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Abstract
Layered transition metal dichalcogenides have novel physical properties and great potential for applications. Among them, 
WTe2, which has an extremely large unsaturated magnetoresistance and is theoretically predicted to be a type-II Weyl 
semimetal, has been extensively studied. Here, we systematically probe the electronic structure of WTe2 at room tempera-
ture using high-resolution angle-resolved photoelectron spectroscopy (ARPES). We find that temperature-driven chemical 
potential shift and Lifshitz transition, which is equivalent to low-energy band structures shift downward by around 50 meV, 
compared to the results at low temperatures. Our ARPES experimental results match well with previous theoretical calcula-
tions, implying the possible existence of type-II Weyl points near the Γ-X axis. Also, as expected, there exists a dominantly 
electron-like Fermi surface instead of the one with compensated electrons and holes. Meanwhile, our ARPES results show 
that the flat band (FB) lying below the Fermi level (EF) becomes closer to the Fermi level at room temperature, which might 
start to dominate the transport behavior and lead to the disappearance of the unsaturated giant magnetoresistance effect. 
These findings not only reveal the electronic structure features of WTe2 at room temperature, but also provide new insights 
into the development of room-temperature topological quantum devices.
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1  Introduction

Weyl semimetals (WSMs), possessing the critical state 
of ordinary insulators and topological insulators (TIs) [1, 
2], carry low-energy excited Weyl fermions described by 
the Weyl equation. Furthermore, WSMs are classified into 
type-I and type-II, based on the presence or absence of Lor-
entz symmetry. As the first theoretically predicted type-II 
WSM [3, 4], WTe2 is well known to exhibit many exotic 
quantum phenomena, such as anisotropic chiral anomalous 
transport properties [5], low-temperature unsaturated giant 
magnetoresistance [6–8], pressurized superconductivity [9], 
compensation effects in three-dimensional (3D) electronic 
structures [10–13], topological Lifshitz phase transitions 
[14, 15], layer-dependent metal–insulator transition [16, 17], 
and monolayer quantum spin Hall effects, which have been 
extensively explored [18, 19].

What is clear is that the novel physical properties of WTe2 
are closely related to its low-energy electronic structures. To 
confirm the electronic structures of type-II Weyl semimetal 
in WTe2, series of angle-resolved photoelectron spectroscopy 
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(ARPES) studies attempted to achieve direct observation of 
Fermi arcs and Weyl points (WPs) [20–24]. In addition to 
exploring the non-trivial topological electronic structure of 
WTe2 materials, another brilliant ARPES experiment dem-
onstrated that the extremely large positive unsaturated magne-
toresistance in WTe2 is mostly attributed to carrier compensa-
tion which is derived from the hole and electron pockets of 
approximately the same size [12]. To date, although the results 
of transport and ARPES at low temperature confirmed that 
such an exotic behavior mainly stems from the perfect com-
pensation effect of electrons and holes [11, 12] at room tem-
perature, the detailed study of electronic structure and disap-
pearance of unsaturated magnetoresistance remain unexplored.

In this work, we report new ARPES experimental results 
collected at room temperature that demonstrate a chemical 
potential shift and a dominantly electron-like Fermi surface 
instead of one with compensated electrons and holes. The 
photon energy-dependence spectra revealed a 3D electron 
pocket on the Fermi surface in WTe2. Moreover, our results 
show that the flat band (FB) around Γ point, with a high 
density of states, is closer to the Fermi level (EF) at room 
temperature than at low temperature, which may contribute 
amounts of carriers to the transport behavior and destroy the 
giant unsaturated magnetoresistance effect. These findings 
reveal the electronic structural features of WTe2 at room 
temperature and provide a new experimental basis for the 
development and application of exotic properties in layered 
transition metal dichalcogenide materials.

2 � Experimental

The high-quality single crystals of WTe2 were synthesized 
by the self-flux method with tellurium as the solvent as 
reported elsewhere [20, 25]. The room-temperature ARPES 
measurements were performed at the BL03U beamline of 
the Shanghai Synchrotron Radiation Facility (SSRF) with 
Scienta DA30 analyzers [26, 27]. The energy and angu-
lar resolutions were set to better than 20 meV and 0.02 
(0.1 nm)−1, respectively. The spot size of beamline is less 
than 20 µm. The photon energies used in these measure-
ments ranged from 20 to 50 eV. Samples were cleaved in situ 
along the (001) surface. During measurements, the tempera-
ture was kept at room temperature (T ∼ 300 K), well above 
the Lifshitz transition point [14, 15], and the base pressure 
was better than 1.33 × 10−8 Pa.

3 � Results and discussion

WTe2 crystallizes in the orthorhombic crystal structure with 
space group Pmn21 and lattice parameters a = 0.348 nm, 
b = 0.625 nm, and c = 1.402 nm. The unit cell of WTe2 pos-
sesses two reflection symmetries: a mirror symmetry in the 

bc plane and a glide mirror plane formed by a reflection in 
the ac plane, followed by a translation by (0.5, 0, 0.5). Fig-
ure 1a shows the side and top views of the lattice structure 
and a sandwich structure composed of stacked Te–W–Te 
along the c-axis. Due to the existence of inversion symme-
try-breaking, two inequivalent Te terminal (001) surfaces 
(top and bottom planes in Fig. 1a) with different surface 
states and the same topological properties [22]. The W–W 
chains are connected in a zigzag pattern along the a-axis 
direction (Fig. 1a), and the different bond lengths of the 
W–Te lead to significant differences in orbital hybridiza-
tion, which is accompanied by anisotropic transport behav-
ior. Figure 1b shows the 3D-Brillouin zone (BZ) and the 
high-quality single crystal is shown in Fig. 1b(ii), in which 
a long strip extending along the W chain corresponds to the 
kx direction of BZ.

The core-level spectra were acquired with hv = 100 eV, 
and clearly show the Te-4d and W-4f peaks, as well as the 
Te-4d side peaks caused by the shift of chemical potential 
following Te termination exposure (Fig. 1c). Only two-
electron pockets (Fig. 1d(ii)) were identified on the Fermi 
surface at room temperature (300 K), which is significantly 
different from that of four pairs of electron/hole pockets with 
same sizes at low temperatures (Fig. 1d(i)) [10, 20]. This 
result indicates a shift of the chemical potential to a higher 
energy position and is close to the previous reports, in which 
the measurements were carried out above the second Lifshitz 
transition temperature [14, 15].

Compared with ARPES measurements at low tempera-
tures, the upward shift of the chemical potential found in 
the room temperature results may provide an opportunity 
to experimentally explore the electronic structure of WTe2 
more comprehensively. Thus, we performed systematic 
room-temperature ARPES measurements and presented the 
detailed band dispersion information. As shown in Fig. 2a, 
b, previous theoretical results show the momentum positions 
of one-pair WPs (WP1, WP2) with opposite chirality, which 
are located around 55 meV above the EF (WP1∼0.052 eV, 
WP2∼0.058 eV) and close to the top of the hole bands [3]. 
As we all know, the Fermi arc connecting two Weyl points 
is an important feature of Weyl semimetallic states. Unfor-
tunately, our results are similar to many previous measure-
ments [22, 24]; the identification of Fermi arcs exceeds the 
resolution limit of our ARPES data (Fig. 1d) and cannot be 
confirmed by the topographic features on the Fermi surface. 
However, according to recent theoretical prediction results 
[3, 10], the momentum positions of a pair of WPs are very 
close to the Γ-X axis in the Brillouin zone (WP1∼ (0.1208 
(0.1 nm)−1, 0.0562 (0.1 nm)−1), WP2∼ (0.1226 (0.1 nm)−1, 
and 0.0238 (0.1 nm)−1)). Next, we would like to check the 
band dispersion along the Γ-X direction in detail. In Fig. 2c, 
we display the corresponding ARPES intensity plot along 
the Γ-X direction, in which an electron band α crosses the 
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Fermi level. Compared with the dispersion at low tempera-
ture, our experimental results show that EF moves above the 
top of the hole band β at room temperature (Figs. 2c and 
1d(ii)), and is shifted by about 50 meV compared to theoreti-
cal calculations (from black dotted line to green dotted line 
in Fig. 2b(ii)), which is not due to sample dependence and 
consistent with the previous ARPES results [15]. To better 
understand the electronic structure of WTe2, we selected 
the interval along the Γ-X axis to zoom in and appended the 
calculations to the intensity image. By comparing theoretical 
calculations with experimental measurements, it has been 
shown that its band structure can be perfectly captured by 
the calculation without any renormalization, including the 
electron pocket and hole pocket near EF. However, restricted 
by the ARPES spectra at room temperature, the existence of 
the WP near the Γ-X axis remains to be investigated.

Another interesting behavior in WTe2 is the evolution of 
magnetoresistance with temperature, which exhibits strong 
changes in different temperature ranges. The current expla-
nation is the perfect compensation effect of the electron–hole 
pockets in the Fermi surface and the Lifshitz transition 
caused by the temperature. As shown in Figs. 3a and 1d, 
there are only two-electron pockets (marked by solid red 

rings ∼ e) and no hole pockets (marked by pink and bright 
green dashed rings ∼ h1, h2) at room temperature, instead 
of one Fermi surface with compensated two-electron and 
four-hole pockets at low temperature (Fig. 3d), and it can 
be more intuitively displayed by the band dispersion along 
cut1 to cut3 in Fig. 3a, d. Compared to two-hole bands of γ 
and β across Fermi level in Fig. 3e, the guide lines for eye in 
Fig. 3b show two-hole bands (β and γ) along cut1 (kx = 0.2 
(0.1 nm)−1) and an electron band (α) along cut2 (kx = 0.3 
(0.1 nm)−1). The top of the hole band β is located at a few 
meV below EF; by contrast, the bottom of the conduction 
band α crosses EF and extends nearly 0.15 eV below EF.

In addition, for the sake of accurately distinguishing the 
dispersion above and below EF, the photoemission inten-
sity of band dispersion image is divided by the Fermi func-
tion to eliminate the temperature-broadening effect near the 
EF along Γ-X, as shown in Fig. 3c(i). The intensity image 
in Fig. 3c(ii) is the corresponding second-derivative plot, 
where one electron band and three-hole bands, named α, β, 
γ and δ near EF, are distinguished. All of these bands can be 
well reproduced by the calculation and our low-temperature 
results (Fig. 3f), implying that the evolution of electronic 
structure with temperature is mainly attributed to the change 

Fig. 1   a The crystal structure of WTe2. The W atoms form zigzag 
chains in the a-axis direction. b (i) Bulk and (001) surface (BZ), with 
high-symmetry points marked. (ii) The photography of typical single 
crystal sample. c The core-level spectra plot taken with hv = 100 eV. 
d (i) Calculated Fermi surface in the ground state within the local 

density approximation + U (U = 2  eV) approximation. Reproduced 
with the permission from Ref [10]. Copyright 2017 American Physi-
cal Society. (ii) Fermi surface of WTe2 was taken with hv = 23 eV at 
300 K, and electron pockets were marked with red oval rings
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Fig. 2   a Fermi surface and 
one Fermi arc connecting the 
electron and hole pockets given 
by first-principles calculations. 
Green crosses mark the posi-
tion of WPs Reproduced with 
the permission from Ref [3]. 
Copyright 2015 Nature Publish-
ing Group. b (i) One-pair WPs 
is shown along the K (0.1208, 
0.0562, 0)–K’ (0.1226, 0.0238, 
0) direction. (ii) Band structures 
of WTe2 with SOC, the Γ-Σ is 
a fraction of the Γ-X segment 
from Ref. [3]. Copyright 2015 
Nature Publishing Group. 
The bands of α, β, and Fermi 
level (EF) are marked. c The 
second-derivative plots of Γ-X 
direction at 300 k correspond-
ing to photoelectron intensity 
image. The dashed curves are 
the guides to the eyes for the 
band dispersion near EF. d Band 
dispersion along Γ-X and its 
second-derivative plot, with the 
calculated bands appended

Fig. 3   a Fermi surface is the same as in Fig. 1d, four-hole pockets at 
0.1 eV below EF are marked with the pink and bright green dashed 
rings. b Band dispersion along the cut1 (kx = 0.2 (0.1 nm)−1) and cut2 
(kx = 0.3 (0.1 nm)−1) in Fig. 3a with hv = 23 eV. The hole and elec-
tron bands corresponding to the pockets in Fig. 3a are marked with 
dashed lines. c (i) Band structures along the Γ-X (kx) direction (cut3 

in Fig.  3a). (ii) The corresponding second-derivative plots. Dashed 
curves have been drawn on plot as a guide for band dispersion. d 
Fermi surface at 14  K, two-electron and four-hole pockets at Fermi 
level are marked with soild rings. e–f are the same as Fig. 3b,c, but 
at 14 K
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of chemical potential. By combining photoemission spec-
troscopy measurements and calculation, our experimental 
results at room temperature confirm that the electron and 
hole pockets are identical in size at 50 meV below the Fermi 
level, which ensures a perfect electron–hole compensation 
at low temperature resulting in the unsaturated giant mag-
netoresistance effect in the ground state (Fig. 3d–f) and is 
consistent with the previous ARPES results at low tempera-
tures [12]. In fact, due to the chemical potential shift upward 
driven by temperature, our room-temperature ARPES results 
along different high-symmetry directions all confirm a domi-
nantly electron-like Fermi surface instead of the one with 
compensated electrons and holes.

To gain a more comprehensive understanding of the elec-
tronic structure of WTe2 at room temperature, we performed 
photon energy dependent ARPES measurements. Figure 4a 
shows the ARPES spectral intensity maps taken in the 
20–50 eV range of excitation energies. Our measurements 
reveal periodic kz dispersion of electronic states at the Fermi 
level (the α dispersion in Fig. 4a), indicating that WTe2 has a 
3D electronic structure. The value of the inner potential we 
used is V0 = 9 eV, and the corresponding photon energy for 
the plane of kz = 0 is 23 eV. The 3D electronic structures of 
WTe2 may provide channels for the interlayer coherent trave-
ling of electron, which is also likely be related to the carrier 
compensation effect. Of course, it is still an open question.

Finally, we would like to examine and discuss the FB 
at the center of the BZ near the Fermi level. As shown 
in Fig. 4, we found the FB with a high density of states 
appears around 55 meV below EF, which could be more 
clearly identified in the symmetrical momentum integrated 
energy distribution curves (EDCs) binned within ± 0.1 
(0.1  nm)−1 around the center point. Photon energy-
dependent ARPES measurements show that this FB is 
barely modulated by kz and its binding energy position is 
approximately fixed with different photon energies. Com-
pared with previous results collected at 20 K, where the 
FB is located at 65 meV below EF [12], our results dem-
onstrate that this FB lies closer to the EF. According to the 
Fermi–Dirac statistics mechanics, ∼

(E is the energy of electrons, EF the Fermi level, kB the 
Boltzmann constant, T  the absolute temperature), at higher 
temperatures, a considerable proportion of electrons in 
the FB near the Fermi level would be thermally excited to 
participate in the transport and possibly drive the turn-on 
behavior of the giant magnetoresistance effect, which may be 
the key factor for the disappearance of the unsaturated giant 
magnetoresistance due to low carrier density of semimetals.

(1)
1

exp
(

E−EF

kBT

)

+ 1

Fig. 4   a kx–kz Fermi surface taken in the 20–50 eV range of excita-
tion energies within an energy window of ± 10 meV, and the period 
of kz dispersion is assumed here to be 2π/c ∼ 0.45(0.1 nm)−1. The kz 
dispersion of the α-electron band is marked with red dashed lines. b, 
d Dispersion along the kx direction at different photon energies. The 

FB and α electron bands are marked by dashed lines, respectively. c 
Symmetrical EDCs integrated over the momentum range kx =  ± 0.1 
(0.1 nm)−1 at different photon energies, and binding energy positions 
of flat bands around the Γ points are marked
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4 � Conclusion

In summary, we performed detailed electronic structure 
measurements of WTe2 at room temperature. On the one 
hand, the energy band dispersion along the high-symmetry 
axis is in good agreement with the calculation, which pro-
vides an indirect signal for the existence of Weyl points. 
On the other hand, our experimental results demonstrate 
that the Fermi surface is fully occupied by two-electron 
pockets due to temperature-driven changes in chemical 
potential, and the electron pockets show moderate kz dis-
persion. In addition, compared with the low-temperature 
experimental results, the FB closer to the Fermi level may 
contribute more to the transport and lead to the disappear-
ance of the unsaturated giant magnetoresistance effect. Our 
findings not only make up for the lack of information on 
electronic structure in WTe2 at room temperature, but also 
provide experimental support for the application of novel 
properties in layered transition metal dichalcogenides.
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