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Abstract

Purpose Green gram (Vigna radiata) is an important food legume of the world. However, post-harvest losses due to pulse beetle,
Callosobruchus maculatus (F.), are significant due to improper storage management practices and undetected internal infesta-
tions. The detection of early stages of infestation could help in implementing suitable control practices for insect disinfestation.
This study determined the potential of detecting internal infestations caused by C. maculatus using the soft X-ray method and
deep learning. Furthermore, this study aims to reduce the time and effort needed to prepare a huge amount of image data for this
highly data-driven process by using generative adversarial networks (GANS).

Methods A three-class classification method was implemented to identify the infestation stages, namely, uninfested kernel, larva
stage, and pupa stage. The approach was based on features extraction from the deepest pooling layer of a state-of-the-art
Convolutional Neural Network architecture—the Xception, and using support vector machine as the classifier. Moreover, a
GAN model was proposed to synthesize artificial X-ray images.

Results The overall Fl-score produced by the model was improved from 0.86 to 0.91 when the GAN-synthesized dataset
additionally supported the training data. Also, the classification accuracy for detecting the stage of internal infestation improved
by 5.5%.

Conclusion The experiment showed that X-ray imaging and deep learning—based automatic features extraction could identify
internal infestation in green gram grains. The results determine that augmentation using GANs can enhance the status of learning-
based grain quality assessment models with reduced manual effort.

Keywords Grain quality - X-ray imaging - Green gram - Convolutional neural network - Support vector machine

Nomenclature GAN  Generative adversarial network
ANN Arttificial neural network GG  Green gram
CNN  Convolutional neural network SVM  Support vector machine
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et al., 2010). The eggs are laid on the grain, the larvae enter
inside and consume the kernel, pupates inside, and the adult
comes out by creating a hole in the seed coat, resulting in
complete loss of the grain (Gbaye et al., 2011). Regular and
proper monitoring of stored grains will help in early detection
of internal infestation and ascertain the trend in the rate of
infestation. Numerous conventional methods, such as visual
inspection, insect traps, probe sampling, Berlese funnel, elec-
tronic nose, thermal imaging, and acoustic detection, have
been reported to be useful in the detection of insects in stored
grains (Banga et al., 2018; Kumar et al., 2017). However,
most of these methods are subjective, inefficient, time-con-
suming, and can fail to identify the presence of insects at the
early stage during storage and transportation. Early detection,
cost-effectiveness, and reliability are the major factors consid-
ered when adopting any detection method.

Among the aforementioned methods, it has been found that
soft X-rays can provide an automated detection system for
monitoring insect infestation. This method is capable of de-
tecting various stages of both internal and external grain feed-
ing insects infesting the food products in a non-destructive
way quickly (Neethirajan et al., 2007). There are several areas
where the application of soft X-ray for assessing the grain
quality is likely to be expanded to meet the needs of grain
storage researchers and storage authority regulators. The soft
X-ray was adopted in numerous studies to detect several
stored-product insects with identification accuracies of 84—
98% (Karunakaran et al., 2003; Karunakaran et al., 2004a;
Narvankar et al., 2009). Detection of C. maculatus infestation
by soft X-ray imaging and hyperspectral imaging has been
attempted in soybean, with limited success (Chelladurai
etal., 2014). However, more than 95% accuracy was achieved
while detecting the infestation by Sitophilus oryzae (L.) in
wheat kernels infested by larval stages and more than 99%
for pupa- and adult-infested wheat grains (Karunakaran et al.,
2003). The classification accuracy of a soft X-ray method to
detect the internal infestation of Rhyzopertha dominica (F.)
and external feeder, Tribolium castaneum (Herbst) larva, in
wheat was reported as 98% and 86%, respectively
(Karunakaran et al., 2004a; Karunakaran et al., 2004b). The
approach was also used to detect Sitophilus granarius (L.)
eggs and internal infestation in wheat grains (Fornal et al.,
2007). The stage of infestation was roughly estimated using
conventional image processing and segmentation techniques.
Similarly, Nawrocka et al. (2010) developed a two-stage al-
gorithm for the X-ray image analysis to estimate the mass loss
caused by granary weevil in wheat. Al-Mezeini et al. (2016)
investigated the capability of X-ray imaging in detecting in-
festations caused by saw-toothed beetle (Oryzaephilus
surinamensis L.) in stored dates. As an improvement, they
extracted 44 features from the X-ray images and used linear
discriminant analysis (LDA) to discriminate infested dates
from un-infested dates. It was also reported that the soft X-

ray method has the ability to detect fungal infections in stored
wheat kernels (Narvankar et al., 2009).

On the other hand, deep learning and computer vision al-
gorithms have demonstrated their potential in many stages of
agricultural activity, which pave the way for effective and
non-destructive evaluation and handling of fruits, vegetables,
and food grains (Chen et al., 2002; Chlingaryan et al., 2018;
Cubero et al., 2011; Naik & Patel, 2017; Syal et al., 2013).
Detection and identification of insect infestations in stored
food grains is one such domain these algorithms have demon-
strated their usefulness (Junior & Rieder, 2020; Li et al., 2020;
Neethirajan et al., 2007; Shen et al., 2018). An artificial neural
network (ANN)-based classification model was proposed by
Boniecki et al. (2014) for detecting wheat kernel damages due
to granary weevil from digital X-ray images. Their three-layer
ANN model identified 98.4% of healthy kernels and 100% of
infested kernels correctly. However, the features required for
constructing this network had to be manually identified and
extracted. Similarly, manual feature extraction was adopted in
many other studies to investigate the ability of soft X-ray
imaging technique to identify internal infestation in grains.
For instance, Chelladurai et al. (2014) extracted 33 features
based on the texture and histogram of the soft X-ray images of
soybean. The use of deep learning—based image analysis
through convolutional neural networks (CNNs) presents a
quick way to automatically extract the features during the
prediction process while simultaneously being a non-
destructive method of monitoring infestations in stored grains.
Numerous deep learning models using CNNs have been de-
veloped for classification purposes in the agricultural domain
since, theoretically, they can cope with several challenges
such as inter-class similarities and large intra-class variations
in background, colour, illumination, and occlusion.
Henceforth, a CNN-based classification approach was used
in this study to classify the green gram grain X-ray images
according to the infestation stage.

The application of deep learning networks has improved
the authenticity of many machine vision tasks. However, itis a
highly data-driven process. Thus, one of the major challenges
for vision tasks is its demand for huge image data. Acquisition
of massive amounts of data, labelling, and annotating them is
a tedious and tiresome task, especially for agricultural appli-
cations (Dyrmann et al., 2016). To overcome these difficul-
ties, image data augmentation through geometric- and
intensity-based transformations have been adopted, where
the images can be cropped, rotated, scaled, blurred, noised,
or translated along axes. In recent years, another advancement
in the field of deep neural networks, the generative adversarial
networks (GANSs) (Goodfellow et al., 2014; Radford et al.,
2015; Wiatowski & Bolcskei, 2008), endorses data augmen-
tation and image enhancement. Through GAN models,
artificial-realistic images are generated with the help of
existing image data and combined with the original training
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set to guide the model. GANs have been previously used in
some agricultural applications, such as for creating artificial
images of specific plants (Giuffrida et al., 2017), weed iden-
tification (Espejo-Garcia et al., 2021), plant disease recogni-
tion (Arsenovic et al., 2019), and synthesizing images of plant
seedlings (Madsen et al., 2019). Giuffrida et al. (2017) pro-
posed a deep-convolutional GAN to synthesize artificial im-
ages of Arabidopsis plants with a specified number of leaf
count for augmentation purpose. The feasibility and benefits
of GAN-based image augmentation over traditional image
augmentation techniques for the task of multiple-disease iden-
tification were assessed by Arsenovic et al. (2019). In a study
on tomato disease detection, a deep learning model was used
in conjunction with GANs (Abbas et al., 2021) for generating
synthetic images of tomato plants to increase the amount of
image data. The model resulted in an accuracy of 97.1% and
concluded that augmentation through GANs increases
model’s generalizability and prevents it from over-fitting
problem. Nevertheless, the benefit of GAN-based image aug-
mentation approach over other augmentation approaches for
improving the performance of grain infestation detection
needs to be further evaluated prior to its application.

Therefore, the major objectives of this study were to (i)
determine the potential of soft X-ray imaging method to iden-
tify infestations caused by an internal grain feeder, the pulse
beetle, C. maculatus during its development in green gram
grain, and classification of different developmental stages;
(ii) design a two-stage methodology—combining GANs and
CNN-based feature extraction technique to improve the clas-
sification performance; and (iii) compare conventional image
data augmentation methods and GAN-based image data aug-
mentation for deep learning—based identification of internal
infestation in stored grains.

Materials and Method

In this study, a CNN-based model coupled with support
vector machine (SVM) (Schoélkopf et al., 2000) classifier
was designed to classify three infestation stages of green
gram caused by C. maculatus. After experimenting with
traditional image augmentation methods, the validity of
combining GAN-based image augmentation with CNN-
based feature extraction was assessed for the classification
purpose. A pre-defined CNN architecture called the
Xception (Chollet, 2017) was employed for the above
tasks. The activations (features) from a deep layer of
Xception network were derived to build a machine learn-
ing model based on SVM. The proposed method was
evaluated on a test dataset, different from the dataset used
for training the GAN and classification models. The
MATLAB (The MathWorks Inc., Natick, MA, USA) ap-
plication was run on Acer Nitro 5 Intel Core i5 9th
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Generation Laptop (32GB/1 TB HDD/Windows 10
Home/GTX 1650 Graphics).

Sample Preparation, Image Acquisition, and
Dataset

The sample preparation and image acquisition for this study
were based on the procedure followed by Chelladurai et al.
(2014). Green gram grains purchased from a local supermar-
ket in Winnipeg, Manitoba, was used for this study. Sound
kernels were separated from foreign materials, stones, and
other impurities manually using sieves. One kilogram of green
gram sample was divided into three groups and filled in glass
containers for acquiring images for three different datasets:
uninfested (sound), larval stage, and pupal stage. For getting
larvae- and pupae stage—infested samples, green gram grains
in the two glass containers were spread separately in a single
layer on a steel plate inside a gage box, which was specifically
designed for insects rearing at the Cereal Research Centre,
Agri & Agri-Food Canada, Winnipeg, and newly emerged
C. maculatus adult insects were introduced inside the gage
box for artificial rearing. After allowing 24 h for laying eggs
on the kernels, green gram kernels with a single egg were
collected and placed in two separate glass jars (for developing
larvae and pupal stage). These glass containers were properly
labelled and placed inside an environmental chamber
(CONVIRON, Controlled Environments Limited, Winnipeg,
MB, Canada) set at 30°C and 70% humidity. A soft X-ray
imaging system (Model: LX-85708, Manufacturer: Lixi Inc.,
Downers Grove, IL, USA) was used to acquire images of
uninfested and infested green gram kernels. The soft X-ray
imaging system was turned on 30 min prior to imaging for
warm-up and then samples were placed on a sample holder of
the radiation window. Preliminary data collection with the
uninfested green gram grains was performed to select the
best tube current and voltage for acquiring images of green
gram without any background noise. Based on the results
of this preliminary study, tube current and voltage potential
were set at 120 pA and 14.5 kV, respectively. For acquiring
images of larval and pupal stages, green gram kernels were
imaged after 15 days and 21 days from the egg stage, during
which the eggs would have grown into larvae and pupae,
respectively.

A total of 326 sound and insect-damaged green gram grains
were imaged to determine the feasibility of the soft X-ray meth-
od to identify infested kernels. The initial dataset consisted of
117 images of green gram grains without any infestation, 126
images with larval stage, and 83 images with the pupal stage of
infestation inside the grain. The three-class classification corre-
sponds to the infestation stages, namely, “Grain GG”
(uninfested) (GG refers to green gram kernel), “Larva GG”,
and “Pupa GG”. The images had 640 x 480 pixels and 96 dpi
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horizontal and vertical resolution. Sample X-ray images be-
longing to the three classes are shown in Fig. 1.

Pre-processing

All analyses in this study, including pre-processing of images,
were performed using MATLAB R2021b (The Mathworks
Inc., Natick, MA, USA) software. Since the Xception CNN
architecture accepts images with three channels as input, the
greyscale X-ray images were converted into three channel
images using the gray2rgb function (Fig. 2a). The grey level
of the background was not uniform throughout the image;
hence, it was difficult to separate out the kernel from the
background by adopting simple segmentation techniques.
Thus, to extract the kernel without losing significant informa-
tion, the following steps were executed: (i) a base image was
created using a green gram X-ray image by manually remov-
ing the kernel present in it (Fig. 2b), (ii) all the X-ray images
and the base image were converted into single-channel
greyscale images, (iii) imcomplement function was used to
derive the greyscale complements of all images (Fig. 2¢ and
d present the complement of actual green gram X-ray image
and the base image, respectively), (iv) the base image comple-
ment (i.e. Fig. 2d) was subtracted from the complement of
green gram X-ray images using imsubtract function (to
obtain the background eliminated image as shown in Fig.
2e), and finally, (v) the resulting images were again inverted
back (Fig. 2f). Now, the background-eliminated images were
enhanced (contrast increment) by saturating 1% top and

Fig. 1 Sample X-ray images from
the dataset (a) uninfested (sound)
kernel, (b) larval stage, and (c)
pupal stage

bottom of all pixel values in the image (Fig. 3). From each
class, 30 images were separated out for testing purpose.
Hence, the distribution of the training set was as follows: 87
images in Grain GG class, 96 images in Larva GG class, and
53 images in Pupa GG class.

Image Synthesis Through GAN

Typically, a huge image dataset is employed in vision tasks for
obtaining better results. Here, image augmentation through a
GAN was performed to increase the number of images for
training. In this section, the main goal was to develop a
GAN model that could learn how to generate synthetic X-
ray images of green gram grains infested by C. maculatus.
The resulting images were combined with the original images
to train the Xception (Chollet, 2017) model for extracting the
features. A GAN consists of a generator for producing new
images, and a discriminator that differentiates the fake images
synthesized by the generator from the real ones (Goodfellow
et al., 2014; Radford et al., 2015). Both the components are
trained in an adversarial process where the generator tries to
deceive the discriminator through its artificial images, and the
discriminator tries to diagnose the generated images. The fea-
tures of the output image from the generator network are con-
ditioned by the features of real images used for training the
GAN model.

The generator was designed to take a random valued vector
z and transform it to a sound/infested green gram pseudo-X-
ray image G(z) of size 256x256x%3 through a set of transposed
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Fig. 2 X-ray image of infested
green gram: (a) actual, (b) base
image, (¢) greyscale complement
of the actual image, (d) base
image complement, (e) image
obtained after background
removal, and (f) final image

(@)

()

convolutional (t-Conv) layers. A vector of size 1x1x100 was
fed into the first layer and upscaled to a matrix of size
28x28x512 using a fully connected operation. Furthermore,
this array passed through a set of four t-Conv layers, which
used 5x5 filters and 2x2 strides to perform transposed convo-
lutions. For the last t-Conv layer, three 5x5 filters were spec-
ified, which corresponded to three channels of the generated
RGB image (Fig. 4).

The discriminator network intakes the fake images G(z)
synthesized by the generator and the real images x, and returns
a prediction score (whether the image is recognized as real or
fake) using a series of strided convolutions for down-sampling
(Fig. 5a). The convolutional layers used 5x5 filters with 2x2
strides. The number of filters layer-wise is shown in Fig. 5a,
which results in a 1x1x1 numerical prediction score at the
discriminator’s output. The generator’s goal was to produce
artificial images G(z) very similar to x, whereas the discrimina-
tor optimized its weights to classify the real and fake images
correctly. Other architectural implementations made in the dis-
criminator were the use of leaky ReL.U (identity function when
the input is positive; however, it has a small slope for negative

Fig. 3 (a) Image after
background removal; (b)
enhanced image

(a)
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values instead of a flat slope) activation layers (with a slope of
0.2) and dropout layers (dropout rate of 0.3) after each
convolutional layer to avoid the potential problem of
overfitting. Furthermore, the weights were Gaussian weight
initialised, and hyperbolic tangent function was enforced in
the final output layers of generator and discriminator networks.

The loss function scores of the generator and discriminator
would reach an equilibrium after training some iterations,
meaning that the generator has learnt the features of real im-
ages to its maximum ability. Once this equilibrium is reached,
the generator can be expected to convert the random vectors
into conceivable images. Equation (1) shows the objective
function of the GAN model.

min max

G =arg G D[Edog(D(x)) + Elog(1-D(G(2)))] (1)

where (D(x)) denotes the output from discriminator for real data
x, and (1 — D(G(z))) denotes the discriminator output for gener-
ated synthetic data G(z). The discriminator tries to maximize this
function against the generator that tries to minimize it (Fig. 5b).

(b)
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Fig. 4 Network architecture of

GAN-generator model Noise
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The adversarial training process was carried out for 500
epochs for each class (the network was trained thrice separately
(for Grain GG, Larva GG, and Pupa GG) on the real images to
synthesize images of the corresponding class) through the
Adam optimisation algorithm (Kingma & Ba, 2017), with a
mini-batch size of 16, learn rate of 0.0005, and a gradient decay
factor of 0.5. The t-distributed stochastic neighbour embedding
(t-SNE) visualization (van der Maaten & Hinton, 2008) was
adopted to check the fidelity of the generated images. The
distribution of data points of generated and original images in
a t-SNE plot gives an insight into the reliability of the achieved
data. The details and the intuition behind these plots have been
reported in van der Maaten and Hinton (2008).

Classification Through Feature Extraction
Deep Learning Architecture

In this study, a popular CNN architecture—Xception (Chollet,
2017)—was adopted, which achieved the third-best perfor-
mance on the ImageNet dataset (Deng et al., 2009). The model
is based on depth-wise separable convolutions, where two
simultaneous processes are involved: spatial and point-wise
convolutions. The spatial convolution is performed indepen-
dently on each input channel from the previous layer’s output.
Furthermore, the point-wise convolutions use 1x1 kernels to
convolve point by point (pixel by pixel). This drastically re-
duces the number of parameters and calculations, thus increas-
ing the computational performance. The model consisted of
14 residual blocks, which included 3 convolutional layers and

33 depth-wise convolutions (Fig. 6). The separable convolu-
tions were placed throughout the architecture.

The convolutional layers of the CNN contain a set of filters
with weights associated with them, bringing forth the features
of input to the successive layers (Szegedy et al., 2015). In
feature extraction, the activations from the deep layers of a
CNN model are derived to fit a machine learning model with
an adopted classifier. Feature extraction (Wiatowski &
Boleskei, 2008) also helps in reducing the computational
complexity since relative importance can be given to the most
useful variables, alongside being memory efficient compared
to transfer learning techniques. In this study, features were
extracted from the global pooling layer of Xception network
after training the model from scratch with the green gram X-
ray dataset, giving rise to a vector of 2048 features. A machine
learning model based on the SVM classifier was employed as
a substitution to the fully connected and classification layers in
the Xception model to perform the classification task, with
these features as the predictor variables.

Support Vector Machine Classification

The final classification output layer in the original Xception
network is based on a logistic regression classifier. However,
studies have preferred other non-linear kernel-based classi-
fiers like SVM over a simple logistic regression and have
demonstrated its advantages over others, including better re-
sults (Habib et al., 2019; Hlaing & Zaw, 2017; Padol &
Sawant, 2016). SVM, a kernel-based algorithm applied for
both classification and regression tasks, shows better perfor-
mance when the data is not regularly distributed, and in cases
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Fig. 5 (a) Network architecture
of GAN-discriminator model; (b)
image synthesis flowchart (the
prediction score in turn is used to
update the weights of the
network)

Image
(256x256x%3)

s —— Batch normalization layer

Dropout layer

2D convolution
(64 filters)

2D convolution
(128 filters)

2D convolution
(256 filters)

2D convolution
(512 filters)

2D convolution
(1024 filters)

2D convolution
(1024 filters)

Score
(A1x1x1)

2D convolution
(1 filter)

———» Leaky ReLU layer

Real Images

o IR

when the number of training samples is less than the number
of features (Habib et al., 2019). Furthermore, SVMs are
known for their memory efficiency, faster prediction (less ex-
ecution time), and better computation complexity (Huang
et al., 2006; Scholkopf et al., 2000; Vapnik, 1995).
Classification is executed by finding a hyperplane that differ-
entiates the classes very well. Suppose x represents the feature
space of n dimensions, the separating plane H can be repre-
sented as in Eq. (2):

@ Springer
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Prediction Score
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(b)
H (W) () +5=0 (2)

where b is the intercept/bias term of the plane.

Given a set of data points in the space, the ultimate goal of
the algorithm is to maximize the minimum distance between
the separating hyper-plane and a point (Eq. (3)) (support vec-
tor of the point at a minimum distance from the plane).

w' = arg"®, [minydp ((x))] (3)
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Fig. 6 Illustration of the convolutional and depth-wise separable convolutional layers present in the Xception architecture

where d(¢(x,)) denotes the distance between the plane and
data point. The features were transformed using the Radial
(Gaussian) basis function (RBF) in this work. Transforming
the data using a kernel function maps data to a higher dimen-
sion, expecting that the resulting points are easier to separate
into classes. Kernels make the SVM more flexible to handle
non-linear problems. The RBF kernel computes the element
(7, ) of Gram matrix G given by Eq. (4),

G(xi,x;) = exp(—|xi—xj|2) 4)

where x; and x; are the ith and jth observations of the training
set, respectively.

Training Options and Evaluation Metrics

All the images were resized to 299x299x3 pixels to fit the
input size of Xception. The images were resized using the
bicubic interpolation method, i.e. the output pixel values were
the weighted mean of the 4x4 neighbourhood pixels. A two-
fold evaluation was performed based on the training image
dataset—one with the real/original green gram X-ray images,
and then with combined real and artificial images.
Conventional augmentation approaches based on image ge-
ometry and intensity, such as random rotations (+90 to —90),

translation along x- and y-axes, x- and y-axes mirroring, and
brightness variations with scales 0f 0.8, 0.9, 1.1, and 1.2 were
specified during the training process for both the cases to
check the competence of synthetic dataset. Regarding training
options for the CNN, the chosen optimizer was stochastic
gradient descent with momentum, with the following
hyperparameters—initial learn rate set to 0.001, momentum
0f 0.9, and a weight decay factor of 0.0001. A mini-batch size
of 16 was set, and the maximum number of epochs was lim-
ited to 200. The two-stage methodology proposed for combin-
ing GAN and feature extraction technique is depicted in Fig.
7. The performance of the models was statistically analyzed
through metrics such as classification accuracy, Cohen’s
Kappa coefficient (Pérez et al., 2020), precision, recall, and
F1 scores (Egs. (5-8); where, TP, TN, FP, FN represent true
positives, true negatives, false positives, and false negatives,
respectively).
True Positives

P . . — 5
recision = of predicted samples (5)

Recall — True Positives (6)
Actual number of samples

Fl ) Precision x Recall 7)
—score —
seore Precision + Recall
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Fig. 7 General workflow of artificial image generation through GAN and classification of infestation stages in green gram grains through feature
extraction from Xception network

Fig.8 (a) Synthetic X-ray images
of green gram kernels produced
by GAN (left: uninfested; middle:
larval stage; right: pupal stage);
(b) plot illustrating the generator
and discriminator scores during
training (4500 epochs)
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Fig.9 t-SNE visualization plots of real and synthetic images belonging to and Pupa GG represents the kernels infested at the larval and pupal stages,
the three classes. The features of the images were reduced to two respectively. The green and red points correspond to original and gener-
dimensions (left column) and three dimensions (right column) using the ated images, respectively

t-SNE algorithm. The Grain GG class represent sound kernels, Larva GG
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Fig. 10 Classification results (F'1-
score) with different number of
artificial images in the training
dataset
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Results and Discussion

Firstly, the artificial X-ray images generated by the GAN
model were examined through visual inspection and t-SNE
plots. Second, the model’s performance was evaluated for
grain infestation stage classification. Further, the validity of
artificially synthesized X-ray images of green gram grains was
assessed by comparing the classification performances with
and without data augmentation through GAN.

Visual Inspection and Assessment of Generated
Images

The fidelity of the generated images was assessed before eval-
uating the classification results. The GAN model was run

Table 1 Summary of image distribution for each class.

Dataset Grain GG Larva GG Pupa GG
Real/original images 117 126 83
Artificial images 125 125 125
Total 242 251 208
Training images 212 221 178
Testing images 30 30 30

@ Springer
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three times to generate artificial images for each class with
the real images of three classes separately. From the training
plot (Fig. 8), it can be observed that equilibrium was attained
between the discriminator and generator scores after nearly
1800 iterations. Henceforth, the generator should have learned
an appreciable number of visual features from real images and
reflected in the artificial images. The t-SNE method of visu-
alization was adopted for plotting the features of 50 real and
50 generated images belonging to the three classes separately
to get a fair insight into the visual impression created by arti-
ficial images (Fig. 9). Features of these images were obtained
from the final layer of the trained discriminator network. The
t-SNE algorithm plots the high-dimensional feature vectors of
the images into a low-dimensional (two and three dimensions
in this work) plot. A similar distribution of the points corre-
sponding to real and generated images demonstrated that de-
sired features were learned and reproduced by the GAN mod-
el. The generated images widen the feature coverage of classes
and preserve the key features of the real images. However,
unlike in the case of sound (uninfested) grain class, the distri-
bution was not homogenous in the plots for larval and pupal
stages. In these two classes, the points corresponding to GAN-
generated images were mostly concentrated in the centre of
the distribution of real images. This indicates that the greater
the number of real images available, the better plausible arti-
ficial images could be synthesized.

Classification of Grain Infestation Stage

The larvae consumption of green gram grain was noticeable as
a bright region in the germ and endoplasm area of the X-ray
images. A significant portion of the endoplasm and complete
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Table 2 Analysis of classification results of SVM classifier on deep features of Xception.
Class Precision Recall F1-score
GAN,-SVM GAN/,5-SVM GAN,-SVM GAN,5-SVM GAN,-SVM GAN;5-SVM
Grain GG 0.813 0.931 0.867 0.900 0.839 0.915
Larva GG 0.806 0.867 0.833 0.867 0.819 0.871
Pupa GG 0.963 0.935 0.867 0.967 0912 0.951
Overall 0.861 0911 0.856 0911 0.857 0.912

germ part was eaten up when the insect reached the pupal
stage. The grey value of a sound kernel was higher than that
of an infested kernel class, due to less grain density in the
infested portion. As a means of comparing the classification
performance with and without data augmentation through
GAN, two Xception models were trained with the same
hyperparameters, one with the original green gram X-ray im-
age dataset with conventional data augmentations, another
with the GAN-generated images in addition to the former.
The test dataset comprised only of original images—the
GAN-generated images were only used to support the training
set. The number of synthetic images used to support the train-
ing process was increased from 50 to 200, in increments of 25
images. For each case, the features from the global pooling
layer of the trained network were used to fit an SVM model.
The feature vector obtained from this layer had a dimension of
2048, hence, offering a wide range of features for learning.
Dimensionality reduction using principal component analysis
(PCA) was not incorporated because, to make the classifica-
tion robust, PCA features must be modified frequently based

Confusion Matrix

26 4 2
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4 25 2
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& & &
& S ¥
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on the changes in data distribution. Also, during inference (in
real-time), each data point must be passed through an extra
computation step. The classification F1-scores on the test
dataset are presented as Fig. 10, showing that the addition of
GAN-generated images in the training set improved the
model’s performance. After training with only the initial orig-
inal dataset with conventional image augmentations, it was
found that the model exhibited an overall F1-score of around
0.857. After adding GAN-synthesized images, the average
F1-score improved significantly and reached a maximum val-
ue of 0.912, corresponding to the addition of 125 artificial
images to each class. However, as more synthetic images were
added, there was no further improvement in the performance.
The F1-score started to decrease when the number of artificial
images in the training set was more than 125.

The class-wise image distribution used by the best model
(GAN,5-SVM, subscript number denoting the number of
GAN-generated images) for training and testing purposes
(the test data contains only independent real images) is sum-
marized in Table 1. The detailed classification result of this

Confusion Matrix
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Fig. 11 Classification confusion matrices produced by the model when trained (a) without GAN synthesized dataset, (b) using both real and GAN-

synthesized datasets
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model during testing is compared with the original model
(GAN(-SVM) in Table 2, in terms of mean precision, mean
recall, and average F1-scores for five independent runs. Once
the model was trained with images augmented through the
adversarial network, the accuracy improved to 91.1% from
the previously attained 85.6% on the test data (Fig. 11).
Moreover, the Kappa coefficient (which is a measure of how
the classification results compare to the values/classes
assigned by chance) was noted to have been increased from
0.78 to 0.87. Figure 11 presents the confusion matrices of the
model trained using only the original images (GAN,-SVM)
and with both original and artificial images (GAN,5-SVM).
The precision and recall rates for the classes except Larva GG
were > 0.9. The most misprediction was observed for sound
kernels that were wrongly detected as infested by the larval
stage. With the addition of artificial images, the recall rate of
classifying kernels infested in the pupal stage improved from
0.867 to 0.967. Overall, it is evident from the results that
synthetic images have contributed to the increase in the per-
formance of the SVM-based classification model for the iden-
tification of infested green gram grains. Moreover, Table S1 in
Online Resource 1 provides the classification results when the
classification layer of the Xception network was used to iden-
tify the infestation stage instead of following the feature ex-
traction approach. Comparing this result with that of Table 2,
it can be observed that using SVM classifier on the interme-
diate features accord slightly better results.

The activation maps derived from the intermediate layers
of the Xception model are illustrated in Fig. 12. It can be
noticed that the model learns finer details present in the images
as it passes through deeper layers. The activations in the initial
layers just present the outlines of the shapes and edges, where-
as, as we go to deeper layers, the feature maps seem to be more

abstract and gradually fade, meaning that the infested portions
of the grain get more attention.

Identification of C. Maculatus in stored grains through
acoustic sensors was studied by Banga et al. (2019) and
Bittner et al. (2018). Though acoustic sensing provides a
non-destructive approach for detecting the presence of insects
and identifying its developmental stage, it is time-consuming,
needs appropriate environment to effectively capture the
sound, and demands decisive signal processing techniques.
Also, most of the commonly used conventional methods of
insect detection such as probe sampling and trap method
(Mohan & Rajesh, 2016) and Berlese funnel (Minkevich
et al., 2002) take much time (48 h) to produce the result,
and there is no possibility of individual grain-level monitor-
ing. This study demonstrated the potential of soft X-ray meth-
od to detect infestation caused by C. maculatus in green gram
grains. The results have shown that internal infestations in
green gram can be identified non-destructively with an appre-
ciable accuracy by applying a conventional classifier, which
was SVM in this study, on the intermediate features of a CNN.
The Xception CNN architecture obtained a performance accu-
racy of 91.1% on the independent test data. The method
proves to be less tedious than developing a grain infestation
model through manual features extraction (Boniecki et al.,
2014; Chelladurai et al., 2014; Karunakaran et al., 2004a).

Furthermore, it can be concluded that data augmentation
through GANS, apart from conventional methods, proves to
be efficient in training classification models with reduced la-
bour effort. Artificial images with good quality were synthe-
sized, and visual inspection and t-SNE plot showed that
enough features were learned and reproduced by the model
to support the training of the classification model. The im-
provement in the performance of the SVM-based

Fig. 12 Input image and
activation maps derived from the
first, third, fifth, and seventh
depth-wise convolution blocks
(from left to right) of the Xception
model

— —-t !“7' ‘ — r !
DEEPER LAYERS

Input image

@ Springer



Journal of Biosystems Engineering (2022) 47:302-317

315

classification model by using the artificial X-ray images of
green gram demonstrated that the study’s objectives were
achieved. The greatest advantage of such augmentation is that
the model trained with this data can generalize much better,
especially on shape- and texture-based features. This study
has supported well that GANs could be a useful tool in
assessing grain quality through machine vision technology.
In the future, work could be carried out to validate the best
architecture for the generator and discriminator of GAN,
which could generate more favourable images that could plau-
sibly improve the performance.

In this study, we have hypothesized initially that X-ray
imaging can be used to detect the internal infestation in green
gram, since many previous studies have made use of this
technology for monitoring infestations in other food grains
and achieved good results. The key improvement is the use
of deep learning—based image analysis, which does not in-
volve complex and time-consuming manual feature extraction
tasks and conventional image processing. This study revealed
that the achieved performance is promising, and could be fur-
ther improved, considering the potential of various deep learn-
ing architectures. The arguments that motivated the adoption
of Xception architecture for features extraction were its net-
work size, memory efficiency, and convolution parameters
such as the kernel size and strides (Chollet, 2017). For in-
stance, although CNN architectures such as AlexNet and
GoogleNet perform better than Xception on the ImageNet
dataset, they must not be preferred for feature extraction be-
cause they use large filter sizes and strides that are not ideal for
detecting fine-grain features. In future, more analysis can be
performed to reduce the complexity of the CNN architecture
further and assess the performances of other conventional
classifiers. Furthermore, the level of infestation estimated by
this method can give an estimation of the potential contami-
nation in green gram kernels when fumigated. Also, during
the experiment, green gram kernels were placed manually on
the sample platform to take X-ray images; therefore, further
testing is required for insect infestation detection using X-ray
method with a single layer of grain samples on a line-scan X-
ray system.

Conclusion

In this study, a deep learning—based vision system for identi-
fying internal infestation of C. maculatus in green gram grains
through X-ray imaging was evaluated. The features were ex-
tracted from the pooling layer of a Xception model, and an
SVM classifier was trained for the classification task to iden-
tify the correct stage of infestation. Moreover, a GAN-based
image data augmentation technique was presented to support
the identification of infested grains of green gram under a
limited dataset. The amount of training data for each class

was increased by using synthetic images synthesized by the
GAN model. The generated images were manually inspected,
and the t-SNE method was adopted to check their fidelity. The
plot showed that the feature distributions of real and fake
images resemble each other. Furthermore, the generated im-
ages and the original dataset were combined to train a classi-
fication model under the same methodology, i.e. through
CNN-based feature extraction method, and with SVM as clas-
sifier. With the help of generated images, the accuracy and F'1-
scores of the model improved from 85.6% and 0.86 to 91.1%
and 0.91, respectively. The study demonstrated that classifi-
cation models could yield an improved performance with the
help of GAN-based augmentation as compared to traditional
augmentation methods.
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