ORIGINAL PAPER

Dual topology in van der Waals-type superconductor Nb₂S₂C

Xian-Biao Shi^{1,2} · Peng He^{1,2} · Wei-Wei Zhao^{1,2,3}

Received: 24 November 2021 / Revised: 21 December 2021 / Accepted: 21 December 2021 / Published online: 25 February 2022 © The Nonferrous Metals Society of China 2022

Abstract

Nb₂S₂C is a van der Waals type layered superconductor with a transition temperature $T_c = 7.6$ K. In this paper, detailed calculations of the electronic structure and topological properties of Nb₂S₂C were performed from first principles. We find that Nb₂S₂C is a highly anisotropic metal with multi-band characteristics. In the absence of spin–orbit coupling (SOC), there appears one pair of triply degenerate points created by band inversion along the Γ –A line. When SOC is considered, the triple points are gapped. Intriguingly, two distinct types of topological states, including topological Dirac semimetal and topological insulator states, co-emergence in the vicinity of Fermi level. Moreover, the topology of Nb₂S₂C is robust to external pressure and the Fermi level can be shifted downward to the topological Dirac semimetal state and topological insulator state at 10 GPa and 14 GPa, respectively. The results herein provide a new platform not only for the studies of physics of low-dimensional superconductor but also for further investigations of topological superconductivity.

Keywords $Nb_2S_2C \cdot Dirac \text{ points} \cdot Topological insulator} \cdot First-principles calculations$

1 Introduction

Superconductors in van der Waals structure have attracted extensive interest because they provide a new possibility for realizing highly crystalline two-dimensional (2D) superconducting systems with exotic properties that differ from the bulk [1–11]. For instance, atomically thin NbSe₂ crystals have been discovered to host unusual superconducting states, including Ising superconductivity with a strong inplane upper critical field [3] and a field-induced Bose-metal phase under the out-of-plane magnetic field [4]. Therefore, exploring new quasi-2D superconductors is one of the most

Peng He hithepeng@hit.edu.cn

Wei-Wei Zhao wzhao@hit.edu.cn

- ¹ State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, China
- ² Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- ³ Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China

intriguing themes in the field of condensed matter physics [9, 10].

Our title compound, Nb₂S₂C, has been already synthesized in 1992 [12] and discovered as a superconductor in 2001 [13]. Below $T_c = 7.6$ K, Nb₂S₂C exhibits type-II bulk superconductivity. Because Nb₂S₂C could not be prepared by direct synthesis, its physical properties hence have been scarcely studied [13, 14]. However, its van der Waals type layered structure, endows Nb₂S₂C with a promising candidate for realizing a new 2D superconductor. Therefore, investigation on Nb₂S₂C in terms of the electronic structure is very valuable.

In this paper, using first-principles calculations, we predict the coexistence of topological Dirac semimetal and topological insulator states in the vicinity of Fermi level (E_f) in the bulk electronic band structure of Nb₂S₂C. Because the interplay of non-trivial band topology and superconductivity may give rise to topological superconductivity hosting the long pursuing Majorana fermion, which is potential for the use in low decoherence topological quantum computation [15–17], Nb₂S₂C as such provides a new platform not only for the studies of physics of 2D superconductor but also for further investigations of topological superconductivity.

2 Computational methodology

Present first-principles calculations were carried out within the framework of the projector augmented wave (PAW) method [18], and employed the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) formula [19], as implemented in the Vienna Ab initio Simulation Package (VASP) [20, 21]. The DFT-D2 method was adopted to describe the weak interactions [22]. A kinetic energy cutoff of 500 eV and a Γ -centered k mesh of $15 \times 15 \times 7$ were utilized in all calculations. The energy and force difference criterion were defined as 10^{-6} eV and $0.1 \text{ eV} \cdot \text{nm}^{-1}$ for self-consistent convergence and structural relaxation. The Wannier90 package [23-25] was adopted to construct Wannier functions from the first principles results without an iterative maximal-localization procedure. The WannierTools code [26] was used to investigate the topological features of surface state spectra.

3 Results and discussion

The crystal structure of Nb_2S_2C is shown in Fig. 1a. Nb_2S_2C occurs in a layered structure described by the hexagonal space group P-3 m1 (No. 164) [12]. It consists of five atomic layers stacked in a sequence of S–Nb–C–Nb–S. The quintuple-layer in bulk Nb_2S_2C is weakly coupled by van der Waals interaction. The structural parameters of bulk Nb_2S_2C calculated by PBE and PBE-D2 methods are listed in Table 1 and compared with experimental data. It can be seen from Table 1 that the optimized lattice constants are in reasonable agreement with experimental values when the van der Waals interaction is considered by the PBE-D2 method. In contrast, the PBE method significantly overestimates the lattice parameter constant c, implying an importance of the van der Waals interaction in Nb_2S_2C . Table 1 also shows that the

Table 1 Calculated structural parameters a, c and d (the thickness of the Nb₂S₂C layer, as defined in Fig. 1a) using different methods for Nb₂S₂C

	PBE	PBE-D2	Experiment
<i>a</i> (nm)	0.3282	0.3279	0.3268
<i>c</i> (nm)	0.9131	0.8642	0.8547
<i>d</i> (nm)	0.5650	0.5635	0.5744

Available experimental values are listed for comparison

effect of the van der Waals interaction is negligible on the thickness of the Nb_2S_2C layer. We use the lattice parameters optimized by PBE-D2 method in the following calculations. Figure 1b shows the bulk Brillouin zone (BZ), projected (001) and (010) surface BZ, and high symmetry points.

The calculated electronic density of states (DOS) along with atomic projected DOS, plotted in Fig. 2a, shows finite DOS at the $E_{\rm f}$, thus revealing metallic behavior for Nb₂S₂C. The Nb-4d and S-3p orbitals are widely distributed over all energies below and above the $E_{\rm f}$ and dominate the lowenergy states of Nb₂S₂C. The C-2p derived states primarily lie 3.5 eV below the $E_{\rm f}$. Since the DOS at the $E_{\rm f}$ has contributions largely from Nb-4d and S-3p states, we thus can emphasize that Nb-4d and S-3p electrons are most efficient in developing the superconducting properties of Nb₂S₂C.

Figure 2b shows the DFT result of the electronic band structure in the absence of SOC. There are three bands crossing the $E_{\rm f}$, indicating a feature of multi-band superconductivity. The dominant feature of the band is that it shows highly anisotropic dispersion, as expected. The band is highly dispersive along with the in-plane directions, whereas its dispersion is quite small along the outof-plane direction. The large difference in the dispersions indicates a quasi 2D character of this superconducting system. Intriguingly, there is a triply degenerate band crossing point energy at 0.15 eV below the $E_{\rm f}$ along the Γ -A

Fig. 1 a Crystal structure of Nb_2S_2C from side view. The unit cell is indicated by black contours. b Bulk BZ, (001) and (010) projected surface BZ and high symmetry points

Fig.2 a Total and projected density of states with specific atomic orbitals. b Electronic band structure of Nb_2S_2C obtained in the absence of SOC. c Band structure projected onto 4*d* orbitals of Nb atoms. d Band structure projected onto 3*p* orbitals of S atoms

direction. This crossing point is formed by one doubly degenerate band and one nondegenerate band. The orbital projected band structures presented in Fig. 2c, d reveal that the doubly degenerate band is predominantly attributed to Si- $3p_{xy}$ orbitals and the nondegenerate band is mainly contributed by Nb- $4d_{z2}$ states.

We next calculated the band structure of Nb_2S_2C in the presence of SOC, as shown in Fig. 3a. The inclusion of SOC

Fig.3 a Electronic band structure of Nb₂S₂C with considering SOC. b Enlarged view of the solid red area in a. c Two-dimensional band structure around the Dirac node in k_x - k_z plane. d Electronic band

structure in k_x - k_y plane surrounding the Dirac point. **e** Two-dimensional band structure around the Dirac node in k_x - k_y plane

does not have a significant effect on the overall band dispersions. It does effect on the band crossing point along the Γ -A direction. Upon including SOC, the original triple point is broken. Figure 3b shows the enlarged view of the band structure near the $E_{\rm f}$ along the Γ -A direction. There still exists a band crossing point formed by two bands with different irreducible representations (Δ_4 and Δ_{5+6}). Because of the coexistence of inversion and time-reversal symmetries, all the bands are doubly degenerate [27]. This crossing point as such is fourfold degenerate. Because the Γ -A direction preserves the C_3 rotational symmetry, this crossing point is symmetry protected against hybridization [28]. Around this crossing point, the related bands display linear dispersion along both in-plane and out-of-plane directions, as shown in Figs. 3c, e. Therefore, this crossing point is Dirac point. According to our calculations, there exists a pair of symmetry-protected Dirac points located at BZ coordinates $\left(0, 0, k_z^{\rm D} \approx \pm 0.199 \times \frac{2\pi}{c}\right)$ and energy $E_{\rm D} - E_{\rm f} = -0.113$ eV. In addition to Dirac states, SOC also induces hybridization between two Δ_4 bands and opens a gap of about 30 meV, leading to topological insulator (TI) states in the Γ -A line, see in Fig. 3b. Because SOC creates a band gap between the two Δ_4 bands at each k point, we thus can define a \mathbb{Z}_2 invariant by assuming a curved Fermi level between the two Δ_4 bands to characterize the band topology of Nb₂S₂C. Using the Wilson loop method [29], we calculate the topological invariant Z_2 . The Wannier charge center (WCC) evolution on the time-reversal invariant planes of Nb₂S₂C is shown in Fig. 4, from which we find $Z_2 = (1; 001)$, indicating the non-triviality of the band gap.

Exotic topological surface states are an important property to identify various topological phases [30, 31]. Figure 5 shows the calculated surface states on the (001) and (010)projected surfaces. On the (001) surface, a pair of bulk Dirac points on the k_z axis are projected onto the same $\overline{\Gamma}$ point, as indicated by the red dot in Fig. 5a. Topological surface states (denoted as SS1) originating from the projection of bulk Dirac points are clearly observed in the inset of Fig. 5a. In addition, a Dirac-cone surface state (denoted as SS2) appears inside the topological insulator gap. For the (010) surface, the pair of bulk Dirac points are projected onto the $\tilde{\Gamma} - \tilde{Z}$ surface direction, as indicated by the red dot in Fig. 5b. A surface Dirac cone at the $\tilde{\Gamma}$ point is observed, which is a signal of nontrivial band topology. This surface Dirac cone has its branches merging into the bulk states at the projection of three-dimensional (3D) Dirac point. It should be noted that this surface Dirac cone is distinct to the SS2 on the (001) surface, even though both of them disperse in the same energy range of -0.2 to -0.1 eV. This is because the surface state configuration depends on the details of the surface termination. These surface states obtained on both (001) and (010) surfaces are expected to be observed by angle-resolved photoemission spectroscopy (ARPES).

Considering that the van der Waals type crystal structure of Nb_2S_2C , external pressure is expected to be an effective and clean way to modulate its electronic structure. To showcase the effect of external pressure on the electronic

Fig. 4 Z_2 topological invariants for Nb₂S₂C. Evolution of Wannier charge centers for **a** $k_x=0$, **b** $k_x=\pi$, **c** $k_y=0$, **d** $k_y=\pi$, **e** $k_z=0$, and **f** $k_z=\pi$ time-reversal invariant momentum planes

Fig. 5 Projected surface states of Nb_2S_2C for **a** (001) and **b** (010) surfaces. The projected Dirac points are denoted by red dots. The inset shows in **a** the zoom-in view of the solid black box area, where the topological surface states are pointed out by arrows and clearly visible

structure of Nb₂S₂C, we carried out calculations of Nb₂S₂C under hydrostatic pressure. In Fig. 6a, b, we present our calculated lattice constants as a function of hydrostatic pressure. Lattice parameters *a* and *c* both gradually decrease with the increasing pressure, as expected. Figure 6d, e presents the band structures of Nb₂S₂C at 10 GPa and 14 GPa, respectively. Compared with the band structure at ambient pressure (Fig. 6c), we find that the electron Fermi pockets around the Γ point and along the Γ -K (Γ -K[']) line disappear when applied pressure larger than 10 GPa, as indicated by the black arrows. Importantly, the bulk Dirac points can be shifted upward to the $E_{\rm f}$ at 10 GPa. Increasing pressure up

Fig. 6 Pressure dependencies of lattice parameters \mathbf{a} and \mathbf{b} c. Electronic band structure of Nb₂S₂C with considering SOC at \mathbf{c} 0 GPa, \mathbf{d} 10 GPa, and \mathbf{e} 14 GPa

to 14 GPa, the $E_{\rm f}$ is lowered into the bulk topological insulator gap. Therefore, it will be interesting to study the effect of pressure on the superconducting behavior and transport properties of Nb₂S₂C.

4 Conclusion

In conclusion, we have presented the results of first-principles calculations on electronic structure and topological properties for superconductor Nb_2S_2C . We predict that Nb_2S_2C is a topological metal hosting topological Dirac semimetal and topological insulator states. The Dirac points are derived from band inversion and protected by C_3 rotational symmetry. The nontrivial surface states are obtained on both (001) and (010) surfaces. Further calculations of external pressure effects suggest the topology of Nb_2S_2C is robust to external pressure. Interestingly, Nb_2S_2C has a van der Waals-type layered structure, it thus provides a new platform to experimentally explore low dimensional superconductor and the interactions between superconductivity and multiple nontrivial topological states.

Acknowledgements This work was supported by the Natural Science Foundation of China (Grant No. 52073075), Shenzhen Science and Technology Program (Grant No. KQTD20170809110344233), and Science and Technology Innovation Talents Program of Henan Province (Grant No. 174200510010).

Declarations

Conflict of interest The authors declare no conflict of interest.

References

- Saito Y, Nojima T, Iwasa Y. Highly crystalline 2D superconductors. Nat Rev Mater. 2017;2:16094.
- Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J, Mak FK. Strongly enhanced charge-densitywave order in monolayer NbSe₂. Nat Nanotechnol. 2015;10:765.
- Xi X, Wang Z, Zhao W, Park JH, Law KT, Berger H, Forró L, Shan J, Mak KF. Ising pairing in superconducting NbSe₂ atomic layers. Nat Phys. 2016;12:139.
- Tsen AW, Hunt B, Kim YD, Yuan ZJ, Jia S, Cava RJ, Hone J, Kim P, Dean CR, Pasupathy AN. Nature of the quantum metal in a twodimensional crystalline superconductor. Nat Phys. 2016;12:208.
- Arguilla MQ, Katoch J, Krymowski K, Krymowski ND, Xu J, Xi X, Hanks A, Jiang S, Ross RD, Koch RJ, Ulstrup S, Bostwick A, Jozwiak C, McComb DW, Rotenberg E, Shan J, Windl W, Kawakami RK, Goldberger JE. NaSn₂As₂: an exfoliatable layered van der waals zintl phase. ACS Nano. 2016;10:9500.
- Goto Y, Yamada A, Matsuda TD, Aoki Y, Mizuguchi Y. SnAsbased layered superconductor NaSn₂As₂. J Phys Soc Jpn. 2017;86:123701.
- 7. Kim JS. A new van der Waals type superconductor. JPSJ News Comments. 2017;14:13.

- Ishihara K, Takenaka T, Miao Y, Tanaka O, Mizukami Y, Usui H, Kuroki K, Konczykowski M, Goto Y, Mizuguchi Y, Shibauchi T. Evidence for s-wave pairing with atomic scale disorder in the van der Waals superconductor NaSn₂As₂. Phys Rev B. 2018;98:020503(R).
- Cheng EJ, Ni JM, Meng FQ, Ying TP, Pan BL, Huang YY, Peets DC, Zhang QH, Li SY. Nodeless superconductivity in the SnAsbased van der Waals-type superconductor NaSn₂As₂. Europhys Lett. 2018;123:47004.
- Li YL, Stavrou E, Zhu Q, Clarke SM, Li Y, Huang HM. Superconductivity in the van der Waals Layered Compound PS₂. Phys Rev B. 2019;99:220503(R).
- Parvin F, Naqib SH. Pressure dependence of structural, elastic, electronic, thermodynamic, and optical properties of van der Waals-type NaSn₂P₂ pnictide superconductor: Insights from DFT study. Results Phys. 2021;21:103848.
- Boller H, Hiebl K. Quaternary pseudo-intercalation phases Tx [Nb₂S₂C] (T ≡ V, Cr, Mn, Fe Co, Ni, Cu) and metastable Nb₂S₂C formed by topochemical synthesis. J Alloys Compd. 1992;183:438.
- Sakamaki K, Wada H, Nozaki H, Onuki Y, Kawai M. van der Waals type carbosulfide superconductor. Solid State Commun. 2001;118:113.
- Sakamaki K, Wada H, Nozaki H, Onuki Y, Kawai M. Topochemical formation of van der Waals type niobium carbosulfide 1T-Nb₂S₂C. J Alloys Compd. 2002;339:283.
- 15. Xia W, Shi X, Zhang Y, Su H, Wang Q, Ding L, Chen L, Wang X, Zou Z, Yu N, Pi L, Hao Y, Li B, Zhu Z, Zhao W, Kou X, Guo Y. Bulk Fermi surface of the layered superconductor TaSe₃ with three-dimensional strong topological state. Phys Rev B. 2020;101:155117.
- 16. Zhang G, Shi X, Liu X, Xia W, Su H, Chen L, Wang X, Yu N, Zou Z, Zhao W, Guo Y. de Haas-van Alphen quantum oscillations in BaSn₃ superconductor with multiple dirac fermions. Chin Phys Lett. 2020;37:087101.
- Huang Z, Shi X, Zhang G, Liu Z, Cho S, Jiang Z, Liu Z, Liu J, Yang Y, Xia W, Zhao W, Guo Y, Shen D. Photoemission spectroscopic evidence of multiple dirac cones in superconducting BaSn₃. Chin Phys Lett. 2021;38:107403.
- Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953.
- Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
- Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphoussemiconductor transition in germanium. Phys Rev B. 1994;49:14251.
- Kresse G, Furthmüller J. Efficient iterative schemes for *ab* initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169.
- Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;85:1787.
- Mostofi AA, Yates JR, Lee Y-S, Souza I, Vanderbilt D, Marzari N. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun. 2008;178:685.
- Marzari N, Vanderbilt D. Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B. 1997;56:12847.
- Souza I, Marzari N, Vanderbilt D. Maximally localized Wannier functions for entangled energy bands. Phys Rev B. 2001;65:035109.
- Wu QS, Zhang SN, Song HF, Troyer M, Soluyanov AA. WannierTools: an open-source software package for novel topological materials. Comput Phys Commun. 2018;224:405.

- 27. Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X, Kawazoe Y. Topological node-line semimetal in three-dimensional graphene networks. Phys Rev B. 2015;92:045108.
- Yang BJ, Nagaosa N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat Commun. 2014;5:4898.
- 29. Yu R, Qi XL, Bernevig A, Fang Z, Dai X. Equivalent expression of Z_2 topological invariant for band insulators using the non-Abelian Berry connection. Phys Rev B. 2011;84:075119.
- 30. Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, Weng H, Dai X, Fang Z. Dirac semimetal and topological phase transitions in A_3Bi (A = Na, K, Rb). Phys Rev B. 2012;85:195320.
- Wang Z, Weng H, Wu Q, Dai X, Fang Z. Three-dimensional Dirac semimetal and quantum transport in Cd₃As₂. Phys Rev B. 2013;88:125427.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.