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Abstract
This paper proposes a novel approach to designing a fault-tolerant H∞ sampled-data fuzzy filter using exponential time-varying 
gains. The utilization of exponential time-varying gains not only achieves a reduction in convergence time but also provides 
relaxation in the numerical optimization of design conditions. Also, through the use of a robust control technique, the designed 
filter is equipped with enhanced fault-tolerant capabilities. In addition, sufficient conditions for ensuring H∞-based state estima-
tion performance are derived as linear matrix inequalities (LMIs) based on the Lyapunov–Krasovskii functional (LKF). Finally, 
simulation results demonstrate the superior performance of the proposed method when compared to existing methodologies.

Keywords H∞Sampled-Data Fuzzy Filter · Fault-Tolerant Control · Exponential Time-Varying Gains · Linear Matrix 
Inequalities (LMIs) · Lyapunov–Krasovskii Functional (LKF) · State Estimation

1 Introduction

When implementing a state feedback controller, it is essen-
tial to measure all state variables, which increases the imple-
mentation cost due to expensive sensors. Thus, estimating 
state variables from some measurements has become an 
important issue [1–3]. Among many types of estimating 
methods, an H∞ filter has some interesting properties; it 
does not need statistical assumptions, and its noise signals 
only require arbitrary signals with boundary energy. Moreo-
ver, the H∞ filter is insensitive to the uncertainties regarding 
system dynamics. Hence, many researchers have studied the 
H∞ filter and applied it to various systems [4–6]. However, 
designing the filter for nonlinear systems is still challenging 
because of its complex dynamics.

The Takagi–Sugeno (T-S) fuzzy model approach is used 
to efficiently analyze nonlinear systems and has attracted 
great attention from researchers [7–9]. In the T-S fuzzy 

model approach, the nonlinear system is represented as the 
convex summation of multiple linear subsystems based on 
IF–THEN rules. This feature allows to application of exist-
ing linear control theories to nonlinear systems represented 
as a T-S fuzzy model [10–13]. In addition, a control system's 
stability is normally determined by solving linear matrix 
inequalities (LMIs), which are efficiently solved by contem-
porary numerical solvers. For these reasons, a variety of T-S 
fuzzy model-based controller and filter design methods are 
increasingly growing. In [14], the imperfect premise match-
ing problem of the decentralized H∞ fuzzy filter was studied. 
In [15], the robust H∞ filtering problem for the in-vehicle 
networked system was dealt with considering the quantiza-
tion and data dropouts.

Recently, a sampled-data system, which is a system han-
dling continuous- and discrete-time signals simultaneously, 
has been in the limelight as a promising research topic due 
to the rapid development of computer technology. Most of 
the researchers employed the input-delay approach [16–20] 
when designing sampled-data H∞ filter systems. In this 
approach, the stability of a sampled-data system is analyzed 
in the continuous-time domain, by converting the discretized 
measurements and state variables into the continuous-time 
time-delayed signals. Also, the input-delay approach can be 
applied to systems with variable sampling periods by using 
the time-dependent Lyapunov–Krasovskii functional (LKF).
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The issue of conservativeness in stability conditions for 
sampled-data systems remains unresolved. To relax the 
conservativeness, researchers have been focusing on devel-
oping a new LKF or introducing a novel matrix inequality 
condition. In [21], a sampled-data fuzzy observer design 
method was proposed for a nonlinear system with a non-
linear output equation, incorporating a two-sided LKF that 
fully considers available information about actual sampling 
patterns. In [22], a controller for a sampled-data system was 
designed using exponential time-varying gains, improving 
the maximum allowable sampling period than previous stud-
ies. Despite the advantages of utilizing the exponential time-
varying gains, to the best of the authors' knowledge, there is 
an absence of studies focusing on employing time-varying 
gains to the filter design problem.

Meanwhile, the unpredictable occurrence of faults in 
actuators or sensors presents a significant threat. Once 
they occur, it leads to performance degradation or even 
system instability. Consequently, addressing fault detec-
tion and making controllers and filters robust to fault has 
become crucial in enhancing system reliability. In [23], the 
fault detection problem was addressed through the design 
of an interval type-2 fuzzy semi-Markov mode-dependent 
filter. Additionally, in [24] and [25], actuator faults were 
modeled as uncertain time-varying matrices. Under this 
actuator fault model, a robust controller for a T-S fuzzy 
system was developed, contributing to increased system 
reliability.

Motivated by the preceding analysis, this paper introduces 
a fault-tolerant sampled-data fuzzy filter design method for 
a T-S fuzzy system. The main contributions can be sum-
marized as follows:

1) The proposed fault-tolerant H∞ sampled-data fuzzy filter 
design method incorporates an exponential time-varying 
gain concept, showcasing innovation and flexibility in 
filter design.

2) The utilization of exponential time-varying gains not 
only achieves a substantial reduction in convergence 
time but also relaxes design conditions, enlarging the 
efficiency and adaptability of the designed filter.

3) Through the integration of a robust control technique, 
the proposed filter is equipped with enhanced fault-tol-
erant capabilities, ensuring robust performance in the 
presence of sensor faults.

4) The derivation of the sufficient condition ensuring H∞ 
performance in terms of LMIs based on the LKF pro-
vides a systematic filter design framework.

Notations: For a symmetric matrix X , X ≻ 0 (resp. X ≺ 0 ) 
means that it is a positive (resp. negative) definite matrix. For 
any matrix X , He{X} = X + XT . For an invertible matrix X , 
X−T denotes the inverse of XT . For a square matrix X , �min(X) 
means the minimum eigenvalue of X . ℤ≥0 denotes a set of 
all integers greater than or equal to 0. For positive integers 
a and b , Ia×b is an identity matrix whose dimension is a × b.

2  Preliminaries

In this paper, the following T-S fuzzy system is considered:

where Ai ∈ ℝ
n×n , Bi ∈ ℝ

n×z , C1i ∈ ℝ
m1×n , and C2i ∈ ℝ

m2×n 
are system matrices; x(t) ∈ ℝ

n , �(t) ∈ �
z

2
 , and s(t) ∈ ℝ

m1 are 
the state vector, disturbance, and output vector to be esti-
mated, respectively; y(t) ∈ ℝ

m2 is the measurement output 
vector, which holds its value at the sampling time tk > 0 
for t ∈

[
tk, tk+1

]
 and k ∈ ℤ≥0 . z(t) is the premise variables, 

wi(z(t)) ∈ [0, 1] is the membership function which holds ∑r

i=1
wi(z(t)) = 1 . Also, the sampling period satisfies the 

following relationship:

where hk is the sampling period for k th sampling time, 
and h is the maximum allowable sampling period.

Now, we propose the following fuzzy filter composed of 
exponential time-varying gains to estimate the state vari-
ables of (1):

where x̂(t) ∈ ℝ
n and ŝ(t) ∈ ℝ

m1 are the state and output vec-
tors of the filter; Âi ∈ ℝ

n×n , Ĝij ∈ ℝ
n×n , B̂i ∈ ℝ

n×m2 , and 
Ĉi ∈ ℝ

m1×n are the filter gain matrices to be determined by 
the proposed design condition; 𝜂 ∈ ℝ>0 is a given positive 
scalar; yF(tk) ∈ ℝ

m2 is the output of the system with the 
unknown fault.

(1)

ẋ(t) =
r∑

i=1

wi(z(t))
�
Aix(t) + Bi𝜔(t)

�

s(t) =
r∑

i=1

wi(z(t))C1ix(t)

y(t) = y
�
tk
�
=

r∑
i=1

wi

�
z
�
tk
��
C2ix

�
tk
�
, t ∈ [tk, tk+1)

tk+1 − tk ∶= hk ≤ h,

(2)

�̇x(t) =
r∑

i=1

r∑
j=1

wi(z(t))wj

�
z
�
tk
���

�Ai�x(t)

+e−𝜂(t−tk)
�
�Gij�x

�
tk
�
+ �BiyF

�
tk
���

�s(t) =
r∑

i=1

wi(z(t))
�Ci�x(t)
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Assumption 1 All premise variables can be measured for 
all time.

Remark 1 The output vector y(t) is measurable only when 
t = tk . Also, some elements of the state vector x(t) are not 
measurable at all times. Thus, if we cannot exactly measure 
premise variables at time instances between tk and tk+1 , the 
system synthesis process becomes too complicated. To avoid 
this problem, we define Assumption 1.

Remark 2 The composition of the filter considered in this 
paper contains the exponential time-varying gain as shown 
in (2). It was studied in [22] and [26] that � is related to 
both the conservativeness of the stability condition and the 
convergence time of the state variables. Despite this fruit-
ful feature, there has been limited research on the design 
of a sampled-data fuzzy filter composed of the exponen-
tial time-varying gain. Hence, we think that the proposed 
method, concentrating on the design of a sampled-data filter 
with exponential time-varying gain, makes a considerable 
contribution.

Motivated on [24] and [25], we assume that the faulty 
output, yF(tk) , is represented as the product of the unknown 
time-varying matrix and the sampled output of the system:

where F
(
tk
)
∈ ℝ

m2×m2 is an unknown time-varying matrix 
representing unknown fault. Also, the fault matrix F

(
tk
)
 is 

assumed to be decomposed as follows:

where F1

(
tk
)
 and F2 hold FT

1

(
tk
)
F1

(
tk
) ≤ FT

2
F2 ≤ I ; fa and 

f
a
 are the known upper and lower bounds of the element in 

the fault matrix, respectively.
Before proceeding further, we introduce the following 

shorthand notations for any matrix Mi for simplicity:

Applying the above shorthand notation, we can obtain the 
following estimation error system from (1) and (2):

yF(tk) = F
(
tk
)
y
(
tk
)
,

(3)

F
(
tk
)
= diag

{
f1
(
tk
)
, f2

(
tk
)
,⋯ , fm

(
tk
)}

= F0

(
I + F1

(
tk
))
, fa

(
tk
)
∈
[
f
a
, f a

]
, a ∈ Im,

F0 = diag
{
f01, f02,⋯ , f0m

}
, f0a =

f
a
+f a

2
,

F1

(
tk
)
= diag

{
f11, f12,⋯ , f1m

}
, f1a =

fa(tk)−f0a
f0a

,

F2 = diag
{
f21, f22,⋯ , f2m

}
, f2a =

f a−f
a

f
a
+f a

,

M(t) ∶=
r∑

i=1

wi(z(t))Mi,M
�
tk
�
∶=

r∑
i=1

wi

�
z
�
tk
��
Mi,

M
�
t, tk

�
∶=

r∑
i=1

r∑
j=1

wi(z(t))wj

�
z
�
tk
��
Mij.

where x(t) = col
{
x(t), x(t) − x̂(t)

}
 ; e(t) = s(t) − ŝ(t)

By denoting the filter error �(t) ∶= e�tx(t) and the estima-
tion error e�(t) ∶= e�te(t) , (4) can be rewritten as follows:

where

Before closing this section, we introduce the following 
lemmas:

Lemma 1 [27] For a given matrix X ≻ 0, the following ine-
quality holds for all continuously differentiable function u(t) 
in [a, b] → ℝ

n:

where Σ = u(b) − u(a) and Υ = u(b) + u(a) −
2

b−a
∫ b

a
u(�)d�

Lemma 2 [28] The following statements are equivalent for 
any matrices Z1 , Z2, and Z3 with appropriate dimensions 
and �(t) ∈

(
�1, �2

]
:

1) Z1 +
(
𝜏2 − 𝜏(t)

)
Z2 +

(
𝜏(t) − 𝜏1

)
Z3 ≺ 0.

2) 
{

Z1 +
(
𝜏2 − 𝜏1

)
Z2 ≺ 0,

Z1 +
(
𝜏2 − 𝜏1

)
Z3 ≺ 0.

(4)
ẋ(t) = �A(t)x(t) + e−𝜂(t−tk)G

(
t, tk

)
x
(
tk
)
+ B(t)𝜔(t),

e(t) = C(t)x(t),

Ã(t) =

[
A(t) 0

A(t) − Â(t) Â(t)

]

G
(
t, tk

)
=

[
0 0

−Ĝ
(
t, tk

)
− B̂(t)F

(
tk
)
C2

(
tk
)
Ĝ
(
t, tk

)
]

B(t) =

[
B(t)

B(t)

]
;C(t) =

[
C1(t) − Ĉ(t) Ĉ(t)

]

B̂(t)F
(
tk
)
C2

(
tk
)
=

r∑
i=1

r∑
j=1

wi(z(t))wj

(
tk
)
B̂iF

(
tk
)
C2i

(5)
�̇�(t) = 𝜂e𝜂tx(t) + e𝜂t ẋ(t)

= A(t)𝜀(t) + G
(
t, tk

)
𝜀
(
tk
)
+ B(t)𝜔𝜂(t),

e𝜂(t) = C(t)𝜀(t)

A(t) = Ã(t) +

[
�I 0

0 �I

]
;��(t) = e�t�(t)

−�
b

a

u̇T (𝜏)Xu̇(𝜏)d𝜏 ≤ −
1

b − a

(
ΣTXΣ + 3ΥTXΥ

)
,
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3  Main results

In this section, the sufficient condition solving the follow-
ing problem is derived in terms of LMIs:

Problem 1 Find the filter gain matrices Âi , B̂i , Ĝij , Ĉi such 
that the following criteria hold for given scalars 𝜂 > 0 , 
� ∈ (−�, 0] , and h ≥ tk+1 − tk:

1) The equilibrium point of (4) is exponentially stable with 
decay rate of � + � when �(t) = 0.where tf ∈ ℝ>0 is the 
terminate time and γ is a given positive scalar.

2) The following H∞ criterion is satisfied under the zero 
initial condition.where tf ∈ ℝ>0 is the terminate time 
and γ is a given positive scalar.

The solution to the above problem is summarized in the 
following theorem:

Theorem 1 The estimation error system (4) satisfies the con-
ditions given in  Problem 1 if there exist positive definite 
matrices P1 ∈ ℝ

2n×2n , P3 ∈ ℝ
2n×2n , Q ∈ ℝ

2n×2n, full rank 
matrices P2 ∈ ℝ

2n×2n , M1 ∈ ℝ
n×n , M2 ∈ ℝ

n×n , U1 ∈ ℝ
2n×2n , 

U2 ∈ ℝ
2n×2n , Ri ∈ ℝ

n×n , Si ∈ ℝ
n×m2,

Ĉi ∈ ℝ
m1×n, Tij ∈ ℝ

n×n, Y1 ∈ ℝ
2n×(8n+z), and Y2 ∈ ℝ

2n×(8n+z) , 
and  such that the following LMIs hold for given scalars  
𝜇1 > 0𝜇2 > 0f

a
> 0f a > 0𝛾 > 0𝜎 > 0h > 0𝜂 > 0𝛼 ∈ (−𝜂, 0]:

(6)�
tf

0

e
T

�
(�)e�(�) d� ≤ �2�

tf

0

�T
�
(�)��(�) d�

(7)P =

[
P1 ∗

P2 P3

]
≻ 0

(8)

Π1ij =

⎡
⎢⎢⎢⎢⎣

Γ1ij + hΓ2 ∗ ∗ ∗

CiI
T
1�

0 FT
0
ST
i

�
ΩT�

C2j 0
�
IT
2

−I

0

0

∗

−
�
𝜎F2

�−1
I

0

∗

∗

−𝜎F−1
2
I

⎤
⎥⎥⎥⎥⎦
≺ 0

(9)Π2ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

Γ1ij + hΓ3 ∗ ∗ ∗ ∗ ∗

CiI
T
1

−I ∗ ∗ ∗ ∗�
0 FT

0
ST
i

�
ΩT�

C2j 0
�
IT
2

hY1
3hY2

0

0

0

0

−
�
𝜎F2

�−1
I ∗ ∗ ∗

0 −𝜎F−1
2
I ∗ ∗

0 0 −hQ ∗

0 0 0 −3hQ

⎤⎥⎥⎥⎥⎥⎥⎦

≺ 0

where

Then, the filter gain matrices are obtained by Âi = M−T
2

Ri , 
B̂i = M−T

2
Si , Ĝij = M−T

2
Tij.

Proof Consider the following LKF:

 where

With the conditions of P3 ≻ 0 and h ≥ t − tk , the time 
derivative of V1(t) can be obtained as follows:

Γ1ij = 2αI1P1I
T
1
−
[
I1 I2

]
U
[
I1 I2

]T
− γ2I5I

T
5

+He{I1P2I
T
1
+ I1P1I

T
3
−WT

1
Y1 − 3WT

2
Y2 + ΩΦ0ij};

Γ2 = 2α
[
I1 I2

]
U
[
I1 I2

]T
+ I3QI

T
3

+He{I3

(
U1+U

T
1

2

)
IT
1
+ I3

(
−U1 + U2

)
IT
2
};

Γ3 = 2αhI4P3I
T
4
+ He{I4

(
2αP2 + P3

)
IT
1
+ I4P2I

T
3
};

Φ0ij =

[
MT

1
Ai + �MT

1
0

MT
2
Ai − Ri Ri + �MT

2

]
IT
1

+

[
0 0

−Tij − SiF0C2j Tij

]
IT
2
−MTIT

3
+MTBiI

T
5
;

U =

[
U1+U

T
1

2
∗(

−U1 + U2

)T
−U2 − UT

2

U1+U
T
1

2

]
;

M =

[
M1 ∗

0 M2

]
;W1 =

(
I1 − I2

)T
;

W2 =
(
I1 + I2 − 2I4

)T
;Ω = I1 + �1I2 + �2I3;

Iq =
[
02n×(q−1)2n I2n×2n 02n×(4−q)2n 02n×z

]T
q ∈ I4, I5 =

[
0z×8n Iz×z

]T

V(t) = V1(t) + V2(t) + V3(t)

V1(t) = e2𝛼t
[

𝜀(t)

∫ t

tk
𝜀(𝜏)d𝜏

]T
P

[
𝜀(t)

∫ t

tk
𝜀(𝜏)d𝜏

]

V2(t) =
(
tk+1 − t

)
e2𝛼t

[
𝜀(t)

𝜀
(
tk
)
]T

U

[
𝜀(t)

𝜀
(
tk
)
]

V3(t) =
(
tk+1 − t

)∫ t

tk
e2𝛼𝜏 �̇�T (𝜏)Q�̇�(t)d𝜏.

(10)

V̇1(t) = e2𝛼t[2𝜀T (t)
(
𝛼P1 + PT

2

)
𝜀(t) + 2𝜀T (t)P1�̇�(t)

+
(
t − tk

)
{2
(

1

t−tk
∫ t

tk
𝜀(𝜏)d𝜏

)T

×(2𝛼P2 + P3)𝜀(t)

+2𝛼
(
t − tk

)(
1

t−tk
∫ t

tk
𝜀(𝜏)d𝜏

)T

P3

×
(

1

t−tk
∫ t

tk
𝜀(𝜏)d𝜏

)

+2
(

1

t−tk
∫ t

tk
𝜀(𝜏)d𝜏

)T

P2�̇�(t)}]

≤ e2𝛼tζT (t)[2𝛼I1P1I
T
1
+ He{I1P2I

T
1
+ I1P1I

T
3
}

+
(
t − tk

)
{2𝛼hI4P3I

T
4
+ He{I4

(
2𝛼P2 + P3

)
IT
1

+I4P2I
T
3
}}]𝜁(t),
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where

Next, the time derivative of V2(t) is given as follows:

The time derivative of V3(t) becomes:

Applying Lemma 1 to the first term in (12), we have:

where Δ(t) = ε(t) + ε
(
tk
)
−

2

t−tk
∫ t

tk
�(�)d� , and W1 and W2 are 

defined in Theorem 1.
Next, because of the positive definiteness of Q , the fol-

lowing inequalities always hold for any matrices Y1 and Y2 
and the integer set i ∈ {1, 2}:

Summing the above for all i ∈ {1, 2} , we obtain:

Applying the above result to (13), we can rewrite it as 
follows:

Given positive scalars μ1 and μ2 and full-rank matrices 
M1 and M2 whose dimension is 2n × 2n , we can derive the 
following null term from (5):

ζ(t) = col

{
ε(t), ε

(
tk
)
, ε̇(t),

1

t − tk ∫
t

tk

ε(τ) dτ,ωη(t)

}
.

(11)

V2(t) = e2�t�T (t)[−
[
I1 I2

]
U
[
I1 I2

]T
+
(
tk+1 − t

)
{2�

[
I1 I2

]
U
[
I1 I2

]T
+He{I3

(
U1+U

T
1

2

)
IT
1

+I3
(
−U1 + U2

)
IT
2
}}]�(t)

(12)

V̇3(t) = −∫ t

tk
e2𝛼𝜏 �̇�T (𝜏)Q�̇�(𝜏) d𝜏

+
(
tk+1 − t

)
e2𝛼t�̇�T (t)Q�̇�(t)

≤ −e2𝛼t∫ t

tk
�̇�T (𝜏)Q�̇�(𝜏)d𝜏

+
(
tk+1 − t

)
e2𝛼t�̇�T (t)Q�̇�(t)

(13)
V̇3(t) ≤ e2𝛼t𝜁T (t){−

1

t−tk
(W1QW

T
1
+ 3W2QW

T
2
)

+
(
tk+1 − t

)
I3QI

T
3
}𝜁(t),

1

t − tk
(WiQ −

(
t − tk

)
YT
i
)Q−1

(
WiQ −

(
t − tk

)
YT
i

)T
≻ 0.

−
1

t−tk

(
W1QW

T
1
+ 3W2QW

T
2

)
≺ −He

{
W1Y1 + 3W2Y2

}
+(t − tk)(Y

T
1
Q−1Y1 + 3YT

2
Q−1Y2)

(14)
V̇3(t) ≤ e2𝛼t𝜁T (t){−He

{
W1Y1 + 3W2Y2

}
+
(
t − tk

)(
YT
1
Q−1Y1 + 3YT

2
Q−1Y2

)
+
(
tk+1 − t

)
I3QI

T
3
}𝜁(t)

where M = diag{M1,M2} Ω = I1 + μ1I2 + μ2I3 . On the other 
hand, using (3) and (5), we can reformulate the fault matrix 
F
(
tk
)
 in (15) as follows:

where

In addition, the last term of (16) can be further reformu-
lated as follows:

Here, we applied the well-known matrix inequality 
XTY + YTX ≤ �XTX + �−1YTY  , where X  and Y  are any 
matrices and � is a scalar.

Now, summing (10), (11), (14), (15) with (16) and (17), 
the following inequality is obtained:

(15)

0 = 2e2𝛼t
{
M𝜀(t) + 𝜇1M𝜀

(
tk
)
+ 𝜇2M�̇�(t)
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(
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)
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+
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0 0

−Ĝ
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where

We know that V̇(t) + e2𝛼t
{
e
T

𝜂
(t)e𝜂(t) − 𝛾2𝜔T

𝜂
(t)𝜔𝜂(t)

}

≤ 0 if the following matrix inequality holds:

From Lemma 2, we know that (19) holds if the following 
two matrix inequalities are satisfied simultaneously:

Applying the Schur complement to (20) and (21), we can 
obtain LMIs (8) and (9), ensuring the following:

If we assume that ��(t) = 0 , then we obtain:

(18)

V̇(t) + e2𝛼t
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T
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T
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(19)
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(20)
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(21)

Γ1

(
t, tk

)
+ I1C

T
(t)C(t)IT

1

+𝜎ΩMT

[
0

�B(t)F0

]
F2

[
0

�B(t)F0

]T
MΩT

+𝜎−1I2
[
C2

(
tk
)
0
]T
F2

[
C2

(
tk
)
0
]
IT
2

+h
(
Γ3 + YT

1
Q−1Y1 + 3YT

2
Q−1Y2

)
≺ 0

(22)V̇(t) + e2𝛼t
{
e
T

𝜂
(t)e𝜂(t) − 𝛾2𝜔T

𝜂
(t)𝜔𝜂(t)

} ≤ 0.

Therefore, Lemma 1 in [29] validates that:

where � is a positive scalar that satisfies Lemma 1 in [29]. 
Consequently, we can get the following inequality:

Which implies that:

Thus, we can say that the first condition of Problem 1 is 
achieved.

Next, by integrating (22) for t ∈
[
0, tf

]
 , we have:

Therefore, letting � = 0 , it is easy to prove that the second 
condition of Problem 1 is also satisfied because V(t) ≥ 0.

Summarizing the above, we can conclude that if there 
exists a solution to LMIs given in (7)-(9), the designed sam-
pled-data fuzzy filter meets the conditions given in Prob-
lem 1. This concludes the proof.

Remark 3 In this paper, we let the unknown time-varying 
matrix F

(
tk
)
 represent the sensor fault. When included in 

its current form within the stabilization condition, existing 
numerical solvers are impossible to solve the condition. 
Therefore, we imposed upper and lower bounds on the norm 
of F

(
tk
)
 as specified in (3). By doing so, the stability condi-

tion can be reformulated as LMIs, making it solvable using 
contemporary numerical optimization tools.

4  Simulation Example

In this section, we provide two examples to validate the 
effectiveness of the proposed method. Example 1 shows 
the state estimation performances of the proposed method 
when the fault occurs on the sensor. In Example 2, we 
compare the maximum allowable sampling period with 
conventional methods without considering the sensor fault.

(23)0 ≥ V̇(t) + e2𝛼t𝜀T (t)𝜀(t) ≥ V̇(t).
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�min
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(24)
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0

e2��
{
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(�)e�(�) − �2�T

�
(�)��(�)

}
d� ≤ 0.
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4.1  Example 1

Let us consider the numerical T-S fuzzy system (1), whose 
parameters are given as follows:

To determine the filter gains, we set the hyperparame-
ters in the LMIs (7)-(9) as follows: η = 1 , α = −0.9 , σ = 1 , 
μ1 = 1 , μ2 = 0.1 , γ = 0.0775 , and h = 0.01 . Moreover, the 
sensor fault in this example is assumed to be described by:

where fa = 0.5 and f
a
= 0.1 . Also, F0 and F2 can be given 

through (3). Now, by solving the LMIs (7)-(9), we obtained 
the following filter gains:

Under the initial conditions x(0) = x̂(0) =
[
0 0

]T  , we 
carried out the simulation and obtained the state trajec-
tories of s(t) and ŝ(t) as shown in Fig. 1. Also, in this 
example, we assumed that the output of the system was 
measured by the sensor which suffers from its fault. As 
depicted in Fig. 2, the measured output, yF(t) , deviates 
from the actual output, y(t) . Therefore, we can say that 
Figs. 1 and 2 clearly demonstrate that the filter designed 
by the proposed method effectively estimates the output of 

A1 =

[
−3 0.6

0.2 −2

]
,A2 =

[
−3 0.6

0.2 −2

]

B1 =

[
1

0.3

]
,B2 =

[
1

0.2

]

C11 =
[
0.1 0.08

]
,C12 =

[
0.2 0.05

]
C21 = C22 =

[
1 0

]
x(t) =

[
xT
1
(t) xT

2
(t)

]T
, z(t) = x1(t)

w1(z(t)) =
(
1 −

1

1+e
−7z(t)−

�
6

)(
1 −

1

1+e
−10z(t)+

�
6

)

w2(z(t)) = 1 − w1(z(t)),�(t) = e−0.2tsin(3t)

F
(
tk
)
=
(
fa − f

a

)(
sin

(
3tk

)
+ 1

)
∕2 + f

a

Â1 =

[
−0.5963 −3.1898

0.5645 −2.5887

]
, Â2 =

[
−0.3592 −1.2350

0.1223 −1.8284

]

B̂1 =

[
37.5403

10.0878

]
, B̂2 =

[
42.0335

9.4825

]

Ĝ11 =

[
−10.4941 −0.3732

−2.9144 0.4496

]

Ĝ12 =

[
−10.4941 −0.3732

−2.9144 0.4496

]

Ĝ21 =

[
−11.5934 1.1317

−2.9144 0.4496

]

Ĝ22 =

[
−11.5934 1.1317

−2.9144 0.4496

]

Ĉ1 =
[
0.0727 0.0434

]
, Ĉ2 =

[
0.1447 0.0364

]
the system output, even in the presence of an insufficient 
input caused by the sensor fault.

4.2  Example 2

In this example, we aim to compare the maximum sam-
pling period that allows for solving the LMI-based design 
conditions given in existing works. To achieve this, we uti-
lized the tunnel diode circuit system [30] which is modeled 
by the T-S fuzzy system (1), with parameters given as:

Fig. 1  The time responses of the estimated output of the system s(t) 
(solid) and the filter ŝ(t) (dashed).

Fig. 2  The time responses of the input of the filter: the actual output 
(solid) and the measured output by the faulty sensor (dashed)
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For some selected γ , the maximum allowable sampling 
periods in which an LMI condition of each method is 
feasible are summarized in Table 1. As can be seen in 
Table 1, the method proposed in [31] is infeasible for all 
sampling periods if � = 0.7416 or γ = 0.8660 . In addition, 
compared to existing approaches [31, 32], the proposed 
method shows a larger maximum sampling period.

Also, Fig. 3 depicts the time response of e(t) , the dif-
ference between the output vector of the system, s(t) , and 
the filter, ŝ(t) under h = 0.202 . As seen from the figure, the 
sampled-data fuzzy filter designed by the proposed method 
can successfully estimate the system's output.

A1 =

[
−0.1 50

−1 −10

]
,A2 =

[
−4.6 50

−1 −10

]

B1 = B2 =

[
0

1

]
,C11 = C12

[
1 0

]

C21 = C22 =
[
0 1

]
, x(t) =

[
xT
1
(t) xT

2
(t)

]T
z(t) = x1(t),w1(z(t)) = 1 − z2(t)∕9

w2(z(t)) = 1 − w1(z(t)),�(t) = 0.5e−0.5tcos(5t)

5  Conclusion

This paper addressed an LMI-based design methodol-
ogy for a fault-tolerant H∞ sampled-data fuzzy filter with 
gains were applied to reduce convergence time and relax 
design conditions. Additionally, the proposed design pro-
cess employs a robust control technique to enhance the 
filter's fault-tolerant capabilities. Furthermore, the suffi-
cient condition ensuring H∞-based state estimation per-
formance was formulated in terms of LMIs using the LKF. 
The effectiveness and superiority of the proposed method 
were demonstrated through simulation examples.
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