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Abstract
The first goal of this study is to quantify the magnitude and spatial variability of air qual-
ity changes in the USA during the COVID-19 pandemic. We focus on two pollutants that
are federally regulated, nitrogen dioxide (NO2) and fine particulate matter (PM2.5). NO2
and PM2.5 are both primary and secondary pollutants, meaning that they can be emitted
either directly into the atmosphere or indirectly from chemical reactions of emitted precur-
sors. NO2 is emitted during fuel combustion by all motor vehicles and airplanes. PM2.5 is
emitted by airplanes and, among motor vehicles, mostly by diesel vehicles, such as com-
mercial heavy-duty diesel trucks. Both PM2.5 and NO2 are also emitted by fossil-fuel power
plants, although PM2.5 almost exclusively by coal power plants. Observed concentrations
at all available ground monitoring sites (240 and 480 for NO2 and PM2.5, respectively)
were compared between April 2020, the month during which the majority of US states had
introduced some measure of social distancing (e.g., business and school closures, shelter-
in-place, quarantine), and April of the prior 5 years, 2015–2019, as the baseline. Large,
statistically significant decreases in NO2 concentrations were found at more than 65% of
the monitoring sites, with an average drop of 2 parts per billion (ppb) when compared to
the mean of the previous 5 years. The same patterns are confirmed by satellite-derived NO2
column totals from NASA OMI, which showed an average drop in 2020 by 13% over the
entire country when compared to the mean of the previous 5 years. PM2.5 concentrations
from the ground monitoring sites, however, were not significantly lower in 2020 than those
in the past 5 years and were more likely to be higher than lower in April 2020 when com-
pared with those in the previous 5 years. After correcting for the decreasing multi-annual
concentration trends, the net effect of COVID-19 at the ground stations in April 2020 was
a reduction in NO2 concentrations by −1.3 ppb and a slight increase in PM2.5 concentra-
tions by +0.28 μg/m3. The second goal of this study is to explain the different responses of
these two pollutants, i.e., NO2 was significantly reduced but PM2.5 was nearly unaffected,
during the COVID-19 pandemic. The hypothesis put forward is that the shelter-in-place
measures affected people’s driving patterns most dramatically, thus passenger vehicle NO2

emissions were reduced. Commercial vehicles (generally diesel) and electricity demand for
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all purposes remained relatively unchanged, thus PM2.5 concentrations did not drop signifi-
cantly. To establish a correlation between the observed NO2 changes and the extent to which
people were actually sheltering in place, thus driving less, we used a mobility index, which
was produced and made public by Descartes Labs. This mobility index aggregates cell
phone usage at the county level to capture changes in human movement over time. We found
a strong correlation between the observed decreases in NO2 concentrations and decreases
in human mobility, with over 4 ppb decreases in the monthly average where mobility was
reduced to near 0 and around 1 ppb decrease where mobility was reduced to 20% of normal
or less. By contrast, no discernible pattern was detected between mobility and PM2.5 con-
centrations changes, suggesting that decreases in personal-vehicle traffic alone may not be
effective at reducing PM2.5 pollution.

Keywords COVID19 · Air pollution · Nitrogen dioxide · Particulate matter · Mobility ·
Social distancing · Pandemic

1 Introduction

The World Health Organization (WHO) estimates that about 91% of the world population
is exposed to poor air quality and that 4.2 million people die each year from causes directly
attributed to air pollution (World Heath Organization (WHO) 2020b). Nitrogen dioxide
(NO2) is one of a group of highly reactive gases known as nitrogen oxides (NOx). NO2
can irritate the human respiratory system and is also harmful to ecosystems by the forma-
tion of nitric acid and acid rain (U.S. Environmental Protection Agency (EPA) 2020a; Lin
and McElroy 2011). NO2 is also a precursor to tropospheric ozone (O3) formation, which
has further negative impacts on human health (EPA 2020b). PM2.5 is another harmful air
pollutant that consists of microscopic particles with a diameter smaller than 2.5 μm. These
particles can pose a great risk to human health because they can penetrate into human lungs
and even the bloodstream; PM2.5 is also often associated with poor visibility (EPA 2020c).
NO2 and PM2.5 are both primary (i.e., they can be directly emitted into the atmosphere) and
secondary (i.e., they can also form after chemical reactions in the atmosphere) pollutants.
High concentrations of both are not necessarily found where their emissions are highest, due
to processes such as chemical reactions, transport, or diffusion. NO2 and PM2.5 are the main
focus of this paper because they are among the seven “criteria” pollutants that are regulated
at the federal level by the EPA via the National Ambient Air Quality Standards (NAAQS).

The novel coronavirus disease (COVID-19 hereafter) was first identified in Wuhan,
China, on December 30, 2019 (WHO 2020a; Chan et al. 2020). Cases started to spread
initially in China but quickly expanded to other countries across the world. COVID-
19 was declared a global pandemic on March 11, 2020 (WHO Regional Office for
Europe 2020). At the time of this study, over 36 million people have been affected
by the virus, with over 1 million deaths in 214 countries and territories (Worldome-
ters.info 2020; Johns Hopkins University 2020). COVID-19 first reached the USA in
January 2020 and since then it has caused over 212,000 deaths (Center for Disease
Control and Prevention (CDC) 2020; Johns Hopkins University 2020). The death rate
of COVID-19 is significantly higher among people with cardiovascular and respiratory
illnesses (Mullen 2020), which is also strongly connected with air pollution (Isaifan
2020). Furthermore, new studies suggest that higher concentrations of air pollutants
result in a higher risk of COVID-19 infection (Yongjian et al. 2020) and mortality
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(see Conticini et al. (2020) and pre-print by Wu et al. (2020)). Conticini et al. (2020)
provided evidence that the high level of pollution in Northern Italy, especially the Lombar-
dia and Emilia Romagna regions, was an additional co-factor to explain the high level of
lethality recorded in that area. After adjusting for 20 potential confounding factors, such
as population size, age distribution, and population density, Wu et al. (2020) found, with
strong statistical confidence, that “a small increase in long-term exposure to PM2.5 leads
to a large increase in the COVID-19 death rate.” By contrast, Contini and Costabile (2020)
caution that the exposure to air pollution alone could not explain the spread and mortality of
COVID-19. Citing the high mortality rates in northern Italy, Spain, the USA, and the UK,
which are characterized by very different pollution levels, and the lack of significant out-
breaks in very highly populated and polluted cities in India, they suggest that several other
factors are potentially involved in the spread of COVID-19 and its mortality, such as popu-
lation density, social habits, the restrictive measures applied, meteorological conditions, and
the different strategies used for counting deaths related to COVID-19 and infected people.
Clearly, the link between air pollution and spread or mortality of COVID-19 is still under
debate.

In the USA, social distancing measures were implemented state by state with the goal of
limiting the spread of the pandemic. In general, closure or non-physical interaction options
(e.g., delivery only) were implemented for schools, restaurants, and public places of gath-
ering. Businesses, workers, and types of activities that were deemed essential during the
pandemic either continued operating under strict protection measures (e.g., personal pro-
tective equipment (PPE), masks) or switched to online. Non-essential businesses requiring
physical presence and interaction closed completely (e.g., hair salons, bars, gyms). The
extent of social distancing measures, seriousness of the implementation, and the degree
of compliance varied throughout the USA. Most states announced some level of social
distancing orders starting in mid-March 2020 (British Broadcasting Corporation (BBC)
2020), often including a mandatory quarantine for people diagnosed with or showing likely
COVID-19 symptoms. By the beginning of April, almost all states had a mandatory shelter-
in-place or lockdown order (Mervosh et al. 2020). Hereafter, lockdown and shelter-in-place
will be used interchangeably. The social distancing measures have led to drastic changes in
mobility and energy use and therefore changes in emissions of pollutants.

Globally, the COVID-19 outbreak is forcing large changes in economic activities (Wor-
den et al. 2020). In China, following the strict social distancing measures, transportation
decreased noticeably and, as a result, China experienced a drastic decrease in atmospheric
pollution, specifically CO (Worden et al. 2020), NO2, and PM2.5 (Zambrano-Monserrate
et al. 2020; Worden et al. 2020; National Aeronautics and Space Administration (NASA)
2020) concentrations in major urban areas. However, emissions from residential heating
and industry remained steady or slightly declined (Chen et al. 2020). Using satellite data,
Zhang et al. (2020) and the National Center for Atmospheric Research (Worden et al. 2020)
reported a 70% and 50% decrease in NOx concentrations in Eastern China, respectively.
Bao and Zhang (2020) showed an average of 7.8% decrease in the Air Quality Index over
44 cities in northern China. Bauwens et al. (2020) and Shi and Brasseur (2020) reported
an increase in O3 concentrations in the same region. Chen et al. (2020), reported that NO2
and PM2.5 concentrations were decreased by 12.9 and 18.9 μg/m3, respectively. They esti-
mated that this improvement in the air quality of China avoided over 10,000 NO2- and
PM2.5-related deaths during the pandemic, which could potentially outnumber the con-
firmed deaths related to COVID-19 in China (Chen et al. 2020). Other researchers also have
proposed that the improvements of air quality during the pandemic might have saved more
lives than the COVID-19 has taken (Dutheil et al. 2020; Burke 2020). Likewise, Isaifan
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(2020) argues that the shutting down of industrial and anthropogenic activities caused by
COVID-19 in China may have saved more lives by preventing air pollution than by preventing
infection.

European countries, such as France and Italy, experienced a sharp reduction in their air
pollution amid COVID-19 (European Space Agency (ESA) 2020). In Brazil, a significant
decrease in CO concentrations and, to a lesser extent, in NOx levels was observed, while
ozone levels were higher due to a decrease in NOx concentrations in VOC-limited locations
(Dantas et al. 2020; Nakada and Urban 2020). The same findings were observed in Kaza-
khstan and Spain, respectively (Kerimray et al. 2020; Tobı́as et al. 2020). Likewise, Iran
(Nemati et al. 2020) and India (Mahato et al. 2020; Sharma et al. 2020) reported notice-
able improvements in air pollution during the pandemic. Le Quéré et al. (2020) looked into
the impacts of the forced confinement on CO2 emissions and concluded that global CO2
emissions decreased by 17% by early April compared with the average level in 2019. They
predict that the yearly mean CO2 emissions would decrease by 7% if restrictions remain
until the end of 2020.

In the USA, as a result of social distancing, states started to experience a dramatic decrease
in personal transportation and mobility in general (Gao et al. 2020). Personal vehicle trans-
portation decreased by approximately 46% on average nationwide, while freight movement
only decreased by approximately 13% (Pishue 2020). Air traffic decreased significantly as
well (Slotnick 2020). On-road vehicle transportation is a major source of NOx emissions
(EPA 2017) while airports are usually hot spots for NO2 pollution (NASA 2020).

The Houston Advanced Research Center (HARC) (Beydoun et al. 2020) analyzed the
daily averages of hourly aggregated concentrations of benzene, toluene, ethylbenzene, and
xylenes (BTEX) across six stations in Houston, USA. They reported a decrease in BTEX
levels in the atmosphere while there was an intensified formation on PM2.5 in the region.
Similarly, the New York Times reported huge declines in pollution over major metropolitan
areas, including Los Angeles, Seattle, New York, Chicago, and Atlanta using satellite data
(Plumer and Popovich 2020).

While a noticeable number of studies have looked into the correlation between lockdown
measures amid COVID-19 and air quality in different countries, none has evaluated air
quality for the entire USA. The goals of this study are to investigate the magnitude and
spatial variability of air quality (NO2 and PM2.5) changes in the USA during the COVID-
19 pandemic and to understand the relationships between mobility and NO2 changes. An
innovative aspect of this study is that we use an extensive database of ground monitoring
stations for NO2 and PM2.5 (Section 2.1) and a third-party high-resolution mobility dataset
derived from cellular device movement (Section 2.3). In addition, we included satellite-
retrieved NO2 information to increase the spatial data coverage (Section 2.2). Whereas most
studies rely only on a comparison to 2019, we consider five prior years (2015–2019) to
provide a more robust measure of changes in pollution level across the country amid the
COVID-19 pandemic.

2 Data

2.1 Air quality data

Criteria pollutant concentration data, originally measured and quality-checked by the var-
ious state agencies, are centrally collected and made available to the public by the EPA
through their online Air Quality System (AQS or AirData) platform (EPA Air Quality
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System 2020). For NO2 and PM2.5, the reported concentrations are 1-h averages, thus 24
records are reported daily (if no records are missing). The AQS pre-generated files are
updated twice per year: once in June, to capture the complete data for the prior year, and
once in December, to capture the data for the summer. The daily files, containing daily
average and daily maximum of 1-h NO2 concentrations and 24-h average of PM2.5 concen-
trations, were downloaded for the years 2015–2019. At the time of this study (May 2020),
however, the pre-generated files for April 2020 were not yet available.

For the year 2020 only, the data source was the U.S. EPA AirNow program (EPA AirNow
2020), which collects real-time observations of criteria pollutants from over 2000 monitor-
ing sites operated by more than 120 local, state, tribal, provincial, and federal agencies in
the USA, Canada, and Mexico. As stated on AirNow website, “these data are not fully ver-
ified or validated and should be considered preliminary and subject to change.” Of the two
types of files available from AirNow, namely AQObsHourly and Hourly, AQObsHourly
files were downloaded for March and April 2020 because of their smaller file size (they
are updated once per hour, as opposed to multiple times). Texas and New York do not feed
NO2 measurements to Airnow, thus their 2020 NO2 data were downloaded directly from
their state websites (Texas Commission on Environmental Quality (TCEQ) 2020; New York
State Department of Environmental Conservation 2020).

The NAAQS for NO2 and PM2.5 are based on the comparison of a “design value,” which
is a specific statistic of measured concentrations over a specific time interval, against a
threshold value as follows:

– NO2: annual mean of 1-h concentrations may not exceed 53 parts per billion (ppb);
– NO2: 98th percentile of 1-h daily maximum concentrations, averaged over 3 years, may

not exceed 100 ppb;
– PM2.5: annual mean of 24-h concentrations, averaged over 3 years, may not exceed 12

μg/m3;
– PM2.5: 98th percentile of 24-h concentrations, averaged over 3 years, may not exceed

35 μg/m3.

Clearly, it is not possible to calculate the design values as early as April because neither
the annual average nor the 98th percentile can be calculated after only 4 months. As such,
in this study, we will use a simple monthly average as the representative metric to compare
the concentrations in April 2020 to those in the previous five Aprils.

An air quality station, whether measuring NO2 or PM2.5, was used in this study only if
it reported both in 2020 (through AirNow) and in the five years prior (through AQS). In
addition, only air quality stations that were reporting at least 75% of the time were retained.
Note that not all NO2-measuring sites also measure PM2.5, and vice versa. Of the 426 and
882 sites that measured NO2 and PM2.5, respectively, in April 2020, only 271 and 819
reported at least 75% of the time, and ultimately only 201 and 480 reported NO2 and PM2.5
also in April 2015–2019 for at least 75% of the time. These are the sites that we will focus
on in this study and that are shown in Figs. 5 and 6.

2.2 Satellite data

Satellite observations for NO2 were acquired using the OMI instrument flying onboard
the NASA Aura satellite (Krotkov et al. 2019) and were downloaded using the NASA
GIOVANNI portal (NASA 2020). Specifically, the Nitrogen Dioxide Product (OMNO2d)
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was used, which is a Level-3 global, daily, gridded product at a 0.25◦ × 0.25◦ spatial
resolution provided for all pixels where cloud fraction is less than 30% (Krotkov et al.
2019). The product comes in two variants, the first measuring the concentration in the total
column and the second the concentration only in the tropospheric portion of the column.
For this work, the latter measurements were used. The Aura satellite is not geostationary,
but polar-orbiting, which means that it orbits over a given location at about the same time
each day. Therefore, changes in NO2 column totals due to COVID-19 that occur at other
times of the day may not be well captured by the OMI retrievals. Details about the NASA
OMI measurements can be found in the literature (Boersma et al. 2011).

The satellite-derived NO2 column totals at the pixels of the ground monitoring sites are
well correlated with the NO2 concentrations recorded at the ground monitoring sites in
all years, with R-square values varying between 0.76 and 0.80. As an example, we show
the correlation between the two in 2016 and 2020 in Fig. 1. Similar agreements between
satellite-derived NO2 and observations or modeling results have been reported in the lit-
erature (Valin et al. 2011; Russell et al. 2012). As such, we can use satellite-derived NO2
column totals to (1) confirm the results obtained from the ground monitoring sites and (2)
analyze pixels where no ground monitoring sites are available.

2.3 Mobility data

Mobility measures aim to capture general patterns of observed movement and most avail-
able data products today utilize mobile device activity as a proxy. While policy makers
set social distancing guidance, there are various policies enacted and various degrees to
which policies are followed throughout the country. We seek to observe actual patterns of
movement by using a dataset developed by Descartes Labs (2020b) that provides an aggre-
gated mobility measure based on anonymized and/or de-identified mobile device locations.
Mobility is essentially a statistical representation of the distance a typical member of a given
population moves in a day. Descartes Labs calculated the farthest distance apart recorded
by smartphone devices utilizing select apps (with location reporting enabled) for at least
10 uses a day, spread out over at least 8 h in a day, with a day defined as 00:00 to 23:59
local time (Warren and Skillman 2020). The maximum distance for each qualifying device
is tied to the origin county in which the anonymized user is first active each day. Aggregated
results at the county level are produced as a statistical measure of general travel behavior.

Mobility data are ultimately provided as percent of normal, i.e., the ratio of aggregated
mobility during each day of the COVID-19 pandemic over that of the baseline (17 February–
7 March 2020). Note that the baseline period is in late winter 2020, whereas the period
of focus in this paper is April 2020, in spring. As such, a fraction of the differences in
mobility may be due to differences in weather and/or climate rather than to COVID-19
restrictions. We did not attempt to correct for this type of bias. Another caveat, noted by
the producers of the data (Warren and Skillman 2020), is that the raw data used to calcu-
late mobility are available for only a small fraction of the total number of devices (a few
percent at most), thus the resulting mobility may or may not truly represent the average
behavior in each county. Nonetheless, the effects of these sampling errors are expected to be
small. The mobility data are made freely available by Descartes Labs at the US county level
(Descartes Labs 2020a).
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Fig. 1 Scatter plots of monthly-average NO2 concentrations (ppb) from the ground monitoring sites versus
monthly-average NO2 column totals (1016 molecules/cm2) retrieved from the NASA OMI satellite at the
pixels of the ground monitoring sites during a April 2016 and b April 2020
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3 Results

3.1 Observed air quality changes

In the rest of this paper, we will compare the monthly average of the pollutant of interest—
NO2 or PM2.5—during the month of April 2020 to the average of the five monthly averages
during April of the years 2015 through 2019. There are two reasons for this choice. First,
using five years to establish a reference is more meaningful than, say, using just the year
2019, because year-to-year variability can occur regardless of the pandemic. In fact we
found that, in general, the year 2019 was relatively clean when compared to the previous
five, thus a comparison between April 2020 and April 2019 may underestimate the true
impact of COVID-19. Second, although the monthly average is not the design value for
either NO2 or PM2.5, it is a value that is representative of the overall air quality during
the entire month of April. Alternative metrics, such as the monthly maximum, are more
representative of extreme circumstances, like wildfires, that are not necessarily associated
with COVID-19.

Starting with NO2, the April 2020 averages were generally below the April 2015–2019
average at the ground monitoring sites, as most sites lay below the 1:1 line in Fig. 2a. In
addition, 65% of the sites were characterized by NO2 concentrations in 2020 that were
lower than those in all of the previous five years (for the month of April). Only a few
sites (5 in total, < 2%) experienced NO2 concentrations in 2020 that were higher than
those in all of the previous five years (for the month of April). The average drop in NO2
concentrations in April 2020 with respect to the average of the previous five years was
−2.02 ppb (Tables 1 and 3). To verify that the observed reduction was not simply due to
the multi-annual decreasing trend in emissions (Jiang et al. 2018), a trend analysis was
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Fig. 2 Scatter plots of a NO2 and b PM2.5 observed concentrations at the AQS ground monitoring sites
during April of 2020 (y-axis) versus April of the previous five years 2015–2019 (x-axis). Blue-filled markers
represent sites for which the values in April 2020 were lower than any in April of 2015–2019; red-filled
markers represent sites for which the values in April 2020 were higher than any in April of 2015–2019
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Table 1 Monthly average of NO2 concentrations (ppb) by state in the month of April of the years 2015–2020
from the AQS sites. The last column shows the percent change in 2020 with respect to the 2015–2019 mean

State No. sites 2015 2016 2017 2018 2019 2020

Arizona 4 12.49 11.68 13.58 12.82 10.33 9.06 −25.6%

California 56 9.73 9.23 8.79 8.85 8.13 5.92 −33.8%

Colorado 7 11.37 9.87 9.39 9.94 9.5 8.25 −17.6%

Connecticut 3 11.71 11.13 11.72 10.34 8.43 6.54 −38.7%

District of Columbia 1 9.19 8.74 7.43 8.25 8.46 7.26 −13.7%

Florida 7 5.65 4.23 4.73 5.55 5.34 4.77 −6.5%

Georgia 2 11.39 12.15 10.83 11.62 10.8 10.83 −4.7%

Hawaii 1 3.04 2.99 4.59 3.21 3.72 2.85 −18.8%

Indiana 4 11.49 9.43 8.32 9.89 8.2 7.2 −23.9%

Iowa 1 1.42 2.33 1.66 2.08 1.9 1.69 −10.0%

Kansas 4 6.10 4.86 4.4 5.98 5.16 4.47 −15.6%

Kentucky 1 13.94 14.95 13.08 13.18 17.43 11.25 −22.5%

Maine 2 4.30 3.67 3.99 4.03 3.39 2.83 −27.0%

Maryland 5 10.43 10 8.57 8.84 8.11 6.74 −26.7%

Massachusetts 8 9.47 9.08 7.15 8.45 6.47 5.15 −36.6%

Michigan 2 9.37 8.28 8.37 8.59 7.39 6.79 −19.2%

Minnesota 2 7.51 5.95 7.25 9.88 6.53 5.08 −31.6%

Mississippi 1 3.91 4.25 4.28 3.85 3.79 2.68 −33.3%

Missouri 6 10.81 9.17 8.82 8.62 8.64 6.92 −24.9%

Montana 1 0.54 0.61 0.9 0.68 0.46 0.36 −43.5%

Nevada 2 8.48 7.93 9.77 10.09 8.53 6.76 −24.5%

New Jersey 8 13.80 13.39 12.33 12.48 12.38 8.03 −37.6%

New Mexico 8 4.68 4.56 4.48 4.74 5.22 3.58 −24.4%

New York 5 13.64 12.56 12.05 12.42 11.3 7.55 −39.1%

North Carolina 3 6.04 6.29 6.05 6.11 6.58 4.4 −29.1%

North Dakota 6 2.91 1.98 2.44 2.59 2.16 1.95 −19.3%

Ohio 5 14.60 12.13 10.84 11.17 11.28 8.25 −31.3%

Oklahoma 3 8.89 8.43 7.02 7.38 7.38 6.02 −23.0%

Oregon 2 12.39 11.59 10.69 9.42 9.98 7.77 −28.2%

Pennsylvania 1 12.87 12.89 11.74 10.81 8.7 10.39 −8.9%

Rhode Island 2 14.03 13.5 10.23 13.37 10.15 8.47 −30.9%

South Carolina 2 5.59 6.03 6.73 6.62 5.84 4.92 −20.2%

Texas 40 5.80 6.23 5.23 6.41 5.95 5.26 −11.2%

Utah 7 3.42 2.95 4.5 4.15 2.92 2.32 −35.3%

Vermont 2 7.32 6.12 6.23 6.16 5.74 4.00 −36.7%

Virginia 9 5.77 5.05 4.92 5.25 5.42 4.04 −23.5%

Washington 2 16.80 18.17 14.25 13.32 11.36 9.52 −35.6%

Wisconsin 2 12.50 11.11 9.61 11.36 9.75 8.63 −20.6%

Wyoming 13 1.69 1.62 1.61 1.55 1.31 1.33 −14.5%
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performed. The average slope of the linear fit was negative (−0.24 ppb/year) and, after
de-trending, the net contribution of COVID-19 was approximately −1.3 ppb on average.

The same pattern is confirmed in the satellite-derived data. Out of the 227 pixels with
ground monitoring sites, a total of 127 (56%) exhibited lower NO2 in 2020 than in the
previous five years and only 5% higher (Fig. 3b). Once all 14,706 pixels with valid satellite
retrievals over the continental US are considered, a similar pattern of lower NO2 column
totals in 2020 than in the five previous years emerges from these data too (Fig. 3a), but with
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Fig. 3 Scatter plots of NO2 column totals from NASA-OMI satellite at a all pixels over the continental US
(CONUS), b at the pixels of the AQS ground stations, c at the urban pixels over CONUS, and d at the rural
pixels over CONUS, during April of 2020 (y-axis) versus April of the previous five years 2015–2019 (x-
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28% of the pixels lower in 2020 than in the previous five years and 5% higher (for the month
of April, Table 3).

Further insight was gained from the satellite-derived NO2 column totals by differentiat-
ing the pixels into two categories: urban versus rural (Socioeconomic Data and Applications
Center (SEDAC) 2020). The urban pixels are shown in Fig. 4. For urban pixels, the find-
ings closely resemble those from the AQS ground monitoring sites, with less than 2% of
the sites (11 out of 786) experiencing higher NO2 in April 2020 than in the previous five
years and over 40% of the sites (325 out of 786) experiencing the opposite (Fig. 3c). This
is not surprising, as ground monitoring sites are more likely to be placed in urban locations,
where most people live. Basically all the pixels with higher NO2 in April 2020 than in the
previous five years from Fig. 3a were rural pixels (Fig. 3d).

In terms of spatial variability, Fig. 5 shows that, although NO2 reductions were recorded
all over the country, the highest decreases were observed in California and the Northeast,
where the shelter-in-place measures started earlier (March 11 for California, the earliest in
the country, and March 22 for New York, third earliest (Mervosh et al. 2020)) and lasted
longer (both states still have major restrictions in place as of June 10, 2020 (The Washing-
ton Post 2020)). Noticeable exceptions were North Dakota and Wyoming, where either no
significant decreases or actual small increases in NO2 concentrations were observed. North
Dakota enforced no shelter-in-place measures and in Wyoming only the city of Jackson
implemented a stay-at-home order as of April 20, 2020 (Mervosh et al. 2020). However, as
discussed in Section 2.3, people’s actual mobility, as opposed to state ordinances, is a more
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Fig. 4 Map of the urban pixels in the continental US from the Socioeconomic Data and Applications Center
(SEDAC) (SEDAC 2020)
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Fig. 5 Difference in monthly average NO2 concentrations (ppb) between April 2020 and the five previ-
ous Aprils (2015–2019). Negative values (blue) indicate a decrease in NO2 concentrations in April 2020,
vice versa positive values (red) indicate an increase. Latitude and longitude are in degrees. Cities and states
mentioned in the paper are labelled in lower and upper cases, respectively

appropriate metric to capture the effect of COVID-19 on air quality because there was no
complete compliance with state or city restrictions.

Figure 5 was useful because it included actual NO2 concentrations measured near the
ground. However, the spatial coverage was sparse and urban areas were over-sampled com-
pared with rural areas. This weakness is addressed via the NASA OMI satellite data, which
are shown in Fig. 7 as the difference between the monthly average of NO2 column total
in 2020 and that in 2015–2019 for the month of April. The regions with low coverage of
ground concentration of NO2 and mobility in the Midwest are generally characterized by
near-normal NO2 column totals. The Northeast hotspot of low mobility is also a hotspot of
low NO2, consistent with Bauwens et al. (2020), although it is surrounded by patches of
above-normal values that were not detectable from the ground monitoring stations. The Los
Angeles area is another hotspot of NO2 decreases, as well as low mobility.

For PM2.5, the ground monitoring stations depict a completely different response to
COVID-19 (Fig. 6). Whereas most NO2 sites were laying below the 1:1 line (Fig. 2a), the
majority of PM2.5 sites laid above it (Fig. 2b), indicating an overall increase in monthly
average PM2.5 in the country in April 2020 with respect to the previous five years. Only
18% of the sites reported concentrations of PM2.5 that were lower in 2020 than in the previ-
ous five years (in the month of April), while 24% of the stations reported the highest levels
in 2020 compared to the previous five years (for the month of April). The average increase
in PM2.5 concentrations with respect to the mean of the previous five years was small, +0.05
μg/m3 (Tables 2 and 3). Results from the trend analysis indicated that, in the absence of
COVID-19, the average concentration of PM2.5 in April 2020 would slightly decrease (slope
−0.12 μg/m3/year). Thus, the net contribution of COVID-19 on PM2.5 concentrations was
a slight increase of about 0.28 μg/m3 on average.
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Fig. 6 Difference in monthly-average PM2.5 concentrations (μg/m3) between April 2020 and the five previ-
ous Aprils (2015–2019). Negative values (blue) indicate a decrease in PM2.5 concentrations in April 2020,
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Fig. 7 Difference between the NASA OMI NO2 monthly average column totals (1016 molecules/cm2) in
2020 and in 2015–2019 for the month of April. The “hotspot” of reduced NO2 in the Northeast is apparent.
Latitude and longitude are in degrees
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Table 2 Monthly average of PM2.5 concentrations (μg/m3) by state in the month of April of the years 2015–
2020 from the AQS sites. The last column shows the percent change in 2020 with respect to the 20152019
mean

State No. sites 2015 2016 2017 2018 2019 2020

Alabama 4 7.94 7.56 8.82 7.26 7.64 8.59 +9.5%

Alaska 4 3.45 3.57 4.36 3.43 4.45 3.83 −0.6%

Arizona 13 5.67 5.82 6.9 8.13 5.03 4.75 −24.7%

Arkansas 4 7.01 7.12 8.12 6.98 7.51 7.54 +2.6%

California 61 7.06 6.65 6.35 7.93 6.31 5.26 −23.3%

Colorado 8 5.31 3.65 4.63 5.87 5.26 5.21 +5.4%

Connecticut 8 4.8 5.54 3.81 5.61 5.32 5.75 +14.6%

Delaware 3 5.73 5.65 6.21 6.48 5.91 7.09 +18.2%

District Of Columbia 1 6.21 6.68 7.11 8 6.33 4.67 −32.0%

Florida 16 7.01 7 7.41 7.68 6.39 9.52 +34.1%

Georgia 10 7.87 8.31 8.52 8.25 8.83 8.44 +1.0%

Hawaii 7 5.96 4.72 6.68 4.26 3.2 3.32 −33.1%

Idaho 5 4.47 5.51 4.21 4.43 3.55 5.72 +29.0%

Illinois 14 8.23 7.67 7.06 8.03 7.43 8.11 +5.5%

Indiana 15 7.5 8.21 6.17 6.64 6.21 8.47 +21.9%

Iowa 9 7.78 6.97 6.18 7.09 5.65 8.71 +29.3%

Kansas 3 6.34 6.21 6.85 8.31 8.77 11.47 +57.2%

Kentucky 12 6.97 7.03 6.27 6.48 6.77 8.04 +19.9%

Louisiana 4 7.81 7.06 8.43 7.52 6.84 7.74 +2.8%

Maine 6 5.16 5.64 4.93 4.46 3.63 4.05 −15.0%

Maryland 10 6.93 6.75 5.74 6.46 4.33 4.81 −20.4%

Massachusetts 9 4.67 5.08 3.02 5.6 4.68 5.71 +23.9%

Michigan 11 6.7 6.7 5.52 6.48 6.33 7.1 +11.9%

Minnesota 18 5.09 5.66 5.06 6.22 4.88 5.73 +6.5%

Mississippi 7 7.98 7.49 8.32 8.27 6.97 10.15 +30.0%

Missouri 13 7.65 6.3 6.46 7.33 7.33 6.6 −5.9%

Montana 11 5.02 4.57 4.07 4.81 3.7 4.21 −5.1%

Nebraska 2 8.02 6.65 9.82 9.77 6.1 8.17 +1.2%

Nevada 6 6.16 4.81 4.57 5.25 3.23 4.11 −14.4%

New Hampshire 5 4.3 4.2 3.18 4.11 3.34 4.01 +4.8%

New Jersey 3 5.69 7.27 7.32 7.17 6.09 5.84 −12.9%

New Mexico 5 7.34 5.05 7.02 7.93 5.58 4.87 −26.0%

New York 7 5.32 4.99 4.38 4.93 4.92 4.5 −8.3%

North Carolina 13 6.78 7.25 7.16 6.53 6.4 5.41 −20.7%

North Dakota 6 4.65 3.24 4.33 5.26 3.58 4.2 −0.3%

Ohio 12 7.49 7.86 5.55 6.82 6.68 6.99 +1.6%

Oklahoma 9 7.32 7.31 7.52 8.78 7.71 8.19 +6.0%

Oregon 12 5.3 4.94 4.28 5.14 4.24 5.17 +8.2%

Pennsylvania 24 7.41 7.01 7.64 6.99 6.52 6.97 −2.0%

Rhode Island 5 4.84 5.2 4.56 6.01 3.3 4.08 −14.7%
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Table 2 (continued)

State No. sites 2015 2016 2017 2018 2019 2020

South Carolina 6 7.33 6.95 7.95 6.64 6.6 6.62 −6.7%

South Dakota 8 6.65 4.93 5.35 5.54 3.68 5.01 −4.2%

Tennessee 11 6.41 6.68 6.8 6.45 6.5 6.23 −5.1%

Texas 11 10.04 8.84 9.13 8.79 8.76 10.27 +12.7%

Utah 7 5.6 3.3 3.47 4.59 3.03 3.79 −5.2%

Vermont 4 4.32 4.24 3.27 4.69 4.48 4.73 +12.6%

Virginia 6 5.74 5.76 6.33 5.31 5.75 5.66 −2.0%

Washington 11 5.57 6.5 3.53 4.01 4.17 5.11 +7.4%

Wisconsin 18 5.45 7.47 4.58 5.46 6.68 7.49 +26.3%

Wyoming 3 4.04 2.75 2.73 3.3 2.57 1.73 −43.8%

In summary, we report a large decrease (−2.02 ppb, or 27%) in monthly average NO2
concentrations across the US ground monitoring stations, confirmed by the satellite-derived
NO2 column total decrease of 7.1 ×1014 molecules/cm2 (or 24%) at the pixels of the ground
monitoring stations, during April of 2020 when compared with April of the previous five
years. When all the pixels with valid data were included, a drop of 2.4×1014 molecules/cm2

(or 13%) during April of 2020 was observed when compared to April of the previous five
years (Table 3). After de-trending, the net effect of COVID-19 on NO2 concentrations at the
AQS ground monitoring stations was −1.3 ppb. The monthly average of PM2.5, however,
increased slightly on average (+0.05 μg/m3 when compared with the previous 5-year aver-
age) during the same period (Table 3). After de-trending, the effect of COVID-19 was a net
increase of PM2.5 concentrations at the AQS ground monitoring stations by +0.28 μg/m3.
In the next Section 3.3, we try to explain the reasons for these differences.

3.2 Observedmobility changes

Time series of mobility data at the counties with NO2 ground monitoring sites are shown
in Fig. 8a and at the counties with PM2.5 ground monitoring sites in Fig. 8b. Only a few
counties had both types of monitoring sites, thus the counties included in the two figures
are generally different. Yet, the patterns are very similar. First of all, mobility on average

Table 3 Average air quality measurements in April of the years 2015–2020 from NASA OMI and ground
monitoring stations

2015 2016 2017 2018 2019 2020

NASA OMI

NO2 at all pixels (1016molecules/cm2) 0.16 0.15 0.14 0.13 0.14 0.12

NO2 at ground sites (1016molecules/cm2) 0.32 0.31 0.28 0.29 0.29 0.23

Ground monitoring stations

NO2 (ppb) 8.16 7.69 7.22 7.62 7.0 5.52

PM2.5 (μg/m3) 6.52 6.36 6.02 6.60 5.82 6.31
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Fig. 8 Mobility, expressed as percent of normal, at the locations of the AQS ground stations monitoring a
NO2 and b PM2.5 during March–May 2020. The orange bars indicate first and third quantiles; the red-dashed
lines cover the 5th to the 95th percentiles; the median is thick red solid; and the average of all the stations is
shown with a blue line

dramatically dropped starting in the second half of March, reaching values around 20% by
April, and then started to recover in May, as some states reopened for business or relaxed
the shelter-in-place measures (The Washington Post 2020). Second, a distinct minimum in
mobility during the month of April is clearly visible, which confirms that this month was
the most relevant for air quality impacts from COVID-19. There is some variability around
this general behavior, but nonetheless only a few counties barely reached normal mobility in
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April. Lastly, the typical traffic reduction during the weekends is confirmed in the mobility
data, regardless of the pandemic. This adds confidence to the use of mobility data as a proxy
for people’s actual behaviors.

In terms of spatial variability, changes in mobility during COVID-19 in the USA were
not uniform, although in general mobility was reduced in most states (Fig. 9a). Note the lack
of data in many counties in the Midwest (in grey in Fig. 9b), possibly due to low population
density, limited smartphone usage and cellular coverage. However, the ground monitoring
stations of both NO2 and PM2.5 are generally located in counties with mobility data avail-
ability. In general, the strongest decreases in mobility are found around large urban areas
throughout the country, e.g., the Northeast corridor from Washington D.C. to Boston; the
San Francisco and Los Angeles areas in California; Seattle in the Northwest; and Chicago.
A few isolated counties experienced increases in mobility (in red in Fig. 9a). Wyoming
stands out as one of the few states with no significant decreases in mobility, consistent with
the lack of shelter-in-place measures (Mervosh et al. 2020).

3.3 Relationships between air quality andmobility changes

To better interpret the relationship between mobility and the air pollutant of interest, either
NO2 or PM2.5, the mobility data were divided into bins, based on the monthly average (in
April 2020) of the mobility in the county where each ground monitoring site was located.
For most cases, there was only one ground monitoring site per county. But in some cases,
such as Los Angeles county in California for NO2 or Maricopa county in Arizona for PM2.5,
multiple monitoring sites were located in the same county and therefore they were all paired
to the same mobility value. The change in monthly average concentration of the pollutant
between April 2020 and the five previous Aprils was then calculated for each mobility bin.

Starting with NO2, there is a clear relationship with mobility (Fig. 10a). Large and nega-
tive changes in NO2 concentrations, on the order of −4 ppb, were found at locations where
mobility was basically halted, i.e., where it was less than 1% of normal in April 2020, as
in full lockdown. As mobility increased, the NO2 benefits decreased, although not linearly.
For example, decreases by 2–3 ppb in NO2 concentrations occurred where mobility was
restricted but not to a full lockdown (i.e., between 1 and 20% of normal). Past 20%, the
changes in NO2 concentrations were still negative and significant, but not large, less than
1 ppb on average. This suggests that NO2 responds modestly to changes in mobility that are
not large, but then, if mobility is reduced dramatically (i.e., by at least 80%, thus it is down
to 20% of normal), large decreases in NO2 can occur.

With respect to PM2.5, there is no obvious relationship between the reductions in mobility
and the observed concentrations (Fig. 10b). Only for the most extreme mobility reductions,
i.e., the bin with <1% mobility, which indicates that the entire population was sheltering
at home for the entire month of April, PM2.5 concentrations decreased by about 1 μg/m3.
After the first bin, as mobility increased, both increasing and decreasing concentrations of
PM2.5 were found, with large standard deviations and no discernible pattern. We conclude
that the changes in PM2.5 were not directly caused by changes in people’s mobility.

How can we reconcile the clear relationship of NO2 with mobility with the lack thereof
for PM2.5? The hypothesis we put forward is that the shelter-in-place measures mostly
affected people’s driving patterns, thus passenger vehicle—mostly fueled by gasoline—
emissions were reduced and so were the resulting concentrations of NO2. Commercial
vehicles (generally diesel) and electricity demand for all purposes (often provided by coal-
burning power plants), however, remained relatively unchanged; thus, PM2.5 concentrations
did not drop significantly and did not correlate with the mobility index.
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Fig. 9 Spatial distribution of a mobility, expressed as percent of normal, in April 2020 and b mobility data
availability, expressed as number of missing days, during March–May 2020. Latitude and longitude are in
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Fig. 10 Changes in monthly average concentrations of a NO2 and b PM2.5 near ground monitoring sites
during April of 2020 versus April of the previous five years as a function of mobility index bins in April 2020

To test this hypothesis, in a subsequent study, we will use a photochemical model,
coupled with a numerical weather prediction model, which we will run with and without
emissions from diesel vehicles, while keeping everything else the same. The difference
between the concentrations of the pollutants in the two cases will be attributable to diesel
traffic alone. Similarly, we will be able to reduce emissions from other sectors, to reflect the
effect of COVID-19 on other aspects of life, such as air traffic, business closures, or resi-
dential heating. We will explore the relationship between reductions of the mobility index
and residential heating increases, as more people staying at home during lockdowns likely
cause higher residential heating emissions, including from biomass burning.
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4 Conclusions and future work

This study analyzed the effects of COVID-19 on air quality, more specifically NO2 and fine
particulate PM2.5 concentrations, in the USA. Although different states introduced different
levels of shelter-in-place and social distancing measures at different times, by the beginning
of April 2020 all states but a few had adopted some restrictions. As such, the analysis
focused on the month of April 2020, which was compared to April of the previous five
years, 2015–2019.

Two types of measurements were used, NO2 and PM2.5 concentrations from the ground
monitoring stations—maintained by the states—and satellite-derived NO2 column totals in
the troposphere. Although the two measurements are not identical, they are strongly cor-
related with one another because the near-ground concentrations of NO2 are the dominant
contributors to the tropospheric column total.

To quantify social distancing, we used the mobility index calculated and distributed by
Descartes Labs. Their algorithms account for people’s maximum distance travelled in a day
by tracing the user’s location multiple times a day while using selected apps. Mobility is
represented as a percent value, such that 100% means normal conditions, i.e., those during
the period of 17 February–7 March 2020.

We found that NO2 levels decreased significantly in April 2020 when compared with
April of the five previous years, by up to 8 ppb in the monthly average at some locations.
On average over all US monitoring sites, the decrease in NO2 levels was between 24%
(from satellite) and 27% (from ground stations). The decreases in NO2 were largest where
mobility was reduced the most, with a direct, although not linear, relationship between the
two. In terms of spatial variability, hotspots of reduced NO2 concentrations in the Northeast
and California coincided perfectly with hotspots of reduced mobility. Vice versa, states
where social distancing measures were minimal experienced the smallest reduction in NO2,
e.g., Wyoming and North Dakota.

By contrast, the concentrations of PM2.5 did not decrease significantly, but rather
increased slightly during the same period and even reached unprecedented high values at
about a fifth of the sites. In addition, changes in PM2.5 concentrations were not correlated
with changes in people’s mobility, neither spatially nor as aggregated statistics.

We propose that the different response to reduced people’s mobility between NO2 and
PM2.5 could be explained by the fact that commercial vehicles (including delivery trucks,
buses, trains), generally diesel fueled, remained more or less in circulation, while the use of
passenger vehicles, which are primarily fueled by gasoline, decreased dramatically due to
COVID-19. PM2.5 emissions are generally larger from diesel than from gasoline vehicles.
In addition, other sources of PM2.5 emissions, like power plants and residential heating,
did not decrease or even increased. Although our hypothesis is reasonable and consistent
with the data that we have presented, the analysis conducted here is not a proof. We plan to
verify this hypothesis in a subsequent study using a photochemical model coupled with a
numerical weather prediction model, as described in Section 3.3, in conjunction with actual
vehicle and air traffic data.

As far as we know, this is the first study to use ground monitoring stations to assess the
effects of COVID-19 on air quality in the U.S. Satellite-derived NO2 column totals have
been used in a few previous studies, but none looked at the correlation between the two
types of NO2 measurements. Another innovation of this study is the use of mobility data,
which are an excellent proxy for people’s actual behavior, as opposed to the state or county
regulations, which may or may not be fully followed by people.
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This analysis has a number of limitations. First of all, we paired mobility data and pol-
lutant concentrations at the county level, thus we implicitly assumed that the measured
concentration and county-average mobility were representative of the entire county. For
large counties, especially those with also low population density, this assumption may not
hold. The second implicit assumption of our pairing is that local mobility affects local pol-
lution only and, vice versa, that local pollution is affected by local mobility only. In other
words, we are neglecting the effects of transport and chemical reactions, which could cause
either an increase or a decrease of pollution regardless of the local mobility change in the
county of interest. For example, consider the case that the prevailing wind is such that a
county is located downwind of an airport. If the airport was shutdown during the pandemic,
that county would see a reduction of NO2 and PM2.5 concentrations even if no social dis-
tancing measures were in place. With a modeling approach, which we will pursue in the
future, we will be able to properly capture the effect of transport. Another limitation is that
we looked at people’s mobility as the only factor explaining NO2 concentration changes,
whereas NO2 emissions changed also in response to business and school closures, air traffic
reductions, among many others sources. Meteorological factors, such as colder or warmer
than usual temperatures in certain locations, may also have affected air pollution indirectly,
as people heated their homes more or less than usual in April 2020 with respect to pre-
vious years. Lastly, we focused on two pollutants only, NO2 and PM2.5, because of time
constraints; future work will include other regulated compounds, such as ozone and carbon
monoxide.
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