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Abstract
Lung nodule detection is clinically crucial but challenging and time-consuming. The development of automated segmentation 
approaches could be helpful. To assess the capability of deep learning methods for lung diagnosis, this paper compares recent 
deep learning models and evaluates their performance. We implemented several preprocessing steps, including windowing, 
thresholding, and resizing, to improve the image quality, adjust the image dimension suitable for the network, and focus on 
specific areas of interest within an image. The evaluation was conducted on the Lung Image Database Consortium (LIDC) 
dataset using Dice similarity coefficient (DSC) and Hausdorff distance (HD) metrics with model complexity parameters for 
a multifaceted comparison of the models. The experiments showed that the highest accuracy among the five chosen models 
(97.80% DSC and 1.29 HD) was reached by the Connected-UNets model, which also has the highest computational com-
plexity. In this paper, we quantitatively evaluated and compared 5 deep learning models namely Salient Attention UNet, 
Connected-UNets, DDANet, UTNet, and EdgeNeXt. The evidence-based overview of current deep learning achievements 
for the clinical community investigated in this study can be useful to the research community in developing a new model 
and, thus, designing computer-aided detection and diagnosis (CAD) systems.
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1  Introduction

Respiratory diseases such as lung cancer, tuberculosis, bron-
chitis, emphysema, pneumonia, and cystic fibrosis are still 
emerging, prevalent, and life-threatening [1]. One of the 
most recent detrimental diseases is the well-known COVID-
19, which is caused by the SARS-CoV-2 virus [2]. As the 
symptoms of COVID-19 are similar to pneumonia, this dis-
ease is often misdiagnosed. Early diagnosis is essential for 

the prevention of COVID-19 spreading as well as for effec-
tive treatment [3]. In addition to COVID-19, according to 
World Health Organization (WHO) statistics for 2020, 10 
million deaths from various cancer types were reported, and 
1.8 million are associated with lung cancer worldwide [4].

One of the ways to reduce lung cancer mortality is by 
using low-dose computed tomographic screening, which 
can be an effective life-saving tool if the screening results 
are correctly interpreted and analyzed [5]. However, manual 
analysis of medical images is laborious, operator-depend-
ent, and subjective, which can often lead to misdiagnosis 
as pathological information can be misinterpreted or even 
neglected. Like many other diseases, detecting and interpret-
ing lung nodules is challenging. First of all, lung nodules 
are often patient specific and heterogeneous, which is not 
ideal for their identification [6]. Secondly, lung nodules are 
geometrically diverse, with various sizes. Finally, there is a 
complication in distinguishing nodules from the surrounding 
normal tissues, as they are often visually similar [7].

Recent advances in deep learning methods and their 
application in medical image analysis have shown promising 
potential in computer-aided detection and diagnosis, referred 
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to as CAD. The capability of the deep learning based CAD 
techniques has almost reached the level of experienced radi-
ologists [8]. CAD systems are generally divided into four 
stages: pre-processing, segmentation, feature extraction, and 
classification. Pre-processing is the stage of preparing data 
for a deep learning model where denoising and adjusting 
image contrast are performed [9]. In the segmentation stage, 
targeted objects such as organs, tissue, mass, and tumors 
are segmented. Features including size, location, texture, 
and patterns are then extracted from segmented lesions of 
interest. At the last classification stage, the selected features 

are analyzed, and a segmented area is assigned to one of the 
given groups. In the case of the lung cancer determination 
task, the target area is the tumor, the features are the char-
acteristics of the tumor, and the classification groups are 
benign or malignant [10].

This comparative study focuses on state-of-the-art deep 
learning-based lung nodule segmentation and annotation 
systems. The majority of earlier research was conducted on 
small datasets [11–14], which might not be a fair comparison 
given that deep learning-based techniques require a larger 
number of training images to achieve optimal performance. 
There was also a lack of validation by other groups because 
many of these studies were performed on private datasets 
[15–18]. Additionally, the primary focus of most papers lies 
in reliability metrics, such as overall accuracy, with little 
attention paid to the complexity of the model. However, con-
sidering the complexity of the model is vital as it provides 
valuable insights into the computational resources required 
and sheds light on the trade-offs between model intricacy 
and performance. Comparing the latest trends in the field 
gives a clearer landscape in the direction of current studies 
and the horizons of future research. Most of the recently pro-
posed models are based on transformer technology, which 
was originally presented in [19] (2017). Initially, the trans-
former was developed for application in the natural language 
processing (NLP) task [20]. Nowadays, transformers have 
a great deal of applications in computer vision. Similar to 
the transformers in NLP, the main component of the vision 
transformer is the self-attention layer, which captures long-
term dependencies and thus increases performance in mod-
eling global features [21].

Deep learning based medical image segmentation meth-
ods can be categorized in many ways, such as network 
architecture, training method, input data type, etc. [22]. 

Fig. 1   Sample images from LIDC dataset

Fig. 2   Architecture of the salient attention UNet
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Examples of network architecture kinds might be RNN 
[23], LSTM [24], CNN [25], ViT [26], etc. The most 
common of them were summarized in Table 1. The refer-
ences in this table are implementation examples of these 
architectures in medical image segmentation. In training 
methods, deep learning models are broadly divided into 
supervised learning [27], unsupervised learning [28], and 
reinforcement learning [29]. The first two of them are dis-
tinguished by input data size and labels (annotated data). 
Supervised learning generally uses a large amount of data 
and labels, whereas no annotated data is required in unsu-
pervised learning. Reinforcement learning is a special one 
whose learning is held by interactions between agent and 
environment. It is more focused on goal-directed learning 
than other types of machine learning.

We organized the rest of the paper to include the follow-
ing: (i) A review of the used dataset and methods in terms 
of key features (Sect. 2); (ii) A performance comparison 
of the methods that were presented in (i) (Sect. 3); and (iii) 
Discussion and conclusions (Sect. 4).

2 � Materials and Methods

2.1 � CT Database for Model Quantification

The LIDC-IDRI (Lung Image Database Consortium and 
Image Database Resource Initiative) is the largest pub-
licly available dataset with annotations of lung nodules. 
In Fig. 1, sample CT image slices from the dataset are 

presented. The vastness and accuracy of this dataset could 
allow us to produce a reliable benchmark for evaluating the 
performance of different segmentation models [48]. The 
dataset includes 1010 cases of helical thoracic CT images, 
annotated masks with lung nodules, and XML files with 
subjective characteristics of the nodules such as spicula-
tion, lobulation, subtlety, internal structure, shape (sphe-
ricity), margin, solidity, and likelihood of malignancy. 
Images and masks are provided as DICOM files, which 
means that there is not only pixel data but also metadata 
about device information, image acquisition parameters, 
and anonymized patient identification data [49].

Annotations were made by 12 expert radiologists in a 
two-phase process. The first phase was the blinded-read 
phase, where radiologists separately reviewed each CT 
slice and annotated target lesions, classifying them into 
one of three categories based on the nodule size: nodules 
with a size in the 3–30 mm range, nodules with a size less 
than 3 mm, and non-nodules with a size greater than or 
equal to 3 mm. The main focus of the database is nodules 
with sizes in the 3–30 mm range, as they are most likely 
to be malignant [50]. During the second phase, known as 
the unblinded-read phase, each radiologist conducted an 
independent review of their own annotations, in addition to 
examining the anonymized annotations made by the three 
other radiologists, in order to formulate a final opinion. 
The objective of this process was to detect, to the fullest 
extent possible, all lung nodules present in each CT scan 
without the necessity of enforcing unanimous consensus.

Fig. 3   The structure of the attention block
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2.2 � Deep Learning Models for Lung Nodule 
Segmentation

Recent advances in deep learning have substantially 
impacted the computer vision field [51]. This section will 
provide the major features, such as structure, functionality, 
and pros and cons, of deep learning models that were used 
in this comparison study. We have chosen five deep learn-
ing models for further comparison and evaluation based 
on the following criteria:

Firstly, all models consider local and global connections, 
which are crucial in the medical image segmentation field 

[52]. These connections are vital in the context of medical 
image segmentation because they allow the model to under-
stand both the fine details and the broader context of the 
image. Local connections focus on specific features and their 
relationships in proximity, while global connections provide 
a wider context, capturing overall structures and relation-
ships between different regions. This combined approach 
ensures that the model can effectively discern intricate 
details while maintaining a comprehensive understanding 
of the entire image.

Secondly, models have high generalization ability, which 
means that they can be used for a variety of medical image 

Fig. 4   Architecture of the connected-UNets

Fig. 5   Architecture of the DDANet
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tasks [53]. This attribute is crucial as it implies that the 
models can effectively adapt and perform well on various 
types of medical images, even those they have not specifi-
cally been trained on. This adaptability is especially valuable 
in the dynamic and diverse field of medical imaging, where 

a single model may be required to handle a wide array of 
image modalities, anatomical regions, or clinical scenarios.

Finally, the models have been developed and published 
over the past five years and show the latest trending tech-
nologies in the computer-aided detection and diagnosis 

Fig. 6   a residual block, b encoder block, c decoder block of the DDANet

Fig. 7   Architecture of the UTNet
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industry, which can be implemented as a base and improved 
in future model development.

2.2.1 � Salient Attention UNet

The Salient Attention UNet model is based on the UNet 
model and Salient Attention blocks [54]. The architecture 
of the model presented in Fig. 2. The U-shaped architecture 
in the UNet implies three main parts, which are the encoder, 
skip-connections, and decoder [55]. In the encoder part, 
learning of global contextual representations takes place 
with gradual downsampling layers of CNN. In the decoder 
section, deep features are extracted, and missing spatial 
information is restored through skip-connections. These 
features are then combined and upsampled to match the 
input resolution, enabling precise pixel/voxel-wise semantic 

prediction. In the Salient Attention UNet model, in order to 
improve attentional control of the network, attention blocks 
are incorporated with the encoder layers, which forces it to 
learn feature representations that focus attention on high-
priority target regions. Figure 3 presents the structure of 
the attention block. Input feature maps, denoted as F

n
 , are 

processed through two sequential blocks. The first block per-
forms max-pooling to generate P

n
 features, while the sec-

ond block utilizes a 1 × 1 convolutional layer to expand the 
channel dimension to 128. The saliency map, S, undergoes 
downsampling via max-pooling and upsampling through 
the convolutional layer to match the feature map’s channel 
dimension. Subsequently, the upsampled F

n
 and S are added 

to produce intermediate maps I
n
 . This result then passes 

through several convolutional layers followed by a sigmoid 
function to normalize it within the [0,1] range. Finally, the 
product of the attention map A and max-pooled feature map 
P
n
 yields the output of the attention block, denoted as O

n
.

In the case of tumor segmentation, the focus of the net-
work attention is a crucial part of accurate semantic predic-
tion. In the original paper, the model was evaluated on the 
breast ultrasound dataset collected from three hospitals.

The strength of the model is the utilization of prior 
knowledge about the organ and tumor, which resulted in the 
generation of salient attention image maps during training. 
However, it is important to note that the model comes with 
a quadratic computational cost.

2.2.2 � Connected‑UNets

The Connected-UNets model is based on two basic UNet 
models that are connected using skip-connection [56]. Fig-
ure 4 details the architecture of this model. Atrous Spatial 
Pyramid Pooling (ASPP) blocks play the role of bottleneck 
in the network [57]. ASPP extracts multi-scale contextual 
information and employs it to address the issue of losing 
resolution in the case of small sized tumors. There are a 
few variants on this architecture-e.g. Connected-UNets, 
Connected-AUNets, and Connected-ResUNets. The last 
two models are Connected-UNets application on Attention 

Fig. 8   a residual basic block of the UTNet, b transformer encoder 
block of the UTNet

Fig. 9   Architecture of the EdgeNeXt
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UNet [58] and Residual UNet [59], respectively. In their 
original paper for model evaluation, three mammography 
datasets were used, which are the Curated Breast Imaging 
Subset of Digital Database for Screening Mammography 
[60], INbreast [61], and a private dataset.

Connected-UNets variations are capable of small sized 
tumor predictions and over perform the standard architec-
tures like UNet, Attention UNet, and Residual UNet. The 
limitation of the model is using ASPP blocks, which easily 
discard local detail characteristics in large amounts [62].

2.2.3 � DDANet

The DDANet model is based on an encoder-decoder archi-
tecture with applied residual blocks and a squeeze and exci-
tation layer [63]. Architecture of the model presented in 
Fig. 5. Due to the fact that the training error tends to rise 
as neural networks become more complex and a particular 
layer’s activation tends to zero deeper in the network, the 
residual blocks were applied to form an identity function 

that addresses this problem. The squeeze and excitation 
layer plays a role as a channel-wise attention mechanism 
for addressing the problem of CNN, where every feature 

Fig. 10   a the convolutional encoder, b the SDTA encoder

Fig. 11   Images from LIDC dataset after windowing and masks (seg-
mented lung nodules)
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channel is equally important. The detailed structure of the 
residual block, encoder block, and decoder block is provided 
in a), b), and c) parts of Fig. 6, respectively.

There are two parallel decoders after the shared 
encoder. Each of the decoders give two outputs; the first 
output is a mask and the second output is a grayscale 
image. The second decoder generates an attention map, 
which helps improve the semantic representation of the 
feature maps [64]. Attention mechanisms applied in the 
network increase the performance of the model by captur-
ing essential local features, filtering irrelevant information, 
and improving long-range dependencies.

The model can be used for real-time prediction. How-
ever, the real-time predictions require increased computa-
tional resources due to the necessity for parallel processing 
of data, which can be considered a potential limitation of 
the model.

2.2.4 � UTNet

The UTNet model is based on Transformer technology com-
bined with CNN in a U-shape encoder-decoder architecture 
[65]. The architecture of the model is provided in Fig. 7. The 
hybrid architecture offers a beneficial impact on capturing 
local and global dependencies. The attention block of the 
transformer is efficient self-attention, which was proposed 
in the original paper. The key distinction between pair-wise 
attention and efficient self-attention lies in the latter’s ability 
to capture feature maps from all regions, including boundary 
regions. This is facilitated by employing distinct projections 
to transform a key and a value into the embedding space. 
The residual block and transformer encoder block are shown 
in a), b) parts of Fig. 8, respectively. The model was evalu-
ated on a cardiac MRI dataset that consisted of 150 anno-
tated images of segmented left ventricle (LV), right ventricle 
(RV), and left ventricular myocardium (MYO).

Due to efficient self-attention, the model has linear com-
putational complexity. Nevertheless, the model exhibits 
outcomes that suffer from either over-partitioning or under-
partitioning issues in cases of large amounts of small object 
detection.

2.2.5 � EdgeNeXt

The EdgeNeXt model was developed as a general purpose 
model with light weights that can be implemented on edge 
devices like cameras, sensors, embedded systems, and per-
sonal devices [66]. The EdgeNeXt has a hybrid architecture 
that combines CNN and transformer. Figure 9 presents the 
architecture of the model. The model uses split depth-wise 
transpose attention (STDA) as an encoder, which increases 
receptive field and encoded multi-scale features by apply-
ing depth-wise convolution along with self-attention across 
channel dimensions of multichannel groups from splitted 
input tensors. Figure 10 shows Convolutional encoder and 
SDTA encoder in the a) and b) parts, respectively. Previous 
models like ViT used multi-headed self-attention (MHA), 
which has a high computational cost. The EdgeNeXt model 
contains efficient multi-head self-attention (MSHA).

EdgeNeXt, known for its remarkable computational 
efficiency and versatility across tasks, particularly excels 
in real-time predictions owing to its lightweight architec-
ture. However, its original testing on non-medical images 
necessitates careful evaluation before applying it to medical 
imagery for an accurate prognosis.

2.3 � Data Preprocessing

Prior to feeding the dataset into the models, a data pre-
processing stage was conducted [67]. To enhance image 
quality and optimize input for the network, we applied a 
series of preprocessing steps such as windowing, thresh-
olding, and resizing. These preprocessing steps are fun-
damental in preparing medical images for analysis. Win-
dowing helps to highlight certain ranges of pixel values, 
enhancing the visibility of particular structures or pathol-
ogies. Thresholding aids in isolating regions of interest 
based on pixel intensity. Resizing ensures that the image 
is compatible with the input requirements of the network. 
This diligent preparation ultimately leads to more accu-
rate and meaningful analysis, benefiting medical profes-
sionals in their diagnostic and treatment decisions. Origi-
nal images are CT images in DICOM format with a size 

Table 2   Models implementation details

Model Dataset size Learning rate Batch size Optimizer Loss function

Salient attention UNet 510 images 0.0001 4 Adam optimizer dice loss
Connected-UNets After augmentation: 13,302 images 0.0001 16 Adam optimizer dice loss
DDANet 1000 images 0.0001 1 Adam optimizer binary cross-entropy and Dice loss
EdgeNeXt ImageNet: 1.28 M training and 

50 K validation images for 1000 
categories

0.006 4096 AdamW cross-entropy loss

UTNet 150 images 0.05 16 SGD optimizer dice loss and cross-entropy loss
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of 512*512 pixels. We scaled all images to the size of 
224*224 pixels for models, and then we windowed them 
to the pixel range [0,255]. After the windowing substage, 
thresholding was applied. Figure 11 displays images from 
the LIDC dataset post-windowing, alongside correspond-
ing masks highlighting segmented lung nodules.

With the exception of the Connected-UNets model, most 
models underwent only the resizing preprocessing step. 
In contrast to Connected-UNets, we opted for windowing 
instead of histogram equalization and Otsu’s thresholding 
instead of normalization within the [0, 1] range for the data-
set. While histogram equalization enhances global contrast, 
it may not preserve local contrast as effectively as window-
ing, which is specifically tailored for targeted enhancements. 
Moreover, windowing offers users the ability to manipulate 
the window center and width interactively, enabling adjust-
ments to optimize the visualization of specific structures.

In terms of pixel value scaling, Otsu’s thresholding oper-
ates based on intensity levels, while normalization to the 
range [0, 1] standardizes pixel values for easier comparison 

or image processing. Notably, Otsu’s thresholding is par-
ticularly well-suited for image segmentation, as it identifies 
an optimal threshold, effectively separating the image into 
distinct classes. This adaptive approach is advantageous in 
scenarios where automatic and accurate determination of 
the threshold is essential for reliable segmentation results.

2.4 � Evaluation Metrics

In order to quantitatively assess the segmented results from 
all five models of the experiment, we used the Dice similar-
ity coefficient (DSC) and Hausdorff distance (HD). The DSC 
metric is defined as follows:

where |X| and |Y| represent the number of elements in each 
set.

The main purpose of HD is to obtain all the locations in 
the image that match the model. This metric for A to B is 
defined as follows:

where A = {a1, a2, ..., an } and B = {b1, b2, ..., bn } are two 
point sets in used in E2.

(1)DSC =
2|X ∩ Y|

|X| + |Y|

(2)�
∼

H
(A,B) = max

a∈Aminb∈B||a − b||

Fig. 12   Loss and dice score through epochs of the models

Table 3   Models performance evaluation

# Reference Model name Avg DSC/perfor-
mance evaluation 
(%)

Avg HD, 
Hausdorff 
distance

1 [54] Salient Attention 
UNet

95.66 1.40

2 [56] Connected-UNets 97.80 1.29
3 [63] DDANet 78.33 1.60
4 [65] UTNet 93.66 1.60
5 [66] EdgeNeXt 93.33 1.90
6 [70] U-Net 72.50 1.62
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3 � Results

3.1 � Performance Comparison

The comparison of five models’ performance was presented 
in this section. The models were trained using a NVIDIA 
GeForce RTX 3090 GPU, and they were trained on 16 batch 
sizes on the PyTorch [68] and TensorFlow [46] frameworks. 
We modified the EdgeNeXt model, originally designed for 
multi-class classification, to suit our specific task by con-
verting it into a binary classification model. Binary cross 
entropy was used as a loss function for all models. For model 
optimization, the adaptive moment estimation optimizer 
(Adam) [69] was applied.

We changed two crucial hyperparameters, specifically the 
learning rate and batch size, from their original values in 

the model. The learning rate, which dictates the magnitude 
of steps taken during the optimization process, plays a sig-
nificant role in shaping the training dynamics of the model. 
The initial values for the learning rate and batch size of the 
models can be found in Table 2.

In our experimental setup, we adjusted the learning rate 
and batch size to 0.001 and 16, respectively. A larger learn-
ing rate is beneficial for navigating smooth and flat optimiza-
tion landscapes, helping the model escape flat regions and 
converge to the optimal solution more rapidly, particularly 
when dealing with large datasets. It’s worth noting that, 
when comparing dataset sizes across models (excluding 
EdgeNeXt, as outlined in Table 2), LIDC-IDRI stands out 
with a dataset containing 244, 527 images. In the case of 
EdgeNeXt, our study indicated that such high learning rates 
or batch sizes were not necessary.

In contrast to the Salient Attention UNet and DDANet, 
we employed larger batch sizes, offering more stable gradi-
ent estimates that could result in a smoother convergence. 
This approach reduces noise in updates, potentially enhanc-
ing the stability of the optimization process. On the other 
hand, when compared to EdgeNext, the utilization of a 
smaller batch size impacts the model by infrequent updates 
to the parameters during each iteration. This might result in 
a slower progression of the optimization process while also 
demanding less memory.

The evaluated models’ performance is listed in Table 2. 
The training was stopped after 10 epochs when the loss of 
the validation set did not improve. Figure 12 illustrates the 
progression of loss and DSC score across epochs for the 
models.

Table 3 includes the evaluated results on model complex-
ity. There are two different values that were used for model 

Fig. 13   The difference between the basic UNet and the connection of two basic UNets in connected-UNets a basic UNet decoder b modified 
skip-connection part of the connected-UNets

Table 4   Models complexity evaluation

# Model name Trainable parameters Depth of the model 
(number of layers)

1 Salient attention UNet 1.912.517 77
2 Connected-UNets 20.052.673 128
3 DDANet 6.835.638 398
4 UTNet 28.865 278
5 EdgeNeXt 1.158.049 192
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description-e.g. the number of trainable parameters and the 
model depth, which equal the number of layers.

4 � Discussion and Conclusions

In this paper, a comparative study is presented for lung 
nodule detection using computed tomography images. 
Preprocessing was carried out to obtain better perfor-
mance results by enhancing image quality, modifying the 
input size for the network, and fine-tuning specific areas 
of interest within the image. We used two metrics such as 
Dice similarity coefficient (DSC) and Hausdorff distance 
(HD) for model evaluation. Additionally, Table 3 provides 
the evaluated results on the model complexity, such as 
the number of trainable parameters and the model depth. 
Our experiments show that Connected-UNets reached the 
best results with 97.80% Dice score and HD equal to 1.29 
Table 2 due to connection between two UNets which con-
tributed in saving fine-grained features from the layers of 
the first decoder. The difference of using single UNet and 
Connected-UNets is detailed in Fig. 13.

However, Connected-UNets is the most complex model 
with the highest number of trainable parameters and layers 
(Table 3) over other models. Consequently, it has a high 
computational cost. Due to the presence of a large number 
of trainable parameters in the model, it can potentially 
lead to overfitting which occurs when a model acquires an 
excessively detailed understanding of the training data, 
capturing noise or random fluctuations rather than the 
underlying patterns.

The second best performance results reached by Salient 
Attention UNet. This is due to usage of Salient maps and 
attention blocks which highlighted the most visually impor-
tant regions in an image. The internal structure of the salient 
attention block is also important. The cascade of convolu-
tional layers Conv 3 × 3, Conv 3 × 3, and Conv 1 × 1 (Fig. 3) 
allowed for the capture of more complex patterns in a non-
linear way. The receptive field of such a sequence might be 
larger than the usage of individual convolution 7 × 7. Addi-
tionally, the application of salient maps addresses the lack 

of interpretability in deep learning models by highlighting 
regions of input data that are deemed most relevant for a 
given prediction.

The UTNet achieved the third best performance by adapt-
ing an efficient self-attention mechanism which is a light 
version of standard multi-head attention. Similarly, with 
Connected-UNets, UTNet also tried to save fine-grained 
details from decoder layers by applying a Transformer mech-
anism on top of the skip connections. However, compared 
with Connected-UNets, the UTNet cannot achieve the same 
results (Table 4).

Overall, this comparative study results revealed a dichot-
omy in the field of medical image processing. The summary 
of five models regarding their advantages and limitations 
evaluated in the study can be found in Table 5 in the Appen-
dix. On one hand, there are sophisticated, computationally 
expensive models, and on the other hand, there are lighter 
models that, unfortunately, do not exhibit significant accu-
racy. This underscores the imperative for continued research 
and development in medical image processing to strike a bal-
ance between computational efficiency and model accuracy. 
Further exploration and innovation are needed to bridge the 
existing gaps and advance the capabilities of models in this 
critical domain.

Appendix

See Table 5.
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Table 5   The conclusion on the results obtained from the comparative study

# Method Advantages Limitation

1 Salient attention UNet Learning ability of salient features across multiple levels of feature abstraction Middle computational complexity
2 Connected-UNets Recovering ability of the fine-graded features and consideration of both global 

and local features
High computational complexity

3 DDANet High generalization ability as well as high speed of segmentation High computational complexity
4 UTNet Ability of capturing long-range dependencies and linear computational complex-

ity
Middle level segmentation ability

5 EdgeNeXt A resource-efficient network with the ability to learn multi-scale features Low segmentation ability
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