai had a 
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larger concentration of projected value, while Newcastle city had a lower concentration 
and lower relatively with Newcastle city.

The highest predicted concentration of PM was observed in the first hour of an aver-
age 3-h scenario. The lowest PM concentration was projected in the lower contour line 
of the violet color, which is away from the bus station, while the highest PM concen-
tration was typically expected in the middle of Megenagna with a high contour line. 
The largest expected amount of pollutants was predicted to disperse in the southwest, 
upwind, for the first average of 3 h. It includes emissions from a wide range of close-by 
traffic. The line source model underestimated oblique and crosswind conditions while 
overestimating parallel wind direction in the other area of investigation (Goyal and Dhir 
2015).

a 

b

Fig. 4   Prediction of PM in the first 3-h average: a PM2.5 and b PM10

Table 3   Prediction of PM in different scenarios

Parameters Prediction (simulation) 3-h average 6-h average 12-h average

PM2.5 Maximum 34.81 34.9 29.9
Minimum 0.7 0.4 0.2

PM10 Maximum 68.8 63.3 40.6
Minimum 0.7 0.6 0.4
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3.2 � Prediction of gaseous pollutants

A new spatiotemporal variation was used to forecast the dispersion of gaseous pollutant 
concentration. During the day’s busiest time, notably early in the morning, the automobile 
count revealed the highest traffic flow. The model was to simulate the concentration of gas-
eous pollutants with peak hour emission in the first 3-h, 6-h, and 12-h scenarios, depending 
on the source’s emission inventory. In the AERMOD setting, the initial average of 3, 6, and 
12 h with a considerable amount of SO2 concentration was simulated. According to the 
simulation in the red color at Megenagna’s center, as seen in Fig. 5a, the first average 3-h 
maximum SO2 prediction was 973.7 μg/m3. Due to traffic density and prolonged idle times, 
pollutant dispersion is lower in the center. Because traffic signals and crossroads at this 
station affect the concentration level, the pink color was simulated between 700 and 900 
μg/m3 next to the Lam Hotel on the Meskel square road line. Together with the CMC road 
line’s high traffic density, Fig.  5’s large concentration of construction and maintenance 
equipment is also noticeable.

In the initial average 3-h simulation, as depicted in Fig. 5b, the greatest NO2 prediction 
was simulated. NO2 concentrations for the first average of 6 h were predicted to be 78.8 and 
0.8 μg/m3, respectively. The first average 6-h simulation indicated a moderately significant 
level of pollution, which was a minimal concentration. The AERMOD line source model of 
vehicular NOx emission was created in a recent study (Amoatey et al. 2020). The first average 
of 3 h had the highest simulated NO2 concentration level, which was measured at 188.22 μg/
m3 among the 24-h prediction. Due to Muscat’s high traffic density, this number was larger 
than that found in the current study. Observation vs. prediction-fitting correlation coefficient 

a 

b

Fig. 5   First 3-h average predicted gaseous pollutants for a SO2 and b NO2
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was used to assess the accuracy of the gaseous pollutant prediction. Perception of more than 
88% of the fitting curve was found during the experiment. The correlation coefficients of NO2 
between predicted and observed values were R2 = 0.904. This demonstrates that the simulated 
value was the best suited. A study of many studies revealed that in Sydney, the monthly and 
hourly value regression coefficients for SO2 were R2 = 0.57 and R2 = 0.34, respectively (Gib-
son 2013). The regression coefficient of SO2 in the preview study had the lowest fitting value 
compared to the results of the current study, which is consistent with those findings. This was 
caused by the variation in the finding’s meteorological and spatial variability. The correlation 
coefficients for SO2 and NO2 varied from 0.73 to 0.96 and 0.73 to 0.95, respectively, when the 
general finite line source model employing the dispersion model was established (Kumar et al. 
2016). This value shows the best fitting compared with the current study. The regression coef-
ficient fits the data less well than the present result. This can be due to the distinction between 
metrological and geodemographic variability.

3.2.1 � Sensitivity test and calibration of AERMOD

Different calibration techniques cause the sensitivity (the independent variable) to change and 
have an impact on the dependent variable. The value that was observed and the dependent 
variable were compared. As one variable was checked, the first value from the simulation was 
compared to the data that had been collected. The projected value was simulated in various 
ways by altering the independent variable of the metadata value while keeping the dependent 
input variable fixed. Because these characteristics have a greater impact on model predictions 
than relative humidity and precipitation during the dry season, they were chosen for model 
testing. As shown in Table 4, the five categories A, B, C, D, and E each had a distinct speed 
value; thus, the AERMOD software set the default value for each category to be constant.

The calibration process involved five steps of the category. The main prediction variable 
equation was created using wind speed or direction change, and the anticipated value was sim-
ulated as either a maximum or minimum value. As a substrate of wind speed and wind direc-
tion, the objective function (concentration) varied in various calibrations sensitivity changes 
from Equation (3). The influence of the receptor in the monitoring area was found to be sensi-
tive; if the wind was blowing from the south or west, the impact of the receptor would become 
more pronounced in the other geographic location when the wind direction changed (Bachtiar 
et al. 2020).

where Z1 is the predicted value due to the change in independent variables Xi and Yi, wind 
speed and wind direction, respectively. Q is the independent variable input value of emis-
sion rate and observed value, and a and b are the other constant values. The maximum and 
minimum value of pollutants was simulated in different wind speeds and wind direction 
variation as presented in Table 5. As indicated in Table 5, the regression values for SO2 
and NO2 were R2 = 0.91 and R2 = 0.96, respectively, while the regression values for PM2.5 
and PM10 were calibrated and were R2 = 0.95 and R2 = 0.93, respectively.

(3)Z1 (Xi, Yi) = Q (aXi + bYi),

Table 4   Calibration test of the 
AERMOD default value

Categories A B C D E

Wind speed (m/s) 1.54 3.09 5.14 8.23 10.8
Wind direction (°) 0 0 0 0 0
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3.2.2 � Validation

Using the 2 months of collected data, the model’s validity was developed. The data from 
the first month were utilized for model calibration and prediction, while the data from the 
second month, collected via self-monitoring at the same sampling locations, were used for 
validation. The second month of observed data was used as an input simulated model, with 
the independent variable of the simulated data remaining unchanged. The objective func-
tion simulation model was utilized for validation, except for the dependent variable used as 
a function of the concentration’s self-monitored value for the second month, as shown in 
Equation (4).

where Z2 is the concentration of output as the second-month emission rate imported, which 
maintains the independent variable constant optimum values (scenario-5) in calibrated 
models; Qi is the emission rate of pollutants; Ci is the concentration of the second-month 
cross-monitored; X and Y are the independent variables with the constant coefficient of a 
and b; and ε is an error.

The maximum concentrations of PM2.5 and PM10 were 36.6 and 66.6 μg/m3, respec-
tively, with fitting values of regression analysis of 98% and 90%. While PM10 was some-
what lower than the monitoring value in Fig. 6, the validation of PM2.5 was roughly the 
best fitting to the truth value of monitoring data. For PM2.5 and PM10, the estimated inaccu-
racy was 2% (0.02) and 10% (0.1), respectively. Around 90% of the anticipated validation 
of PM was accomplished. In the other study, simulations of dispersion modeling were used 
to model and validate PM10 concentration under various scenarios for the second independ-
ent variable (Bachtiar et al. 2020). For the collected sample, the analysis was done twice. 
The first sample was used to simulate PM10 at default values of 0°, 30°, and 60°, while the 
second sample was used to validate pollutants. At an angle of 0° < ɑ < 90°, the largest con-
centration of PM10 was found, with 61% and 51%, respectively, of the total traffic volume.

(4)Z2(Qi) = aX(Ci) + bY(Qi) + �,

Table 5   Model calibration using different scenarios

Parameter Wind speed/wind direction

Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5

Default/00 +_0.5/300 +_1/300 +_0.5/450 +_1/450

PM2.5 (μg/m3) Max 33.5 33.8 34.6 32.6 34.9
Min 0.1 0.2 0.7 0 0.4

PM10 (μg/m3) Max 40.6 63.6 64.3 45.4 65.8
Min 0.4 0.6 0.2 0.5 0.7

SO2 (μg/m3) Max 618.2 823.6 964.5 756.8 973.7
Min 6.2 7.2 9.6 6.4 9.7

NO2 (μg/m3) Max 116 163.6 85.8 63.6 109
Min 4 3 0.7 0.6 1
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Around 95% of the calibrated validations for cross-monitoring gaseous pollutants were 
obtained. The perspective error was 2% (0.02) and 4% (0.04), respectively, with SO2 and 
NO2 fitting best at 98% and 96%, respectively. With the help of regression analysis, the task 
of estimating model validation of gaseous pollutants was completed to the best of fitting 
using the first month as simulation modeling and the second month for validation purposes.

Statistical modeling is essentially dependent on the evaluation of sampling points. Cor-
relation, root mean square error (RMSE), bias, mean absolute error (MAE), mean bias 
error (MBE), and mean square error (MSE) statistical analysis methods were used to check 
and validate emission-related variables such as particulate matter and gaseous contami-
nants. Cross-validation of seen and predicted data is a technique used to assess a predic-
tive model’s performance on unobserved data. It entails repeatedly dividing the data into 
two sets: training and testing. The model is trained on the training data and then used to 
predict the test data. This process is performed several times with different data splits, and 
the model’s average performance across all folds is calculated. The correlation between 
observed and predicted was best feted (0 to 1). In Table 6, RMSE values between 0 and 
20% show that the model can relatively predict the data accurately. The lower value of 
RMSE indicated the best fit of the model. NO2 indicated that the higher value implies that 
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Fig. 6   Validations of data of aPM2.5, b PM10, c SO2, and d NO2

Table 6   Cross-validation of observed and predicted data

Parameters Efficiency

Correlation RMSE R2 Pbias MAE MBE MSE

PM2.5 0.990 0.076 0.981 −0.021 0.006 −0.006 0.006
SO2 0.992 0.082 0.985 0.001 0.009 0.009 0.007
PM10 0.963 0.131 0.906 0.024 0.015 0.015 0.017
NO2 0.919 1.042 0.968 0.250 0.208 0.208 1.086
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cross-validation was not accurate. It might be the sensitivity of the model at NO2 (1.042). 
The probability of bias also was the best result, while at PM2.5, under-predicted results 
were obtained.

Generally, RMSE, bias, MAE, MBE, and MSE indicate a better fit between the observed 
and predicted data except for NO2, which was higher at RMSE and MSE, with values of 
1.042 and 1.086, respectively.

4 � Conclusion

Assessment and forecasting of traffic-related air pollution in Megenagna, Addis Ababa, 
was the main conclusion of this study. The best calibration was obtained with a wind speed 
of 1.0 m/s at 450 with a higher probability of receptor. Air pollution prediction using AER-
MOD reached over 75% of R2 with monitored data. Except for SO2, the concentration of 
both gaseous and particle pollutants in the Megenagna area did not exceed the regulatory 
guideline when the expected pollution level was compared to it. It may be necessary to 
evaluate the fuel type and automobile model because the gaseous pollutant SO2 was sig-
nificantly above the advised level. This research was only able to focus on the 2-month 
variation of January and February due to time and money constraints, but additional sea-
sonal and geographical region coverage research is essential to address Addis Ababa’s air 
pollution issues.
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