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Abstract—Diffraction effects from interstratified phyllosilicates have been studied extensively, and several computer programs
such as NEWMOD© are available to facilitate interpretation of X-ray diffraction (XRD) profiles. However, accurate quantifi-
cation of samples containing multiple interstratified phyllosilicate minerals is difficult due to the generally subjective nature of
interpretations. More recent automated fitting interpretations require extensive computational effort, involving numerous
calculations of profiles with different fitting-parameter values. Computational cost in time per calculation is the key factor
influencing the overall efficiency of automated profile fitting. In general, the matrix methodology developed by Kakinoki and
Komura is more efficient than the NEWMOD© architecture. A new matrix methodology was developed that reduces the number
of matrix operations such as multiplication and addition, and these modifications improve calculation efficiency by up to a factor
of three, with even greater improvement for small crystallite sizes (< 20 layers). A new computer program, ClayStrat, based on
the modified matrix methodology, was developed to calculate one-dimensional XRD profiles from interstratified phyllosilicates
along the Z direction.
Keywords—ClayStrat . Interstratification .MatrixMethodology .NEWMOD

INTRODUCTION

Interstratification in phyllosilicates has been a recognized
aspect of claymineralogy since it was first documented byGruner
(1934). Distinct from a physical mixture, different interstratified
component layers stack along the Z direction to create domains
that diffractmore or less coherently.Modeling ofX-ray diffraction
profiles from interstratified phyllosilicates began with Hendricks
& Teller (1942), and important contributions were made by
Méring (1949), MacEwan (1958), Reynolds (1967), Drits &
Sakharov (1976), Plançon (1981), Bethke & Reynolds (1986),
Treacy et al. (1991), and Drits et al. (1997). Several software
packages such as NEWMOD© (Reynolds 1985), DIFFaX
(Treacy et al. 1991), DIFFaX+ (Leoni et al. 2004), and Sybilla
(Aplin et al. 2006) have been developed to simulate diffraction
from these systems. NEWMOD+, an entirely new version of
NEWMOD©, was developed by Yuan & Bish (2010a) by incor-
porating recent advances in the knowledge of crystal structures
into a user-friendly graphical interface. With these computer
programs, investigators have been able to obtain structure infor-
mation through fitting an experimental pattern with a simulated
pattern bymanuallymodifying input parameters to the simulation.
Structure information includes component proportions and order-
ing state (Reichweite value), as well as crystallite size and size
distribution. These parameters are difficult or impossible to obtain
using other analytical methods.

Automated XRD profile fitting for two-component inter-
stratified phyllosilicates was achieved with the application of
the downhill simplex method (Nelder–Mead method) (Yuan &
Bish 2010b), and it was further extended to multiple-component

phyllosilicate systems containing one or more interstratified
phases (Yuan & Bish 2011). However, automated profile fitting
based on a NEWMOD©-like architecture experienced deterio-
ration in fitting efficiency as the number of phases increased. In
principle, profile fitting is done through minimization of the
discrepancies between measured and calculated profiles by
iteratively optimizing the parameter values in the model. During
each iteration, the diffraction profile of each phase (either
interstratified or non-interstratified) is recalculated using a new
set of parameter values determined by a minimization technique
such as the downhill simplex method. These profiles from
individual phases are then summed in different proportions to
create a single profile that is compared with the measured
profile. Consequently, as more phases are included in profile
fitting, calculation of the profile containing all diffraction con-
tributions from each phase requires increasing time. Additional-
ly, the number of fitting parameters increases as more phases are
included in the profile-fitting calculation, and typically more
iterations are required for the minimization routine to yield a
minimum. Therefore, fitting efficiency depends heavily on the
average time to calculate a profile from each phase.

XRD modeling of interstratified systems typically involves
a combination of the Fourier series form of the Laue interfer-
ence function that can accommodate different layer types and a
statistical description of the arrangement of different layers. A
recursive algorithm was developed, by Bethke & Reynolds
(1986), which can calculate the frequency factors that
correspond to different layer pairs, namely AA, AB, and BB
for a two-component, A and B, interstratified system. This
approach was later employed in the NEWMOD© architecture
in which the frequency factors are calculated separately before
summation of the Fourier series of the interference function. In
contrast to the NEWMOD© architecture, the matrix
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methodology developed by Kakinoki & Komura (1965) inte-
grates the calculation of frequency factors into the Fourier series
summation, which is conducted through recursive matrix mul-
tiplication. As a result, the matrix methodology is considered
more time efficient than the NEWMOD© architecture
(Reynolds 1989; Drits & Tchoubar 1990). The matrix method-
ology is preferred over the NEWMOD© approach when speed
is critical, as in automated profile-fitting applications. The
intensity calculation in the matrix methodology typically in-
volves matrix inversion, however, which requires special treat-
ment (discussed in detail in the next section). A new approach is
proposed here that does not require calculation of the inverse
matrix, and this modified matrix method provides a gain in
performance which is up to a factor of three times better than
the previous approach. The program ClayStrat was developed
based on this modified matrix methodology.

MATERIALS AND METHODS

Matrix Methodology

The matrix methodology was first developed by Hendricks
& Teller (1942) and was later extended by other researchers
(Kakinoki&Komura 1965; Plançon&Tchoubar 1976; Plançon
1981) to simulate 00l reflection profiles. Drits & Tchoubar
(1990) reviewed the matrix methodology extensively, and
most of the terminology and definitions in the discussion
below were taken from their book. Interested readers can refer
to Drits &Tchoubar (1990) for detailed derivations of equations.

Consider an interstratified crystallite composed of g layers
(different in layer structure factor) with M stacking layers; the
intensity along Z diffracted by this crystallite (i.e. the one-
dimensional diffraction pattern) is given as (Drits &
Tchoubar 1990):

i s*
� �

¼ Ω
σ

M Tr Φ½ � W½ �f g þ 2Re∑M−1
n¼1 M−nð ÞTr Φ½ � W½ � Q½ �nf g� �

; ð1Þ

where s* is the scattering vector with j s* j ¼ 2sinθ=λ in
which θ is the diffraction angle and λ is the X-ray wavelength,
andΩ and σ are the area of the unit cell in the XYplane and the
area of the diffracting layer, respectively. [W], [Φ], and [Q] are
in the form of a square matrix, and [Φ] and [Q] are complex
matrices. [W] is a diagonal g × gmatrix containing the propor-
tion of different layers, and the elements of [Φ] are the product

ofΦiΦ
*
j , in whichΦi is the layer structure factor of the i

th layer

andΦ*
j is the conjugate of the layer factor of the j

th layer. The

elements in matrix [Q] describe the translations between nth

nearest layers with different probabilities. Tr and Re refer to the
trace of the matrix and the real part of the complex number,
respectively. Eq. 1 calculates the diffracted intensities in a
recursive way in which the translations between nth nearest
layers can be determined by multiplying [Q]n-1 by [Q]. The

summation ∑M−1
n¼1 M−nð ÞTr Φ½ � W½ � Q½ �nf g was carried out

by noting that ∑M−1
n¼1 M−nð Þ Q½ �n is the summation of the

geometrical series (Kakinoki & Komura 1952), resulting in

the following expression:

i s*
� �

¼ Ω
σ
MTr Re Φ½ � W½ � R½ �f g; ð2Þ

where

R½ � ¼ I½ � þ 2 Q½ �
I½ �− Q½ � þ

2

M
Q½ �Mþ1− Q½ �
I½ �− Q½ �ð Þ2

" #
ð3Þ

This summation has been widely used by various researchers
(Plançon & Tchoubar 1977; Drits & Tchoubar 1990; Treacy
et al. 1991). Considering the fact that powder diffraction sam-
ples generally contain crystallites with different sizes in differ-
ent proportions, the total diffracted intensity is

I s*
� �

¼ ∑maxN
M¼minNα Mð Þ Ω

σ
MTr Re

Φ½ � W½ � I½ � þ 2 Q½ �
I½ �− Q½ � þ

2

M
Q½ �Mþ1− Q½ �
I½ �− Q½ �ð Þ2

" #( )
ð4Þ

∑maxN
M¼minNα Mð Þ ¼ 1, where α(M) is the proportion ofM-layer

crystallites in the sample, and minN and maxN refer to the mini-
mum and maximum sizes of the crystallites, respectively.

The average intensity from a single layer can then be calculated
as

I s*
� �

M
¼

∑maxN
M¼minNα Mð Þ Ω

σ
MTr Re Φ½ � W½ � I½ � þ 2 Q½ �

I½ �− Q½ � þ
2

M
Q½ �Mþ1− Q½ �
I½ �− Q½ �ð Þ2

" #( )

∑maxN
M¼minNα Mð ÞM ;

ð5Þ
where M is the average size of crystallites along the Z
direction in the sample (Reynolds 1993). Equation 3 involves
calculating the inverse complex-matrix ([I] − [Q])–1, and con-
sequently special treatment is required to avoid division by
zero when det([I] − [Q]) = 0 (Kakinoki & Komura 1965;
Treacy et al. 1991). Here, a new approach is proposed to
sum all intensities from crystallites with a distribution in size
without involving matrix inversion. This approach involves
calculating the total intensity by introducing the size distri-
bution directly into Eq. 1

I s*
� �

¼ ∑maxN
M¼minN α Mð Þ Ω

σ

M Tr Φ½ � W½ �f g þ 2Re∑M−1
n¼1 M−nð ÞTr Φ½ � W½ � Q½ �nf g� �

¼ Ω
σ

M Tr Φ½ � W½ �f g þ 2Re∑maxN
M¼minNα Mð Þ∑M−1

n¼1 M−nð ÞTr Φ½ � W½ � Q½ �nf g
h i

ð6Þ
The summation of the second term can be rewritten as:

∑maxN
M¼minNα Mð Þ∑M−1

n¼1 M−nð ÞTr Φ½ � W½ � Q½ �nf g;

¼ ∑maxN−1
n¼1 Tr Φ½ � W½ � Q½ �nf g∑maxN

M¼nþ1 M−nð Þα Mð Þ� �
ð7Þ

where∑maxN
M¼nþ1 M−nð Þα Mð Þ refers to the sum of the probability

of nth nearest neighbors in the entire powder (multi-crystallite) sam-
ple, and this quantity can be calculated and stored in a vector prior to

the calculation of ∑maxN−1
n¼1 Tr Φ½ � W½ � Q½ �nf g½ � at every point of

s*. Thus, the average intensity is
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I s*
� �

M
¼ Ω

σ
Tr Φ½ � W½ �f g þ 2

M
Re∑maxN−1

n¼1 Tr Φ½ � W½ � Q½ �nf g∑maxN
M¼nþ1 M−nð Þα Mð Þ� �� �

ð8Þ

This approach does not involve the inverse matrix and hence:
(1) it requires no special treatment when det([I]− [Q]) = 0; and (2)
more importantly, it is significantly more efficient by eliminating
matrix inversion and multiplication, both of which have a typical
computation complexity of O(n3) for a square matrix.

Mineral-structure Description
Simulating XRD profiles from interstratified phyllosilicates

(or any layer-structure material) requires pre-defined structures
including unit-cell parameters and the position and concentration
(site occupancy) of each atom type for each layer type. Quantita-
tive analysis by fitting a simulated profile to a measured profile
implicitly assumes that the structure model used is representative
of the phyllosilicate in the sample. However, this assumption may
not always be valid or accurate when using structures that are built
into the program (e.g. the NEWMOD© program). The chemical
composition of a sample, in particular for smectite and chlorite,
can vary greatly, and atomic positions and site occupancies can
also vary among samples. Chemical variations in a sample can be
accommodated by modifying the nature and concentration of
element(s) in individual sites so that the overall scattering power
from the model and the sample are similar (Reynolds 1985).
However, this method of modeling substitutions can introduce
significant errors in simulated intensities at middle to high diffrac-
tion angles (Yuan & Bish 2010a). Moreover, as crystal structures
are compiled into a program, users have only a limited capability
to modify the structures, and changing the atomic positions and
concentrations or introducing new structures such as layered
double hydroxides (LDH), is often difficult. In light of these limits,
the ClayStrat program has been configured to allow users to
define the crystal structure in an ASCII text file with a simple
format (Appendix A.1). The structure file contains the unit-cell
parameters and the names, types (scattering factor), site occupan-
cies, and positions of each atomic/molecular type. Atomic posi-
tions can be specified as a fixed distance along a direction in
angstroms, as the fraction of a unit-cell repeat, or as a combination
of these two. In addition, the structure file contains information
that describes constraints among atoms in terms of site multiplic-
ities and positions. For example, several different cations (e.g. Fe
andAl) can be present in the octahedral sheet, but the total number
of cations is generally equal to two in a dioctahedral smectite. The
structure file also specifies which properties of each atom (e.g. site
multiplicity, position) can be adjusted later in the ClayStrat
graphical-user-interface (GUI) window. The atomic scattering
factor for a given element is approximated in ClayStrat using
the nine-parameter formulation of Cromer and Waber (1965),
using coefficients from the International Tables for X-ray Crys-
tallography, Volume IV (1974). It is also possible to include
neutron scattering cross sections to allow simulation of neutron
powder diffraction patterns.

RESULTS AND DISCUSSION

Performance

The recursive nature of the matrix methodology shown
in Eq. 1 suggests that the average computational time will
be controlled mainly by two factors, namely the dimension
of matrices and the size of crystallites. The dimension of
matrices varies with the range of ordering, typically de-
scribed by the Reichweite value (R). The dimensions of
matrices in a two-component interstratified system are (2 ×
2), (4 × 4), and (8 × 8), corresponding to R0 (or R1), R2,
and R3, respectively. To distinguish between Eq. 5 and Eq.
8, Eq. 5 is referred to as the conventional matrix method
(CM) and Eq. 8 is referred to as the modified matrix
method (MM) in the discussion below. Tests were per-
formed to evaluate the computational efficiency of the
matrix methodology as a function of crystallite size for
different Reichweite values, i.e. different matrix dimen-
sions based on Eq. 5 and Eq. 8. The computer code was
written and compiled under Visual C++. The crystallite size
used in the calculation is controlled by varying the vari-
ables minN and maxN, the minimum and maximum crys-
tallite size, respectively, as defined previously. The variable
minN was fixed at a value of 1 and maxN was varied from 5
to 100, with an increment of 5 in the calculations. Crystal-
lites with different sizes were assumed to occur with the
same probability; this assumption does not affect the per-
formance evaluation. A 2θ range of 2 to 50° was used, with
an increment of 0.002°2θ, giving 24,000 data points per
calculation. Although this increment is unusually small,
this value and the large quantity of data produced ensure
consistent determination of calculation time for different
crystallite sizes by effectively reducing the random oscil-
lation of CPU computational power due to other operations
running on the computer. In order to focus on the difference
in summation efficiency between the CM and the MM, all
elements in the matrix [Φ] were set to 1, i.e. no calculation
of structure factors was involved. The computation time for
different Reichweite values (Fig. 1) varied linearly with
maximum crystallite size, maxN, and this relationship can
be understood from Eq. 1, in which the increment of maxN
by 1, i.e. M+1, results in one additional term in the sum-
mation Tr{[Φ][W][Q]M − 1}, ignoring the difference in the
frequency term (M-n). As mentioned above, the matrix
[Q]M − 1 can be calculated easily by multiplying [Q] by
[Q]M − 2, which was calculated previously. Therefore, the
required calculation time is due primarily to the matrix
multiplication operation, whose computation complexity
is O(n3), where n is the dimension of the square matrix.
The difference between the slopes shown in Fig. 1 reflects
this computational complexity although it does not strictly
obey the relation O(n3) due to additional operations such as
matrix addition and/or subtraction involved in the CM and
the MM.
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The performance gain provided by the MM over the CM
was measured by dividing the calculation time using the CM
by the calculation time using theMM on a point-by-point basis
(Fig. 2). Overall, the MM was more than twice as fast as the
CM, and the improvement in performance was even greater for
relatively small crystallite sizes (<25, which is more typical for
real samples). As the crystallite size increases, the performance
gain approaches a constant factor of two for R1 and R2
interstratifications and three for R3 systems. Comparison be-
tween the CM and the MM suggests that more matrix opera-
tions are involved in the CM, more specifically, matrix opera-
tions involved in the CM are one matrix inversion with ([I]
− [Q])-1; four matrix multiplications [Q]([I] − [Q])-1, ([I] − [Q])-2,
[Q]M+1 and ([Q]M+1 - [Q])([I] − [Q])-2; two matrix subtractions [I]
− [Q] and [Q]M+1 – [Q]; and one matrix addition

2 Q½ �
I½ �− Q½ � þ 2

M
Q½ �Mþ1− Q½ �
I½ �− Q½ �ð Þ2 . For each 2θ value, the matrix inversion

([I] − [Q])-1, the first two matrix multiplications [Q]([I] − [Q])-1

and ([I] − [Q])-2, and the first matrix subtraction [I] − [Q] are

performed only once. However, the last two matrix

multiplications, [Q]M+1 and ([Q]M+1 – [Q])([I] − [Q])–2, and the

matrix addition
2 Q½ �
I½ �− Q½ � þ 2

M
Q½ �Mþ1− Q½ �
I½ �− Q½ �ð Þ2 are repeated for each crys-

tallite size M. In contrast to the CM method, the MM method has

only one matrix multiplication[Q]n. When the crystallite size is

small, the computation time required for the one-time calculation

of matrix inversion and matrix multiplication is comparable to the

computation time for matrix multiplication associated with crys-

tallite size M. The performance gain for the MM over the CM

method is, therefore, even greater for small crystallite sizes. As the

crystallite size becomes increasingly larger, the computation time

for matrix multiplications [Q]M+1 and ([Q]M+1 – [Q])([I] − [Q])–2

prevails and the performance gain stabilizes at a factor of two. The

factor of two comes from the fact that two matrix multiplications

are involved in the CM compared with only one matrix multipli-

cation in the MM. Interestingly, the MM achieved a 3× perfor-
mance gain for the R3 simulation, distinct from the R1 and R2
simulations. This difference may be related to the manner in which
the Windows operating system accesses values in the matrix

Fig. 1 Required computation time for CM and MM calculations shown as a function of crystallite size (maxN); the difference between slopes is
due to the different matrix sizes
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because the same performance gain was obtained using Matlab,
which is computationally quite different from Visual C++.

Given the advantages of the MM over the CM, the MM
was used as the kernel of the ClayStrat program to calculate
intensities from interstratified systems. Evaluating the perfor-
mance of ClayStrat compared with NEWMOD+ (Yuan &
Bish 2010a), a program based on the NEWMOD© architec-
ture is also useful. ClayStrat is distinct from NEWMOD+, not
only in terms of how intensities are summed but also in terms
of how the layer structure factors of different clay compo-
nents, in particular centrosymmetric clay minerals such as
illite, are calculated. However, the calculation of the layer
structure factor for non-centrosymmetric clay minerals such
as kaolinite and serpentine is the same. It can only be done by
adding the scattering factor of each atom at different positions

according to the expression G s*
� �

¼ ∑N
1 f n s*

� �
e2πi∙Z ,

where s* is the scattering vector defined previously, f n s*
� �

is the scattering power of the nth atom at s*, and Z is the
position of the nth atom along the Z direction in angstroms.

The kaolinite structure (Bish & Von Dreele 1989) was select-
ed for comparisons between ClayStrat and NEWMOD+ to
eliminate the influence of differences in the calculation of
layer structure factors of minerals that are centrosymmetric.
To further simplify the calculation, kaolinite was specified as
both the major and the minor components of interstratified
phyllosilicate. The profiles of an interstratified kaolinite/
kaolinite were calculated with the following parameters: 2θ
range from 2 to 60° with an increment of 0.02°2θ, minN fixed
to 1, and maxN varied from 5 to 200 with an increment of 5.
The calculation time for each full diffraction profile was
recorded in units of milliseconds, the calculation was repeat-
ed 20 times, and the average calculation time was obtained
for each value of crystallite size and plotted in Fig. 3. Unlike
the matrix methodology, which involves different matrix sizes
for different Reichweite values, the NEWMOD© architecture
calculates diffraction profiles using the same approach re-
gardless of Reichweite value, leading to a single relation
between calculation time and crystallite size. The computa-
tional time was recorded for a maximum crystallite size of up
to 100 layers for NEWMOD+ as the NEWMOD© architecture
can simulate profiles of up to 100 layers (Jaboyedoff et al.

Fig. 2 Improvement in computational efficiency of theMM compared with the CM (plotted as ‘Performance gain’) as a function of crystallite size
for interstratified kaolinite/kaolinite. Red squares represent R0 andR1 interstratifications; green triangles represent R2 interstratifications; and blue
diamonds represent R3 interstratifications. The curve approaches a plateau as the crystallite size increases. The larger values for small crystallite
sizes are due to extra matrix operations involved outside the summation loop. As the number of layers increases to 25, the computation time for
matrix multiplications [Q]M+1 and ([Q]M+1 - [Q])([I] − [Q])-2 prevails, and the performance gain plateaus at ~ 2 for the R1 and R2 cases and at 3 for
the R3 case
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2001). A very good fit (R2 = 0.9993) to the data for maxN
values between 1 and 100 was obtained using a 2nd-order
polynomial function. The derived relation y = 0.0302x2 +
0.1838x + 28.318 was further used to extrapolate calculation
times for crystallite sizes beyond 100 layers, which are indi-
cated as “NEWMOD+ extrapolated” in Fig. 3. ClayStrat is
significantly faster than NEWMOD+, as illustrated by the
significantly shorter calculation times, and the improvement
in computational efficiency increases with increasing crystal-
lite size. The performance gain curves were obtained by
dividing the calculation time for NEWMOD+ by those ob-
tained for ClayStrat (Fig. 4). Minor improvement occurred in
computational efficiency for the R3 case with ClayStrat,
ranging from 1X to 2.5X for a maxN of 100 to 5X with a
maxN of 200. The computational efficiency was significantly

improved for the R2 case, ranging from 1.6X to 6.7X with a
maxN of 100 and 14X with a maxN of 200. The matrix
methodology shows the most improvement in computational
efficiency for the R0 and R1 cases, ranging from 13.5X with
a maxN of 100 to 37X with a maxN of 200.

Comparison of XRD Patterns Generated by ClayStrat
and NEWMOD+

It is natural to consider whether ClayStrat and
NEWMOD+ generate the same XRD patterns given the same
input data. Although both the NEWMOD© architecture and
the matrix methodology use the same approach by employing
a combination of the Fourier series of the Laue interference
function and a statistical description of the arrangement of

Fig. 3 Computational efficiency of NEWMOD+ and ClayStrat as a function of maximum crystallite size used in the simulation of interstratified
kaolinite/kaolinite. Blue diamonds represent ClayStrat R1; red squares represent ClayStrat R2; green triangles represent ClayStrat R3; purple,
filled circles representNEWMOD+; and blue crosses represent the extrapolated data forNEWMOD+with a maximum crystallite size beyond 100
according to the expression derived from the fit to the data points between 5 and 100
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different layers, the NEWMOD© architecture handles the
diffracted intensity from the end layers containing interlayer
material differently. If a very thin hydrated smectite crystallite
with only two layers, SS, containing two H2O-layers in the
interlayer region (Fig. 5) is considered, assigning two H2O-
layers to the interlayer region between two TOT blocks is
easy, but the configuration of H2O layers on both ends of the
crystallite is not obvious. The crystallite could be terminated
with two H2O layers on one end and none on the other end
(Fig. 5a), or it could have both ends terminated with two H2O
layers (Fig. 5b), or it could have no H2O layers bonded on
either end (Fig. 5c). These three configurations were assumed
possible in the NEWMOD© architecture, and special treat-
ment was used to account for these three configurations. In
contrast, the matrix methodology does not account for the
variation of interlayer material on the crystallite surface. The
effect of intensity from the interlayer material on the crystal-
lite surface (both ends) can be significant when the crystallite
is small, and the effect decreases as the size of the crystallite

increases. To illustrate the effect of the special treatment
implemented in the NEWMOD© architecture, the XRD
profiles of an interstratified illite/illite with different sizes
were generated by NEWMOD+ and ClayStrat using the
following parameters: 2θ range from 2 to 60° with an
increment of 0.02°2θ and interlayer K+ = 0.8. The size
distribution option was set to default, assuming equal prob-
ability of occurrence of crystallites in all sizes. Two sets of
minN and maxN values were used, minN of 3 and maxN of
14 (Fig. 6) and minN of 10 and maxN of 20 (Fig. 7),
respectively. When the average crystallite size was small
(average size of 8.5 in Fig. 6), the various configurations of
interlayer material on the crystallite surface treated in
NEWMOD+ altered the relative intensity ratio between dif-
ferent 00l reflections, resulting in a smaller 004/001 ratio
and larger 003/001 and 005/001 ratios. The large differ-
ences observed in the low diffraction angle region were
largely due to the Lorentz-polarization correction that am-
plifies subtle differences. As the crystallite sizes increase,

Fig. 4 Performance improvement ofClayStrat compared withNEWMOD+ (expressed as ‘Performance gain’). Data linkedwith dashed lines were
calculated using the extrapolated data shown in Fig. 3; extra: extrapolated. Blue diamonds represent R0 and R1; red squares represent R2; and
green triangles represent R3
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the intensity contribution from the interlayer material on the
crystallite surface is outweighed by the diffraction intensity
from the entire crystallite, becoming negligible as shown in
Fig. 7, in which the average size of crystallite is 15 layers.
The special treatment was implemented in NEWMOD©
architecture to account for the discrepancy observed be-
tween experimental and calculated XRD profiles, but the

discrepancies may not be entirely due to various configura-
tions of interlayer material bonding to the crystallite sur-
face. The calculation of atomic scattering factor can also
change the calculated XRD profiles to some extent, poten-
tially contributing differences when compared with the ex-
perimental XRD profiles. The scattering factor for a given
element is calculated in ClayStrat and NEWMOD+ using

Fig. 5 Various possible configurations of interlayer H2O molecules in a two-layer smectite crystallite

Fig. 6XRDprofiles of interstratified illite/illite (0.5/0.5 in abundance) generated byNEWMOD+ in red andClayStrat in blue (interlayer K+ = 0.8,
minN = 3, and maxN = 14). The profile at the bottom is the difference curve between the two XRD profiles
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Fig. 7XRDprofiles of interstratified illite/illite (0.5/0.5 in abundance) generated byNEWMOD+ in red andClayStrat in blue (interlayer K+ = 0.8,
minN = 10, and maxN = 20). The profile at the bottom is the difference curve between the two XRD profiles

Fig. 8 XRD profiles of interstratified kaolinite/kaolinite generated by NEWMOD and ClayStrat using different methods of calculating atomic
scattering factors. The profile “Kaolinite (5 coefficients)” generated in ClayStrat (red curve) overlays perfectly on the profile “Kaolinite by
NEWMOD” (blue curve covered by the red curve). The profile “Kaolinite (9 coefficients)” generated in ClayStrat (black curve) exhibits some
discrepancies compared with the profile generated using 5 coefficients (red curve), as shown in the blue curve at the bottom of the plot
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the nine-parameter formulation of Cromer & Waber (1965),
comparable to but more accurate than the five-parameter
expression utilized in original NEWMOD© (Wright 1973).
The coefficients for calculating the atomic scattering factor
for all elements used in ClayStrat are taken from Interna-
tional Tables for X-ray Crystallography (1974). The XRD
profiles of an interstratified kaolinite/kaolinite calculated by
NEWMOD+ and ClayStrat using the five-parameter expres-
sion in the original NEWMOD© overlap each other perfect-
ly (Fig. 8), indicating that ClayStrat produces the same
XRD profiles as NEWMOD© when identical input data
and atomic scattering factors are used in the calculation.
The special treatment for interlayer material on the crystal-
lite surface used in the NEWMOD© architecture has no
effect on the calculation of XRD profiles of kaolinite, as
it has no interlayer species. However, the XRD profile
calculated by ClayStrat using the nine-parameter formula-
tion showed some discrepancies compared with the profile
generated by NEWMOD+ using the original five-parameter
expression.

CONCLUSIONS

A new program, ClayStrat, was developed to model
the 1D XRD profiles obtained from interstratified and
non-interstratified phyllosilicate systems along the Z
(layer stacking) direction. The modified matrix method-
ology in ClayStrat provides considerably improved cal-
culation efficiency, and the new program offers greater
user flexibility than the NEWMOD© architecture and
NEWMOD+. In general, the matrix methodology is more
efficient for calculating XRD profiles from interstratified
phyllosilicates than the NEWMOD© architecture. The
modified matrix methodology further improves calcula-
tion speeds by a factor of two to three by reducing the
number of matrix operations involved in the summation.
The size of matrices in the matrix methodology varies
with range of ordering, i.e. the Reichweite value, and
the calculation time is, therefore, a function of
Reichweite value and maximum crystallite size. Compar-
ison between ClayStrat and NEWMOD+ showed that
ClayStrat is significantly faster than NEWMOD+, with
computational efficiency gains of up to 13.5X, 6.7X, and
2.5X corresponding to the R1(R0), R2, and R3 cases,
respectively, for a maximum crystallite size of 100
layers.

ClayStrat has the capability to import crystal struc-
tures from a user’s external ASCII file in which other
structures can be defined, such as LDH and smectite
with CO2 residing in the interlayer region, greatly
enhancing the general applicability of the program.
The modified matrix methodology employed in
ClayStrat is practical for implementation in a global
search method for profile fitting, and computations can
be further accelerated by taking advantage of the par-
allel computing power offered by modern graphics
cards.
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APPENDIX A.1. FILE FORMAT OF CRYSTAL
STRUCTURES USED IN CLAYSTRAT

All crystal structures used in ClayStrat are defined in
an ASCII file (structure.txt). This file contains informa-
tion such as unit-cell parameters and atomic configura-
tions, and it also controls which parameters can be
adjusted in the ClayStrat graphical-user-interface (GUI)
and in profile fitting (ClayStrat+). An example of a
mineral structure file is provided below for better
illustration.

Line 1: The definition of crystal structure starts with ‘{’ and
ends with ‘}’.

Line 2: A line starting with the symbol ‘!’ is a comment line
that helps users understand the variables, such as lines 2, 4, 6,
and 15 shown below.

Line 3 defines the mineral ID and unit-cell parameters. The
mineral ID is unique across the file. The suffixes R, LB, UB
shown in comment lines (2, 4, 6, and 15) indicate the
refineability and lower and upper boundaries of the preceding
variable, respectively. For example, d_R, d_LB, and d_UB in
line 2, M_R, M_LB, and M_UB in line 6, etc. Avalue of 1 for
d_R indicates that the preceding variable, d-spacing, is
refinable, and users can adjust the value of d-spacing in the
ClayStrat GUI. The variable “d-spacing” will not be shown in
the ClayStrat GUI if d_R is set to 0.

Line 5: A line starting with ‘#’ indicates a subgroup of
atoms/molecules shown in the ClayStrat GUI, such as lines 5
and 14.

Line 6: SF_ID refers to the atomic/molecular scattering
entry defined in the ASCII file (ScatterF.txt) that contains the
nine coefficients of the atom/ion and molecular group for
calculating the scattering factor. Atom_pID refers to the
atomic/molecular property entry defined in the ASCII file
(atomp.txt) that contains physical properties of atoms such as
atomic weight. B-factor refers to the Debye-Waller thermal
factor. The value of the z-position can be a fixed number such
as 1.065 (line 10) or it can be a fraction of a unit-cell repeat
(e.g. 0.5D) defined in line 16.

Line 7: Mg@O refers to Mg in the octahedral sheet, and
Si@T indicates Si in the tetrahedral sheet.

Line 17: A line starting with the symbol ‘$’ defines an
occupancy constraint between two atoms, which is common
among cations in the octahedral sheet. For example, the total
cation occupancy in the octahedral sheet is often two per half-
cell formula unit in a dioctahedral clay mineral such as illite.
The number following ‘$’ is the atom_ID defined previously.
The expression in line 18 indicates that the total occupancy of
Fe@O and Al@O is equal to 1.7, given the fact that the
occupancy of Mg@O, the other cation in the octahedral sheet,
is fixed at 0.3.
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