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Abstract
Gastrointestinal (GI) diseases are among the most frequently occurring diseases that pose a significant threat to people’s 
health. The gold standard for diagnosing these diseases is endoscopic examination, yet this approach is resource-intensive, 
requiring costly equipment and specialized training. This study explores an alternative approach for GI image segmentation 
and classification, employing Simple Linear Iterative Clustering (SLIC) and Linear Spectral Clustering (LSC) superpixel 
methods. Analyzing images from the comprehensive Kvasir dataset, which represents different GI tract sections, the research 
applies three distinct features—local binary pattern, gray-level co-occurrence matrices, and first-order statistical features—for 
Support Vector Machine (SVM) classification. The results demonstrate that superpixel-based classification methods exceed 
traditional pixel-wise techniques in terms of accuracy and efficiency. Specifically, SLIC excels in upper GI tract analysis, 
yielding 77.33% accuracy, 77.89% sensitivity, and 76.8% specificity. Conversely, LSC shows superior performance for 
middle and lower GI sections, with accuracy, sensitivity, and specificity of 98.5%, 100%, and 97.1% for the middle GI, and 
93.67%, 91.72%, and 95.8% for the lower GI tract, respectively. Moreover, SLIC operates faster than LSC. These findings 
highlight superpixel methods' potential to improve GI disease diagnosis, promising more efficient, accurate medical imaging.

Keywords Gastrointestinal (GI) diseases · Endoscopy · Superpixel · Support vector machine (SVM) · Segmentation · 
Classification

1 Introduction

Gastrointestinal (GI) diseases are among the most frequently 
occurring diseases, posing a real threat to population health. 
These GI diseases include GI bleeding, Crohn’s disease, 
tumors, and ulcers. According to the Global Cancer Obser-
vatory (GCO) statistics, issued in 2020, it is estimated that 
there will be 18.99 million new cases of cancers and 10.1 
million deaths [1]. Among these cancer cases, three of the 
nine most occurring types occur in the GI tract. These three 
are the esophageal, stomach (gastric), and colorectal can-
cer types. In particular, polyps represent the main cause of 
colorectal cancer [2]. Polyps have different sizes ranging 
from very small to large. Most studies show that diminutive 
polyps are mostly over-looked with a miss rate of 14 to 30% 
[3]. Careful investigation and early detection are crucial to 
decreasing the risk of getting colorectal cancer.

Various clinical methods have been proposed for detect-
ing GI diseases. Among these methods, endoscopy is con-
sidered the gold standard [4, 5]. Specifically, gastroscopy, 
colonoscopy, and wireless capsule endoscopy (WCE) are 
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the most common endoscopic modalities for examining and 
evaluating the GI tract. Gastroscopy is used to examine the 
upper parts of the GI tract, such as the esophagus, stomach, 
and the first part of the small bowel (duodenum). Colonos-
copy is used for evaluating lower GI parts such as the colon, 
and rectum. However, gastroscopy and colonoscopy offer 
limited visualization in the long GI tract. Only proximal 
duodenum and ileum can be accessed by these procedures. 
In addition, these endoscopic procedures are highly invasive 
and lead to substantial patient discomfort and anxiety. To 
alleviate these problems, wireless capsule endoscopy (WCE) 
was introduced in 2000 [6], and it enabled the examination 
of the entire GI tract non-invasively. In a WCE procedure, a 
small capsule that is swallowed through the mouth is ejected 
through the anus. Since WCE is a non-invasive procedure, 
its usage has gotten more attention in diagnosing many GI 
diseases.

Generally, in WCE, the capsule is swallowed and allowed 
to travel naturally through the GI tract for up to 8 h, where 
the capsule typically captures a large number of images 
(approximately 55,000–60,000 images). These images are 
then stored on a computer and manually investigated by 
endoscopists to detect possible abnormalities. Obviously, it 
is a tedious and time-consuming process for endoscopists 
to go through all images. The review process is also prone 
to human errors. More importantly, false-positive and false-
negative results can arise mainly due to missing important 
details. On top of this, false-positive results may cause 
unnecessary anxiety to patients whereas false-negative 
results may delay the detection of critical disease conditions, 
which may evolve into a stage where the disease becomes 
incurable or even fatal. Moreover, the ability to detect and 
classify abnormalities also differs from one physician to 
the other. Therefore, an accurate automatic method for the 
detection and classification of GI abnormalities is highly 
important to arrive at timely treatment decisions while sav-
ing substantial costs and labor effort.

Several methods related to the automatic detection of 
gastrointestinal anomalies have been reported in the lit-
erature. The Kvasir dataset [7] is an annotated dataset of 
endoscopic images of the GI tract. Most researchers who 
worked on this dataset focused on the detection and multi-
class classification of anatomical landmarks and diseased 
tissues in the GI tract. Pogorelov et al. [7] proposed a 
system to classify multi-class GI endoscopic images. They 
used different types of techniques, such as convolutional 
neural networks (CNN) (including the pre-trained Incep-
tion V3 model), random forests, and the logistic model 
tree (LMT). Among these methods, the LMT approach 
outperformed the others with an accuracy of 93.3%. On 
the same dataset, Agrawal et al. proposed a technique that 
employs novel features for training a support vector clas-
sifier for GI images [8]. In this method, three types of 

features were extracted: conventional hand-crafted fea-
tures and CNN features obtained from the VGGnet and 
Inception-V3 pre-trained models. By fusing these types 
of features, accuracy, and an F1-score of 0.961 and 0.847 
were obtained, respectively.

Liu et al. [9] used the bidirectional marginal Fisher analy-
sis (BMFA) and support vector machines (SVM) to clas-
sify various landmarks and anomalies of the GI tract. The 
authors used six types of hand-crafted features provided 
along with the Kvasir dataset [7]. Experimental results with 
accuracy, recall, and specificity values of 0.9257, 0.7028, 
and 0.9575 were obtained, respectively. Nadeem et al. [10] 
fused different textures and deep learning features. Firstly, 
CNN features were obtained using the VGG-19 pre-trained 
model. These CNN features were then combined with con-
ventional texture features, namely the Haralick features and 
the local binary pattern (LBP) features. Finally, by utiliz-
ing the logistic regression classifier, the system achieved 
accuracy and an F1 score of 83% and 82%, respectively. 
Furthermore, Gamage et al. [11] proposed a system utiliz-
ing CNN features for GI image classification. These features 
were extracted from three types of pre-trained networks: 
DenseNet-201, ResNet-18, and VGG-16. Feature vectors 
were then fused and fed into an artificial neural network 
(ANN) classifier, reaching an accuracy of over 97%.

Various techniques have been devised for polyp detec-
tion [12–16]. In [15], the authors proposed a polyp detection 
technique that utilizes texture features of the Red, Green, 
and Blue (RGB) and Hue, Saturation, and Intensity (HSI) 
color spaces for differentiating polyp tissues from the normal 
ones. Texture features based on the discrete wavelet trans-
form as well as uniform LBP features were fused and used 
to train SVM classifiers for polyp detection. Experimental 
results showed that the classifier based on RGB color fea-
tures achieved the best accuracy of 91.6%.

Most of the above-mentioned studies used pixel-based 
representations. However, it is crucial to note that such a 
representation is not inherently natural but rather an arti-
fact of digital imaging. Consequently, a more intuitive and 
perceptually meaningful approach involves working with 
image representations that consider both image geometry 
and appearance. Addressing this need, superpixel image rep-
resentations have been proposed [17, 18]. In such models, 
similar image pixels are clustered based on the similarity 
of appearance or color attributes. These superpixel models 
could speed up the image processing time and improve the 
results on different image processing tasks [19].

The term superpixel is used to describe a cluster of simi-
lar pixels with a similar color or appearance property [20]. 
Superpixels have been used for various types of applica-
tions in medical imaging [21, 22]. Several methods have 
been proposed in the literature for generating superpixels. 
Those can be mainly classified as: graph-based algorithms 
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[23, 24], gradient-ascent methods [25, 26], or clustering 
methods [19].

Earlier methods investigated the applicability of superpix-
els in GI image analysis. Iakovidis et al. investigated using 
salient superpixels for blood detection in the images of wire-
less capsule endoscopy (WCE) [21]. Xing et al. dealt with 
the GI bleeding detection problem using color histograms 
of WCE image superpixels, and a subspace KNN classifier 
[27]. While these two superpixel-based methods achieved 
good performance, they were tailored only to identify GI 
bleeding spots.

This work presents a superpixel-based segmentation 
and classification approach for endoscopic images of the 
GI tract. This study is an extension of our previous work 
[28], which performed GI image superpixel segmentation 
using the simple linear iterative clustering (SLIC) method 
[19]. This paper exploited another superpixel segmentation 
method, namely linear spectral clustering (LSC) [29] and 
compares its outcomes against those of the SLIC-based seg-
mentation method as well as pixel-based methods. Various 
texture and color features were extracted from generated 
superpixels to train and test binary support vector machines 
for each GI part. In addition, segmentation outcomes of both 
SLIC and LSC methods were evaluated and compared based 
on evaluation metrics, such as the Dice coefficient and the 
intersection-over-union. The main contribution of this work 
is to show how SLIC and LSC superpixel methods can be 
used to segment and classify various GI diseases and land-
marks of endoscopic images. The proposed superpixel-based 
methods lead to superior classification performance for the 
different GI regions. This performance appears to be clearly 
better than that of conventional pixel-based classification 
methods.

2  Materials and Methods

2.1  Dataset

Two datasets of GI images were used for realizing the pro-
posed framework: the Kvasir-V2 and Kvasir-SEG datasets. 
The Kvasir-V2 dataset was used for GI image classification, 
whereas the Kvasir-SEG dataset was utilized for evaluating 
the segmentation outcomes of different superpixel methods. 
The details of both datasets are explained as follows.

Kvasir V2 Dataset: This dataset consists of annotated and 
verified collection of GI images taken with an endoscope 
[7]. The main objective of this dataset is to facilitate the 
evaluation and comparison of different methods for GI image 
classification, detection of GI landmarks, object localiza-
tion in GI images, and the diagnosis of endoscopic diseases 
of the GI tract. The dataset has 8000 images representing 

eight image classes, with 1000 images for each class. All 
the images were annotated by highly trained experts. The 
image classes can be broadly classified into three categories, 
namely, anatomical landmarks (z-line, pylorus, and cecum), 
GI diseases (esophagitis, polyps, and ulcerative colitis), and 
polyps removal procedures (dyed and lifted polyps, and 
dyed resection margins). The image resolution in this data-
set ranges from 720 × 576 up to 1920 × 1072 pixels. Sample 
images from this dataset are shown in Fig. 1.

Kvasir‑SEG Dataset: This dataset consists of 1000 anno-
tated polyp images with their respective truth masks [30]. 
The image resolution in this dataset ranges from 332 × 487 
to 1920 × 1072 pixels. This dataset is mainly used to develop 
new and improved techniques for segmenting, detecting, 
localizing, and classifying polyps. In our work, we used this 
dataset to quantitatively evaluate and compare segmentation 
results of both SLIC- and LSC-based segmentation methods. 
A few samples of polyps and the corresponding masks are 
depicted in Fig. 2.

2.2  Proposed Method

Figure 3 presents the general block diagram of the proposed 
system. The system includes modules for superpixel seg-
mentation, feature extraction, superpixel classification, deci-
sion-level fusion, and finally GI image classification. The 
system was implemented in MATLAB 2016b on a Lenovo 
IdeaPad 330 computer with an Intel Core i7 processor and 
an 8-GB RAM.

All the images were resized to the size of the smallest 
image in the Kvasir dataset (720 × 576) before applying 
other image processing modules. This was done to reduce 
the computational cost and thus speed-up detection and clas-
sification in GI images.

2.2.1  Superpixel Segmentation

Superpixel Segmentation with Linear Spectral Cluster‑
ing The linear spectral clustering (LSC) algorithm [29] 
was proposed based on the investigation of the relationship 
between the objective functions of normalized cuts [20] 
and weighted K-means [31]. The LSC algorithm preserves 
the perpetually essential global image properties. In addi-
tion, this algorithm has linear complexity and high memory 
efficiency. In particular, the LSC algorithm uses simple 
weighted K-means clustering for image segmentation. LSC 
approach avoids the high complexity of the spectral method 
for minimizing the normalized cuts. In the LSC method, 
image pixels are mapped into a 10-dimensional feature space 
for improving linear separability. Study shows that the LSC-
based segmentation method provides better segmentation 
results than existing superpixel algorithms [29]. Figure 4 
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illustrates the LSC-based segmentation results for some 
sample images from the Kvasir v2 dataset.
The LSC segmentation output is controlled through tuning 
the ratio r = Cs/Cc, where Cs and Cc are parameters used for 
measuring color uniformity and spatial proximity. A careful 
selection of the r parameter can lead to a better segmentation 
output that adheres to natural image boundaries. When the 
r-value is large, superpixels with high shape regularity will 
be formed while fewer boundary pixels are correctly recov-
ered. On the contrary, if the r-value is small, the distance 
in color dominates, forcing pixels with similar colors to be 
clustered together. Consequently, irregular superpixels with 
better boundary adherence will be generated. Such a trend 
can be visually observed in Fig. 5. Therefore, the selection of 
the r-value can be considered as seeking a balance between 
shape regularity and boundary adherence.
Superpixel Segmentation with Simple Linear Iterative Cluster‑
ing Simple linear iterative (SLIC) [19] is another commonly 
used method for superpixel segmentation. The SLIC method 
clusters image pixels to efficiently generate compact and nearly 

uniform superpixels. The SLIC technique requires two param-
eters, the number of superpixels (K) and a compactness value 
(c), that tweaks the smoothness of the superpixel contours. A 
large c-value means high dominance of the spatial proximity 
criterion, resulting in regular and compact segmentation. The 
c-value typically ranges from 1 to 20. In this paper, we con-
ducted a grid search to find the best K and c-value for each clas-
sification problem. Figure 6 shows the SLIC-based segmenta-
tion results for some sample images from the Kvasir v2 dataset.

2.2.2  Feature Extraction

In this work, we investigated different types of texture and 
color superpixel features for GI image segmentation and 
classification. In particular, we employed three types of tex-
ture features, namely, local binary patterns, second-order 
statistical features derived from gray-level co-occurrence 
matrices, and first-order statistical features. We explored 
these features for grayscale images as well as color images 
in the RGB and HSV color spaces.

Fig. 1  Sample images from the Kvasir dataset (a) esophagitis, (b) normal z-line, (c) normal pylorus, (d) polyp
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Texture features 

(a) Local binary patterns
  A local binary pattern (LBP) is an effective visual 

descriptor mostly utilized for classification in computer 
vision [32]. These patterns give simple and efficient 
representations of local image characteristics. Numer-
ous LBP applications have been reported including 
face detection [33, 34], demographic classification [35, 
36], and other related applications [37, 38]. In addition, 
LBP has been used for the detection and classification 
of GI diseases such as GI bleeding, tumor and other 
disease regions of various endoscopic images [39–41].

  Figure 7(a) demonstrates how LBP is calculated for 
a 3 × 3 image block with a radius of 1 and 8 neighbors. 
In Fig. 7(b), the relationship between different values 
of the radius (R) and the number of neighbors (M) is 
shown. For an image with a center pixel coordinate ( xc , 
yc ), M neighboring pixels, and a neighborhood radius 
R, the LBP code can be calculated as [42]:

where Um,Uc represent the gray-scale intensities at 
the center and neighboring pixels. The function s(x) 
is defined as:

  Based on the above formulas, we can evaluate LBP 
codes and produce endoscopic image features for GI 
image classification.

(b) Gray-level co-occurrence matrices
  Haralick et al. introduced statistical texture features 

based on gray-level co-occurrence matrices (GLCM) 
[43]. This technique has been widely used in image 
analysis tasks [44]–[45], especially in biomedical 
image analysis [46, 47]. For this approach, feature 
extraction is carried out in two steps: GLCM compu-
tation followed by the calculation of statistical GLCM-

(1)LBP
P,R(xc,yc)

=
∑M−1

m=0
s(Um − Uc) × 2m

(2)s(x) =

{
1 if x ≥ 0

0 if x < 0
.

Fig. 2  Sample polyp images and their corresponding masks from the Kvasir-SEG dataset
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Fig. 3  A block diagram of the proposed computer-aided diagnosis system for detection and classification of diseases and landmarks of the GI 
tract

Fig. 4  LSC-based superpixel 
segmentation of sample images 
from the Kvasir dataset with 
different numbers of superpix-
els: (a) 25, (b) 50, and (c) 100 
superpixels
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based texture features. A GLCM shows how often each 
gray level occurs at a pixel located at a fixed geometric 
position relative to another pixel with a different gray 
level. The horizontal direction,  00, with a default offset 
of one (nearest neighbor) was used in this paper.

  We computed 18 GLCM features in this paper. These 
features are the autocorrelation, contrast, energy, entropy, 
correlation, cluster prominence, cluster shade, dissimilar-
ity, sum variance, homogeneity, maximum probability, the 
sum of variance squares, sum average, sum entropy, dif-
ference variance, difference entropy, information measure 
of correlation, and inverse difference momentum.

(c) Fist-order statistical (FOS) features
  We computed first-order statistical (FOS) descrip-

tors from first-order histograms of gray-level images. 
The first-order histogram H(i) for a gray-level intensity 
value i is calculated as [48]:

(3)H(i) =
GP(i)

T

Fig. 5  LSC-based superpixel 
segmentation for a sample 
esophagitis image with 25 
superpixels at r values of (a) 
0.05, (b) 0.1, (c) 0.3, and (d) 0.5

Fig. 6  SLIC-based superpixel 
segmentation of sample images 
from the Kvasir dataset with 
different numbers of superpix-
els: (a) 25, (b) 50, and (c) 100 
superpixels

Fig. 7  Example calculation of local binary patterns: (a) LBP value 
calculation for 3 × 3 blocks with a radius R = 1 and M = 8 neighbors, 
(b) the relationship between R and M for circular LBP with R = {1, 2, 
3} and M = {8, 12, 16}
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where GP(i) is the number of image pixels with the 
gray-level i and T is total number of pixels in the image. 
Based on the above definition of the first-order his-
togram, the mean image intensity ( � ) and its central 
moments �k are given by:

where L is the total number of gray-level values, and 
k = 2, 3, 4.

  The variance (μ_2), skewness (μ_3), and kurtosis 
( μ_4) are the most widely used central moments in 
medical image analysis. In our study, we adopt these 
moments along with the mean intensity.

Multi‑Channel GLCM and FOS Features Texture features were 
extracted in gray-level images, as well as images in two com-
mon color spaces, namely, the RGB and HSV color spaces. 
Specifically, the GLCM and FOS features were extracted 
from 5 image channels (red, green, blue, hue, and gray-scale 
channels), as well as the LBP map associated with the gray-
scale image. Also, we computed 36-bin LBP histograms for 
the gray-scale images. So, the overall number of features is 
(18 GLCM features + 4 FOS features) × 6 channels + 36 LBP 
histogram features = 168 features. From now on, we use the 
term multichannel GLCM (mGLCM) to indicate the features 
extracted from the aforementioned six image channels. We 
define the multichannel FOS features (mFOS) similarly.

2.2.3  Evaluation Metrics

To compare the classification performance of different 
pixel-based and superpixel-based methods, we used com-
mon evaluation metrics: accuracy, precision, recall, and 
specificity. In addition, we generated the receiver operat-
ing characteristic (ROC) curves and the associated areas 
under the ROC curves (AUC).

We have also evaluated the segmentation quality of both 
the SLIC and LSC superpixel-based methods based on 
certain metrics. These are: the Dice similarity coefficient 
(DSC) and the intersection over union (IoU). We com-
puted these metrics using the ground-truth polyp segmen-
tation data provided by the Kvasir-SEG dataset.

Dice Similarity Coefficient (DSC) It is a standard measure for 
pixel-wise comparison of the predicted and ground-truth 
segmentation results. This measure is defined as:

where F and G stand for the predicted and ground-truth 
object segmentation, respectively. Here, TP, FP, and FN 

(4)� =
∑L−1

i=0
iH(i) and �k =

∑L−1

i=0
(i − m)kH(i)

(5)DSC(P,G) =
2 ∗ |F ∩ G|
|F| + |G|

=
2 ∗ TP

2 ∗ TP + FP + FN

represent the true-positive, false-positive, and false-negative 
counts, respectively.

Intersection over Union (IoU) This metric measures the simi-
larity between the predicted and ground-truth segmentation 
outcomes. The IoU metric can be defined mathematically as:

where t  is the threshold value, which was set to t = 0.5 in 
this work.

2.2.4  Classification of GI Images

In this study, support vector machine (SVM) [49] classifiers 
were used to classify various GI diseases and landmarks 
of endoscopic images. The SVM classifier has been used 
previously in the detection and classification of wireless-
capsule endoscopy (WCE) images [12, 50–52]. The SVM 
classifier seeks to find a hyper-plane that maximizes the 
margin between samples of different classes. In our study, 
we considered an SVM with a polynomial-type kernel. For 
SVM training, we randomly chose 700 images from each 
class of the Kvasir v2 dataset. The remaining 300 images 
of each class were used for testing the trained SVM classi-
fiers. We compared the classification results of both pixel- 
and superpixel-based methods based on values of accuracy, 
recall, specificity, precision, and AUC.

3  Results and Discussions

3.1  Qualitative Comparison and Parameter Tuning 
for GI Classification Methods

The SLIC- and LSC-based segmentation methods have 
specific parameters to control the segmentation processes. 
Varying these parameters will affect segmentation results 
both quantitatively and qualitatively. For this purpose, 
both segmentation methods were qualitatively compared 

(6)IoU(P,G) =
F ∩ G

F ∪ G
=

TP(t)

TP(t) + FP(t) + FN(t)

Table 1  Computational times (in sec.) of both the SLIC and LSC seg-
mentation methods, where K is the number of superpixels

K SLIC LSC

25 0.3578 ± 0.0379 1.8392 ± 0.2694
50 0.3608 ± 0.0341 2.0156 ± 0.1456
100 0.3896 ± 0.007 2.0389 ± 0.1456
200 0.3990 ± 0.0155 2.0811 ± 0.1203
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at three different superpixel numbers (K): 25, 50, and 100. 
The effects of this variation of the K value on the SLIC and 
LSC segmentation outcomes are illustrated in Figs. 4 and 
6, respectively. On the one hand, LSC-based segmentation 
achieves good adherence to natural image boundaries with 
visually intuitive, perceptually satisfactory, and uniform 
segmentation. On the other hand, SLIC-based segmentation 
provides regular and compact superpixels but lacks uniform-
ity and doesn’t agree well with natural image boundaries. 
In Table 1, SLIC- and LSC-based segmentation results are 
compared in terms of the computational time at various 
superpixel numbers. Obviously, there is a slight increase in 
computational time as the number of superpixels increases. 
The table also shows that the SLIC method is moderately 
faster than the LSC one.

Figure 5 depicts how variations in the r parameter could 
affect LSC-based segmentation outcomes. We evaluated 
these outcomes at different r parameter values to recognize 
this effect. Clearly, small r values lead to good adherence 
and perceptually uniform segmentation outputs. On the 

contrary, as the r-value increases, the segmentation results 
become more compact and regular, but adherence to image 
boundaries is gradually lost.

Furthermore, classification based on the LSC method 
was evaluated at different r values (see Fig. 8). First, clas-
sification results for each GI part were found at different 
superpixel numbers (K = 10, 15, 20, 25, and 30) for a single 
r value (0.1). Then, we selected the K value at which the 
best results were obtained. The K values associated with the 
best performance for the upper, middle, and lower GI parts 
were found to be 10, 15, and 20, respectively. After fixing 
the K value for each GI part, we evaluated the classification 
performance at different r values of 0.1, 0.2, 0.3, 0.4, and 
0.5. Finally, we obtained superior results at r values of 0.1, 
0.05, and 0.4 for the classification problems of the upper, 
middle, and lower GI parts, respectively.

3.2  Classification of GI Images with Different 
Feature Combinations

We applied different combinations of the extracted feature 
types namely, LBP, mGLCM, and mFOS. So, we first tried 
each feature type individually. Then, we used pairs of fea-
ture types such as LBP-mFOS, LBP-mGLCM, as mFOS-
mGLCM. Finally, we tried combining the three feature types 
as LBP-mFOS-mGLCM. So, we had a total of seven combi-
nations: LBP, mFOS, mGLCM, LBP-mFOS, LBP-mGLCM, 
mFOS-mGLCM, and LBP-mFOS-mGLCM. Then, we 
compared classification results of all combinations based 
on accuracy, recall, specificity, precision, and AUC values. 
ROC curves for the best-performing feature combinations 
were also created.

Table 2 illustrates the classification results of the upper 
GI part (esophagitis versus normal z-line). Based on the 
parameter fine-tuning experiments in Section 3.1, we fixed 
the compactness parameter of the SLIC method at c = 1, 
while the r parameter of the LSC method was set to 0.1 
(see Fig. 8). As shown in Table 2, the classification accu-
racy is improved when the SLIC-based segmentation is 
employed, particularly, when using the mGLCM features 

Fig. 8  Accuracy at different values of the r parameter for the LSC 
superpixel segmentation

Table 2  Pixel- and superpixel-based classification results for the upper GI part (esophagitis versus normal z-line) at K = 10

Features Pixel-based (%) Pixel-based (%) SLIC-based (%)

Acc Spec Prec AUC Acc Rec Spec Prec AUC Acc Rec Spec Prec AUC Spec

LBP 62.33 62.50 62.17 61.17 65.85 59.33 57.82 61.57 69 68.9 54.17 52.56 61.26 85.67 69.75
mFOS 68.5 70.63 66.77 63.33 76.6 65.83 63.77 68.63 73.33 77.6 75.83 76.45 75.24 74.67 80.25
mGLCM 70.17 69.58 70.79 71.67 77.54 77.33 77.89 76.8 76.33 81.31 74.17 79 69.33 72.04 82.93
LBP-mFOS 71.33 73.7 69.39 66.33 76.1 69.33 67.26 71.97 75.33 80.97 73.33 73.33 73.33 73.33 80.6
LBP-mGLCM 69.67 70.34 69.03 68 75.85 75.67 77.5 74.06 72.33 82 72.5 71.29 73.85 75.33 82.35
mFOS-mGLCM 69.83 69.9 69.77 69.67 76.62 77.33 78.28 76.45 75.67 81.91 75 74.83 75.17 75.33 83.37
LBP-mFOS-mGLCM 70 70.83 69.23 68 75.43 76.67 78.78 74.84 73 82.1 75.33 74.52 76.21 77 82.54
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only. According to the medical context of our GI classifica-
tion problems, recall (or sensitivity) is crucially important 
as it reflects the classifier's ability to detect anomalies. With 
this relative importance of the recall metric, the LSC-based 
method appears to be superior as it outperforms the other 
methods with a recall (or sensitivity) of 79%. In addition, the 
LSC-based method achieved the best average performance 
with an AUC value of 83.1% when the mFOS-mGLCM 
combination was used. However, the SLIC-based approach 
gives superior results with accuracy, specificity, and preci-
sion values of 77.54%, 77.89%, and 76.33%, respectively.

Figure 9 shows the ROC curves of the three classifica-
tion methods with the mFOS-mGLCM feature combina-
tion, which gives the highest AUC scores for classifying 
the images of the upper GI part into esophagitis and normal 
z-line images. As it can be observed, the LSC-based super-
pixel method generally outperforms the two other methods 

across the whole range of the false-positive rates. Indeed, 
the LSC method achieved the highest AUC value of 83.37% 
which is superior to those of the pixel- and SLIC-based 
methods.

In Table 3, the classification results of the middle GI 
part (polyps versus normal pylorus) are shown. As the 
table shows, both superpixel-based classification methods 
were slightly better than the pixel-based one. This rela-
tive improvement can be particularly observed when the 
mGLCM and the LBP-mGLCM features were respectively 
used for SLIC- and LSC-based classification. Both the 
SLIC- and LSC-based methods achieved a classification 
accuracy of 98.5%. In addition, the high recall values for 
both methods show that our superpixel-based approach is 
nearly perfect for the detection of anomalies in the mid-
dle GI part. These recall values are 99.66% and 100% for 
the SLIC- and LSC-based classification, respectively. Fur-
thermore, using the LBP-mGLCM feature combination, the 
LSC-based method provided a slightly higher AUC value of 
99.78% compared to the other two methods.

Table 4 shows the classification results of the lower GI 
part using both superpixel- and pixel-based methods. The 
results show that the superpixel-based methods are moder-
ately better than the pixel-based ones. For the superpixel-
based methods and the LBP-mGLCM feature combination, 
the LSC method outperformed the SLIC one with an accu-
racy of 93.67%, a specificity of 95.8%, and a precision of 
96%. However, the SLIC-based method achieved a higher 
value of recall (or sensitivity) of 94.16%. Moreover, the 
SLIC method achieved the best AUC score of 97.4%.

Figure 10 illustrates the ROC curves of the three consid-
ered methods for the task of classifying the middle GI part 
(polyps versus normal pylorus) with the best LBP-mGLCM 
feature combination. Obviously, the LSC method achieved 
a slightly better ROC curve than the two other methods. 
Besides, the LSC method narrowly outperforms the other 
two methods with an AUC score of 99.78%.

Figure 11 shows the ROC curves for classifying the 
lower GI section (cecum and ulcerative colitis) using the 
three classification methods with the LBP-mGLCM feature 

Fig. 9  ROC curves of the classification methods of the upper GI part 
(esophagitis versus normal z-line) using the mFOS-mGLCM feature 
combination

Table 3  Pixel- and superpixel-based classification results for the middle GI part (polyps versus normal pylorus) at K = 15

Features Pixel-based (%) Pixel-based (%) SLIC-based (%)

Acc Spec Prec AUC Acc Rec Spec Prec AUC Acc Rec Spec Prec AUC Spec

LBP 97.5 98.31 96.72 96.67 98.63 97.83 98.64 97.05 97 99.33 98.33 99.32 97.39 97.33 99.53
mFOS 97.67 98.31 97.04 97 99.4 98.17 99.66 96.76 96.67 99.5 98.33 100 96.67 96.77 99.54
mGLCM 97.17 97.64 96.7 96.67 98.79 98.5 99.66 97.39 97.33 99.38 98.33 99.32 97.39 97.33 99.56
LBP-mFOS 97.5 97.98 97.03 97 98.93 98.17 99.66 96.76 96.67 99.6 98.33 100 96.67 96.77 99.73
LBP-mGLCM 97.5 97.98 97.03 97 99.17 98.33 100 96.77 96.67 99.47 98.5 100 97.1 97 99.78
mFOS-mGLCM 98 98.98 97.06 97 99.16 98.17 99.66 96.76 96.67 99.45 98.33 99.66 97.08 97 99.48
LBP-mFOS-mGLCM 97.34 97.67 97 97.02 99.21 98.33 100 96.77 96.67 97.33 98.5 100 97.09 97 99.57
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combination. The results show that the SLIC-based method 
outperforms the other methods for most of the range of the 
false-positive rates. In addition, while the AUC values of the 
three methods are quite close, the LSC method achieved the 
best AUC value of 97.4%.

3.3  Comparative Evaluation Against Ground‑Truth 
Polyp Segmentation

In this part of the study, we used 80 images of both small 
and large polyps for qualitative comparisons of the SLIC- 
and LSC-based segmentation methods. Samples of these Ta
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Fig. 10  ROC curves of the classification methods of the middle GI 
part (polyps versus normal pylorus) with the LBP-mGLCM feature 
combination

Fig. 11  ROC curves of the classification methods of the lower GI part 
(cecum versus ulcerative colitis) with the LBP-mGLCM feature com-
bination
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images are shown in Fig. 12. We followed a series of steps 
to get specific locations of the polyps. First, segmentation 
maps were computed at various superpixel numbers. Then, 
we used the Dice coefficient value to obtain the exact loca-
tions of the polyp tissues. This was done by computing the 
Dice similarity coefficient for each generated superpixel 
and its respective ground truth. Finally, the superpixel 
with the highest Dice coefficient score was chosen to be 
the polyp object. As a result, superpixel numbers of 15 and 
50 were used for the segmentation of small and large pol-
yps, respectively. From visual inspection, the SLIC-based 
method provides better performance in segmenting small 
polyps. However, for segmenting large polyps, both meth-
ods approximately produce good segmentation results with 
slightly the LSC-based method giving better visual segmen-
tation output than the SLIC-based one.

In Fig. 13, both the LSC- and SLIC-based segmenta-
tion outputs were computed at various superpixel numbers 
(K) based on the Dice coefficient values. For small polyps, 
we tried numbers of superpixels in the range from K = 10 
to K = 100. A peak Dice coefficient value was obtained at 
K = 50 with the LSC-based method (see Fig. 13(a)). Like-
wise, for large polyps, we tried numbers of superpixels 
starting from K = 10 up to K = 50, and obtained a peak Dice 
coefficient value at K = 15 (Fig. 13(b)) with the SLIC-based 
method.

Figure 14(a) shows box plots of the Dice coefficient and 
IoU values resulting from the segmentation of 40 images 
of large polyps using SLIC-based segmentation. The mean 
values of these metrics are 84.75% and 73.88%, respec-
tively (See Table 5). Figure 14(b) shows similar box-plot 
results with LSC-based segmentation. The corresponding 

Fig. 12  Visual comparison of 
superpixel-based polyp seg-
mentation methods: (a) original 
images, (b) ground-truth maps, 
(c) SLIC-based segmentation 
outputs, (d) LSC-based segmen-
tation outputs

Fig. 13  Computation of the Dice coefficient values at various numbers of superpixels (K) for the segmentation of (a) small polyps, and (b) large 
polyps
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mean values of the Dice coefficient and the IoU are 85.68% 
and 75.02%, respectively (See Table 5). For small polyps, 
Fig. 15 shows similar box plots for the SLIC- and LSC-based 
segmentation methods. The mean Dice and IoU values are 
generally much lower than those of large polyps: 71.65% and 
56.79% for the LSC-based method, and 76.31% and 62% for 
the SLIC-based method (See Table 5).

Furthermore, we carried out a student’s t-test to check the 
significance of the statistical difference between the SLIC- 
and LSC-based segmentation results for large and small pol-
yps. In particular, a paired t-test comparison was performed 
in MS Excel. A p-value was computed for each of the Dice 
similarity coefficient (DSC) and the IoU values computed 
for 40 images of large and small polyps. The obtained 
p-values are summarized in Table 6. A significance level 

Fig. 14  Box plots comparing Dice coefficient and IoU for superpixel-based segmentation across 40 large polyp images, showcasing (a) SLIC-
based and (b) LSC-based segmentation results

Table 5  Mean DSC and IoU 
values of SLIC- and LSC-based 
segmentation method

Measures Large Polyps Small polyps

SLIC LSC SLIC LSC

Dice Coefficient 0.8475 ± 0.0538 0.8568 ± 0.0234 0.7631 ± 0.058 0.7165 ± 0.102
IoU 0.7388 ± 0.0772 0.7502 ± 0.0363 0.62 ± 0.074 0.5679 ± 0.1251

Fig. 15  Box plots comparing Dice coefficient and IoU for superpixel-based segmentation across 40 small polyp images, showcasing (a) SLIC-
based and (b) LSC-based segmentation results
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of p = 0.05 was used to assess the statistical significance of 
the difference between the SLIC- and LSC-based segmenta-
tion. Considering the obtained p-values for the Dice coef-
ficient and IoU (see Table 6), the results show that there is 
no significant difference between the SLIC- and LSC-based 
methods in the segmentation of large polyps. However, for 
the segmentation of small polyps, the p-values show that 
there is a significant difference between the SLIC- and LSC-
based segmentation methods. As a result, the SLIC-based 
method is moderately better than that of the LSC-based ones 
in segmenting small polyps.

4  Conclusion

In this study, we developed a superpixel-based computer-
aided diagnosis system to enhance endoscopic image analy-
sis, enabling more precise differentiation between diseased 
and healthy patterns in patients. Our comprehensive analy-
sis revealed that superpixel-based classification, particu-
larly using Linear Spectral Clustering (LSC) and Simple 
Linear Iterative Clustering (SLIC), is superior to traditional 
pixel-based methods. LSC demonstrated excellent bound-
ary adherence and preserved image structure, while SLIC 
showed greater efficacy in classifying upper GI tract images, 
and LSC was more effective for the middle and lower GI 
sections, albeit with higher computational demands. The 
study emphasized the importance of selecting the appropri-
ate superpixel method based on specific requirements and 
optimizing parameters for each classification scenario. Fur-
thermore, we assessed segmentation quality using Dice coef-
ficient and Intersection over Union (IoU) metrics, finding 
that SLIC was more effective in small polyp segmentation, 
while LSC matched its performance in segmenting larger 
polyps, illustrating the nuanced strengths and weaknesses 
of each method in different applications.

In the future, combined superpixel and deep learning 
methods for the classification of gastrointestinal (GI) diseases 
and landmarks can be devised. This could enable the model 
to capture a broader and more nuanced range of character-
istics associated with GI conditions, potentially improving 
the diagnostic capabilities of the computer-aided diagnosis 
(CAD) system. The synergy between the precise segmentation 
provided by superpixel methods and the pattern recognition 

capabilities of deep learning could thus lead to a more robust 
and effective system for GI disease classification. Moreover, 
the CAD system in this study could be improved by perform-
ing a more detailed analysis of the number of superpixels, 
fine-tuning superpixel parameters that could affect segmenta-
tion output, and combining various types of features.
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