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Abstract
We explore the robust tracking problem for nonholonomic wheeled mobile robots (WMR) in the presence of uncertainties.
The kinematics of the WMR are represented in the Takagi–Sugeno fuzzy form without modeling error. Recognizing the
inherent challenge of obtaining a discrete-time model for time-triggered sampled-data controller design, we adopt an event-
triggered sampled-data controller. The designed controller guarantees notable L2–L∞ disturbance attenuation performance
and robustness against norm-bounded parametric uncertainties, excluding the Zeno phenomenon in the event triggering.
Results of the case study about the WMR model demonstrate the efficacy of the proposed methodology.

Keywords Wheeled mobile robot (WMR) · Takagi–Sugeno fuzzy model; event-triggered control · L2–L∞ disturbance
attenuation

1 Introduction

The aging of the agroforestry workforce, combined with
the ongoing trend of urbanization, prompts significant con-
cerns about a food shortfall soon. Mitigating the resultant
workforce imbalance requires the implementation of mecha-
nization in agroforestry processes,with autonomouswheeled
mobile robots (WMR) emerging as a promising solution [21].
For example, WMRs can implement changeable transport
paths, overcoming the limitations associated with fixed con-
veyor belts [16]. In this scenario, the primary objective of
a WMR, viewed through the lens of control engineering, is
cast as a nonlinear tracking control problem.

The authors of [13] developed an adaptive sliding mode
control approach for a WMF with uncertainties. In [14],
they further deliberated the (electric) actuator dynamics in
adaptive controller design for WMRs. In [10], the authors
addressed the trajectory tracking problem for a WMR, using
the extended Kalman filter to observe disturbances along
nonlinear dynamics.A slidingmode control for path-tracking
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unmanned agricultural vehicles with adaption laws was pre-
sented in [2]. These endeavors underscore that most control
techniques for WMRs rely on variable structures or adaptive
mechanisms.

Takagi–Sugeno (T–S) fuzzy model-based strategy is well
recognized as an efficient solution for nonlinear control
systems [6, 7, 9], including WMRs. Sun et al. [15] pro-
posed a continuous-time T–S fuzzy control design for WMR
with visual odometry. This paper continues these efforts to
develop a sampled-data approach for WMRs with distur-
bances and uncertainties using the T–S framework. The focal
points of consideration are twofold: (i) disturbance attenua-
tion and (ii) sampled-data burden.

(i) While WMRs conventionally assume pure rolling of
wheels, local floor irregularities may cause a slip, which
can be identified by L2 disturbances. The driving task of
a WMR is, therefore, defined as the energy-to-peak dis-
turbance attenuation problem in trajectory tracking. In [1],
the robust energy-to-peak filtering problem for uncertain
continuous-time T–S fuzzy models was studied. In [18], a
continuous-time energy-to-peak output-tracking controller
was developed for nonlinearly perturbed systems. However,
few research efforts are found devoted to the L2–L∞ distur-
bance attenuation problem for WMRs.

(ii) Given the prevalence of low-cost digital micropro-
cessors for driving electric actuators, discrete-time model-
based sampled-data control methodologies have become
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imperative. However, deriving an exact discrete-time model
for a WMR proves often unattainable due to the nonlinear
nature of the initial value problem [8]. In [4], a predic-
tive control technique was examined, where an approximate
discrete-time error posture model of a WMR was used;
thereby, actual performance may be degraded. Fast sam-
pling is essential for preventing the performance degradation
of sampled-data control. However, it significantly strains
the network bandwidth and computing capability of the
microprocessor. The event-triggered—rather than the ordi-
nary fixed time-triggering—control (ETC), which changes
the control input only when a specific event occurs, can be a
resolution [3]. Previous work [11] polished an ETC scheme
with a nonlinear sliding mode control technique for WMRs,
validating the theoretical development through experimenta-
tion.

This paper offers a robust fuzzy sampled-data ETC
approach for path tracking of uncertain nonholonomic
WMRs that achieves energy-to-peak disturbance attenuation.
The kinematic model of a nonlinear WMR is represented in
the T–S fuzzy form with no modeling errors. The suggested
scheme analyzes closed-loop stability in the continuous-time
domain, hence removing the need for a discrete-time model
of a WMR. The design condition is stated in terms of lin-
ear matrix inequalities and ensures the Zeno-free behavior
of the event triggering. A numerical example of a WMR
demonstrates the efficacy of the proposed method.

Notation: The index set is defined as IR := {1, . . . , r} ⊂
N. IJ × IR denotes all pairs (i, j) ∈ IR × IR such that
1 � i < j � r . The shorthand He {X} := X + XT is
adopted, and the transposed element in symmetric positions
is denoted by ∗.

2 Kinematics of aWMF and its T–S Fuzzy
Modeling

For a mechanical kinematics with the n-dimensional gen-
eralized coordinates q, the m nonholonomic independent
constraints can be expressed as:

A(q)q̇ = 0

where A(q) : Rn → R
m×n is a function matrix with full row

rank. For n − m linear independent vector fields si (q) that
comprise the basis for the nullspace of A(q), we obtain

A(q)
[
s1(q) · · · sn−m(q)

]

︸ ︷︷ ︸
=:J (q)

= 0

�⇒ q̇ ∈ span{s1(q), . . . , sn−m(q)}.

Then, there exists a velocity vector p ∈ R
n−m [13, 19] such

that

q̇ = J (q)p.

In this study, as shown in Fig. 1, we consider a two-
wheeled mobile robot whose posture is represented by the
generalized coordinate q := (x, y, φ) ∈ R

3 in the world X–
Y frame. In this case, (x, y) is theCartesian coordinates of the
center of mass of the vehicle, and φ is the counterclockwise
angle between the heading direction and the X -axis.

Assumption 1 ([19]) The WMR purely rolls and does not
slip in a lateral direction.

Assumption 1 poses a nonholonomic restriction in which
the velocity in the lateral direction of a WMR is null, which
is represented by

− ẋ sin(φ) + ẏ cos(φ) = 0

⇐⇒ [− sin(φ) cos(φ) 0
]

︸ ︷︷ ︸
A(q)

q̇ = 0.

Twovector fields, s1 = (cos(φ), sin(φ), 0) and s2 = (0, 0, 1)
are linearly independent and lie in the nullspace of A(q). We
define p := (v, ω), where v represents the linear velocity
in the heading direction and ω denotes the angular velocity.
The kinematics model is constructed as

⎡

⎣
ẋ
ẏ
φ̇

⎤

⎦

︸︷︷ ︸
q̇

=
⎡

⎣
cos(φ) 0
sin(φ) 0

0 1

⎤

⎦

︸ ︷︷ ︸
J (q)

[
v

ω

]

︸︷︷︸
p

(1)

Fig. 1 The posture of WMR
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The reference posture qr := (xr, yr, φr) that the WMR is to
follow is subject to

⎡

⎣
ẋr
ẏr
φ̇r

⎤

⎦ =
⎡

⎣
cos(φr) 0
sin(φr) 0

0 1

⎤

⎦
[
vr
ωr

]
(2)

where (vr, ωr) =: pr is a reference velocity vector.
The error posture (i.e. the tracking error with respect to

the frame of the WMR defined as the Cartesian coordinate
system with an origin of (x, y) and X -axis in the direction
of φ) is calculated by

e =
⎡

⎣
ex
ey
eφ

⎤

⎦ :=
⎡

⎣
cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0
0 0 1

⎤

⎦ (qr − q). (3)

Considering Eq. 1, the dynamic behavior of Eq. 3 is repre-
sented as follows:

⎡

⎣
ėx
ėy
ėφ

⎤

⎦ =
⎡

⎣
cos(eφ) 0
sin(eφ) 0

0 1

⎤

⎦
[
vr
ωr

]
+
⎡

⎣
−1 ey
0 −ex
0 −1

⎤

⎦
[
v

ω

]
.

We take p in the form of

p :=
[
vr cos(eφ)

ωr

]
+ u. (4)

Overall, the nonlinear error-posture model of aWMR is con-
structed as follows:

ė =
⎡

⎢
⎣

0 ωr 0

−ωr 0 vr sin(eφ)

eφ
0 0 0

⎤

⎥
⎦ e +

⎡

⎣
−1 ey
0 −ex
0 −1

⎤

⎦ u. (5)

The four nonlinear parameters that appeared in Eq. 5 can
be expressed by the following convex combinations:

ωr =
2∑

j=1

μ
j
1a

j
1 ,

vr sin(eφ)

eφ

=
2∑

j=1

μ
j
2a

j
2

ey =
2∑

j=1

μ
j
3a

j
3 , ex =

2∑

j=1

μ
j
4a

j
4 .

Using the sector nonlinearity technique [5], we solve these
equations to obtain:

μi
1 =

⎧
⎪⎨

⎪⎩

ωr − a21
a11 − a21

, for i = 1,

1 − μ1
1, otherwise

μi
2 =

⎧
⎪⎪⎨

⎪⎪⎩

vr sin(eφ)

eφ
− a22

a12 − a22
, for i = 1,

1 − μ1
2, otherwise

μi
3 =

⎧
⎪⎨

⎪⎩

ey − a23
a13 − a23

, for i = 1,

1 − μ1
3, otherwise

μi
4 =

⎧
⎪⎨

⎪⎩

ex − a24
a14 − a24

, for i = 1,

1 − μ1
4, otherwise

where aij , (i, j) ∈ I2 × I4 are determined as follows:

a11 � sup
ωr∈[a11 ,a21 ]

ωr

a21 � inf
ωr∈[a11 ,a21 ]

ωr

⎫
⎪⎪⎬

⎪⎪⎭
�⇒ μi

1 ∈ R[0,1]

a12 � sup
vr sin(eφ)

eφ
∈[a12 ,a22 ]

vr sin(eφ)

eφ

a22 � inf
vr sin(eφ)

eφ
∈[a12 ,a22 ]

vr sin(eφ)

eφ

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�⇒ μi
2 ∈ R[0,1]

a13 � sup
ey∈[a13 ,a23 ]

ey

a23 � inf
ey∈[a13 ,a23 ]

ey

⎫
⎪⎪⎬

⎪⎪⎭
�⇒ μi

3 ∈ R[0,1]

a14 � sup
ex∈[a14 ,a24 ]

ex

a24 � inf
ex∈[a14 ,a24 ]

ex

⎫
⎪⎪⎬

⎪⎪⎭
�⇒ μi

4 ∈ R[0,1].

We set z :=
(
ωr,

vr sin(eφ)

eφ
, ey, ex

)
∈ R

4 as the premise

variables for the T–S fuzzymodel of Eq. 5. If themembership
function Γ i

j of z j in the i th fuzzy inference rule is set as
follows:

Γ i
1 =

{
μ1
1, for i = {1, . . . , 8}

μ2
1, otherwise
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Γ i
2 =

{
μ1
2, for i = {1, . . . , 4, 9, . . . , 12}

μ2
2, otherwise

Γ i
3 =

{
μ1
3, for i = {1, 2, 5, 6, 9, 10, 13, 14}

μ2
3, otherwise

Γ i
4 =

{
μ1
4, for i = {1, 3, 5, 7, 9, 11, 13, 15}

μ2
4, otherwise

the following state equation

ė =
16∑

i=1

θi (Aie + Biu) (6)

is the modeling error-free T–S fuzzy model for Eq. 5 on the
domain [a11, a21 ]×[a12, a22 ]×[a13, a23 ]×[a14, a24 ] ⊂ R

4, where

θi (z) :=

4∏

j=1
Γ i
j (z j )

16∑

i=1

(
4∏

j=1
Γ i
j (z j )

)

and

Ai =
⎡

⎣
0 (2, 1) 0

−(2, 1) 0 (2, 3)
0 0 0

⎤

⎦ , Bi =
⎡

⎣
−1 (1, 2)
0 (2, 2)
0 −1

⎤

⎦

where

(2, 1) =
{
a11, for i = {1, . . . , 8}
a21 , otherwise

(2, 3) =
{
a12, for i = {1, . . . , 4, 9, . . . , 12}
a22 , otherwise

(1, 2) =
{
a13, for i = {1, 2, 5, 6, 9, 10, 13, 14}
a23 , otherwise

(2, 2) =
{
a14, for i = {1, 3, 5, 7, 9, 11, 13, 15}
a24, otherwise.

3 RobustL2–L∞ ETC Design

To strengthen the robustness to uncertainties and distur-
bances attenuation performance in design, we modify (6)

as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ė =
r∑

i=1

θi ((Ai + ΔAi )e + Biu + Bwi w)

z =
r∑

i=1

θiCzi e

(7)

where ΔAi denotes the system uncertainty and z ∈ R is the
performance output.

With a slight abuse of notation, the Lebesgue space
Ln

p[0,∞) of measurable functions f : [0,∞) → R
n sat-

isfies

‖ f ‖Ln
p,r

:=

⎧
⎪⎪⎨

⎪⎪⎩

(∫ ∞

0
‖ f (t)‖p

r dt

)1/p

< ∞ for1� p < ∞
sup

t∈R�0

‖ f (t)‖r < ∞ forp = ∞

where the following conventional vector r -norm is adopted
[12]:

‖ f ‖r :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
n∑

i=1

| fi (t)|r
)1/r

< ∞ for1 � r < ∞

max
i∈IR

| fi (t)| < ∞ forr = ∞.

In this study, we consider a continuous-time disturbancew ∈
Lp
2,2 and a continuous-time performance output z ∈ Lq

∞,2
(simply denoted as L2 and L∞, respectively). In addition,
their norms ‖w‖Lp

2,2
and ‖z‖Lq

∞,2
are denoted by ‖w‖2 and

‖z‖∞, respectively.

Assumption 2 There exist known compatible constantmatri-
ces D and E and an unknown time-varying diagonal matrix
Δ satisfying ΔTΔ � I ,∀t ∈ R�0 such that

ΔA = DΔE .

Lemma 1 ([17]) Given compatible matrices D, E, S = ST,
with Δ � ΔTΔ � I , there exists ε ∈ R>0 such that

S + He {DΔE} ≺ 0

⇐⇒ S + [
D ET

] [ε−1 I ∗
0 ε I

] [
DT

E

]
≺ 0.

Lemma 2 ([9])Given compatible matrices D, Q = QT � 0,
S = ST, the following equivalence is true:

S + DTQD ≺ 0 ⇐⇒
[
S ∗
D −Q−1

]
≺ 0.
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We employ the following event-triggered aperiodic sam-
pled-data controller:

u = uk :=
r∑

i=1

θik Ki e(tk), t ∈ [tk, tk+1) (8)

where tk , k ∈ Z�0 represents the time at which the control
input is updated and θik := θi (z(tk)). The subsequent execu-
tion time tk+1 is determined by the following event-triggering
mechanism:

tk+1 := inf

{
t ∈ R�0 : t > tk∧

σeTPe � 2eT
( r∑

i, j=1

θiθ jk P Bi K j

)
εe

}
(9)

where εe := e(tk) − e, σ ∈ R>0 is a given threshold, and P
is a positive definite matrix.

The problem of interest is expressed as follows:

Problem 1 Find Ki such that the uncertain fuzzy model (7)
closed by the aperiodic sampled-data controller (8) updated
by the event-triggering mechanism (9) exhibits the following
L2–L∞ disturbance attenuation performance

‖z‖∞ � eT(0)Pe(0) + γ ‖w‖2 (10)

and is robustly asymptotically stable against the norm-
bounded parametric uncertainties when w = 0.

The close-loop system of Eqs. 7, 8, and 9 is constructed
as

ė =
r∑

i=1

θiθ jk ((Ai +ΔAi +Bi K j )e+Bi K jεe+Bwi w) (11)

for t ∈ [tk, tk+1). Similar to [20], we introduce the following
relation about the asynchronous firing strengths

θik = ρk
i θi , t ∈ [tk, tk+1)

and suppose the existence of ρ, ρ ∈ R>0 such that

ρ := min
(i,k)∈IR×Z�0

ρk
i , ρ := max

(i,k)∈IR×Z�0

ρk
i . (12)

Then, it straightforwardly follows that

ρ

ρ
�

ρk
i

ρk
j

� ρ

ρ
.

The following theorem proposes a design condition for
Problem 1.

Theorem 1 Given γ , κi , λ, σ , ρ, and ρ, the uncertain fuzzy
model (7) closed by the aperiodic sampled-data controller
(8)updated by the event-triggeringmechanism (9) (i) exhibits
the γ -L2–L∞ disturbance attenuation performance (10) and
(ii) is implementable if there exist Mi , Q = QT � 0 such
that

Ξi i ≺ 0, i ∈ IR (13)

Ξi j + ρ

ρ
Ξ j i ≺ 0 (14)

Ξi j + ρ

ρ
Ξ j i ≺ 0, (i, j) ∈ IJ × IR (15)

[
Q ∗

Czi Q I

]
� 0, i ∈ IR (16)

where

Ξi j :=

⎡

⎢
⎢⎢⎢
⎣

(
He
{
Ai Q + Bi M j

}

+(λ + σ)Q

)
∗ ∗ ∗

BT
wi

−γ 2 I ∗ ∗
DT
i 0 −κi I ∗

Ei Q 0 0 −κ−1
i I

⎤

⎥
⎥⎥⎥
⎦

.

In this case, the gain is given by Ki = Mi Q−1.

Proof (i) To prove stability, we define V := eTPe with P =
PT � 0. The time derivative of V is computed as

V̇ = eT

⎛

⎝He

⎧
⎨

⎩

r∑

i, j=1

θiθ jk P(Ai + ΔAi + Bi K j )

⎫
⎬

⎭

⎞

⎠ e

+ 2eT

⎛

⎝
r∑

i, j=1

θiθ jk P Bi K j

⎞

⎠ εe+2eT
(

r∑

i=1

θi P Bwi

)

w

for t ∈ [tk, tk+1). Using Eq. 9, we can majorize

V̇ � eT

⎛

⎝He

⎧
⎨

⎩

r∑

i, j=1

θiθ jk P(Ai + ΔAi + Bi K j )

⎫
⎬

⎭

⎞

⎠ e

+ σeTPεe + 2eT
(

r∑

i=1

θi P Bwi

)

w

=
[
e
w

]T
⎛

⎝
r∑

i, j=1

θiθ jk Ξ̄i j

⎞

⎠
[
e
w

]
− λV + γ 2wTw
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=
[
e
w

]T
⎛

⎝
r∑

i=1

θiθiρ
k
i Ξ̄i i +

r∑

i< j

θiθ j

(
ρk
j Ξ̄i j + ρk

i Ξ̄ j i

)
⎞

⎠

×
[
e
w

]
− λV + γ 2wTw

=
[
e
w

]T
⎛

⎝
r∑

i=1

θiθiρ
k
i Ξ̄i i +

r∑

i< j

θiθ jρ
k
j

(

Ξ̄i j + ρk
i

ρk
j

Ξ̄ j i

)⎞

⎠

×
[
e
w

]
− λV + γ 2wTw

where

Ξ̄i j :=
[
He
{
P(Ai + ΔAi + Bi K j )

}+ (σ + λ)P ∗
BT

wi
P −γ 2 I

]
.

Define

η1 :=
ρ
ρ

− ρk
i

ρk
j

ρ
ρ

− ρ

ρ

, η2 :=
ρk
i

ρk
j
− ρ

ρ

ρ
ρ

− ρ

ρ

where oneknows thatη1, η2 ∈ R[0,1] andη1+η2 = 1.Apply-
ing a similarity transformation with diag(Q−1, I , I , I ),
Lemmas 1 and 2, and Assumption 2 to Eqs. 14 and 15 and
denoting Q−1 = P and Mi = Ki Q results in

η1

(
Ξ̄i j + ρ

ρ
Ξ̄ j i

)
+ η2

(

Ξ̄i j + ρ

ρ
Ξ̄ j i

)

≺ 0

�⇒ Ξ̄i j + ρk
i

ρk
j

Ξ̄ j i ≺ 0.

Similarly, it holds that Eq. 13 �⇒ Ξ̄i i ≺ 0. As a result

V̇ < −λV + γ 2wTw. (17)

By the comparison lemma, we know that

V < V (0) + γ 2
∫ ∞

0
wTw dτ.

Next, performing a similarity transformationwith diag(P−1,

I ) and applying Lemma 2 to Eq. 16, we derive

(16) ⇐⇒ P −
(

r∑

i

θiCzi

)T ( r∑

i

θiCzi

)

� 0

⇐⇒ V − zTz > 0, ∀t ∈ R�0.

Then, we arrive at

‖z‖∞ = sup
t∈R�0

‖z‖ <

√

V (0) + γ 2

∫ ∞

0
wTw dτ

�
√
eT(0)Pe(0) + γ ‖w‖2 .

When w = 0,∀t ∈ R>0, Eq. 17 can be expressed as
V̇ + λV < 0 �⇒ V̇ < 0. Therefore, Eq. 11 is robustly
asymptotically stable.

(ii) To demonstrate the implementability of Eq. 8, we
investigate the existence of a nonzero lower bound of the
minimum event-triggering interval in Eq. 9. Because e(tk) is
a constant for any interval [tk, tk+1), we construct

ε̇e = ė(tk) − ė

= 0 −
(

r∑

i=1

θiθ jk ((Ai + ΔAi )e + Bi K j e(tk) + Bwi w)

)

=
r∑

i=1

θiθ jk ((Ai + ΔAi )εe − (Ai + ΔAi + Bi K j )e(tk)

− Bwi w)

and we derive the following differential inequality:

d ‖εe‖
dt

=
d
(√

εTe εe

)

dt
= εTe ε̇e

‖εe‖
�
∥∥∥∥
dεe
dt

∥∥∥∥

=
∥∥∥
∥

r∑

i=1

θiθ jk ((Ai + ΔAi )εe

− (Ai + ΔAi + Bi K j )e(tk) − Bwi w)

∥∥
∥∥

�
r∑

i=1

θiθ jk ‖Ai + ΔAi‖ ‖εe‖

+
r∑

i=1

θiθ jk

∥∥(Ai + ΔAi + Bi K j )
∥∥ ‖e(tk)‖

+
r∑

i=1

θiθ jk

∥∥Bwi

∥∥ ‖w‖

� c1 ‖εe‖ + c2 ‖e‖ + c3 ‖w‖

where

c1 := max
i∈IR

(‖Ai‖ + ‖Di‖ ‖Ei‖)
c2 := max

(i, j)∈IR×IR

(‖Ai‖ + ‖Di‖ ‖Ei‖ + ∥
∥Bi K j

∥
∥)

c3 := max
i∈IR

∥∥Bwi

∥∥ .
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Because of εe(tk) = 0, the comparison lemma yields

‖εe‖ � 1

c1
(c2 ‖e‖ + c3 ‖w‖)

(
ec1(t−tk ) − 1

)
.

Solving the inequality, we obtain

tk+1 > tk + 1

c1
ln

(
1 + c1 ‖εe‖

c2 ‖e‖ + c3 ‖w‖
)

> tk + 1

c1
ln

(
1 + c1 ‖P‖ ‖e‖

c2 ‖e‖ + c3 ‖w‖
)

where c1, c2, c3 are positively finite. Therefore, for any k ∈
Z�0, tk+1 − tk > 0. This completes the proof. ��

4 A Numerical Example

The parameters for Eq. 6 are set as follows:

a11 = 0.7, a21 = 2.1, a12 = 1.7, a22 = 5.1

a13 = −0.2, a23 = 0.2, a14 = −0.2, a24 = 0.2.

In addition, we introduce the following uncertainty, the dis-
turbance, and the controlled output for Eq. 7, parameterized
as

ΔAi =
⎡

⎣
0 0 0

0.09δ 0 0
0 0 0

⎤

⎦ , Bwi =
⎡

⎣
0.1
0.1
0.1

⎤

⎦

Czi = [
0.1 0.1 0.1

]

where δ � |δ| � 1 randomly varies over time. According to
Assumption 2, ΔAi is decomposed as

Di =
⎡

⎣
0
0.3
0

⎤

⎦ , Δi = δ, Ei = [
0.03 0 0

]
.

For Problem 1, the following L2 disturbance

w =
{
0.2 sin(5t), for 0.5 � t � 2.5

0, otherwise

is considered.

Fig. 2 Time responses of the closed-loop error posture of the WMR

Let γ = 0.5, κi = 0.1, λ = 0.05, σ = 0.05, ρ = 0.4, and
ρ = 2. The following controller gains are obtained through
Theorem 1

K1 =
[
0.3504 −0.3492 −8.3397
0.0213 0.3603 9.0552

]

K2 =
[
0.3667 −0.4126 −10.3738
0.0491 0.4022 9.5734

]

K3 =
[
0.3741 −0.3005 −7.0670
0.0248 0.3988 10.1102

]

K4 =
[
0.3729 −0.2095 −5.1207

−0.0117 0.4600 10.7983

]

K5 =
[
0.3929 −0.4072 −9.7786
0.0286 0.4743 11.4819

]

Fig. 3 Energy-to-peak disturbance attenuation performance:√
eT(0)Pe(0) + γ ‖w‖2 (dashed (red)) and ‖z‖∞ (solid (blue))
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K6 =
[
0.4193 −0.5125 −12.9243
0.0735 0.5254 12.4182

]

K7 =
[
0.4241 −0.3340 −7.8688
0.0239 0.5425 13.3227

]

K8 =
[
0.4232 −0.1951 −4.6053

−0.0333 0.6183 14.5886

]

K9 =
[
0.5294 −0.5946 −14.2628
0.0564 0.6087 15.7089

]

K10 =
[
0.5808 −0.7989 −20.0466
0.1388 0.6732 17.1337

]

K11 =
[
0.5989 −0.5320 −12.5214
0.0629 0.7208 18.7482

]

K12 =
[
0.6021 −0.2888 −6.6145

−0.0411 0.8237 20.6653

]

K13 =
[
0.6701 −0.7829 −18.9559
0.0874 0.9009 22.9529

]

K14 =
[
0.7650 −1.1476 −28.9424
0.2326 1.0011 25.6495

]

K15 =
[
0.7873 −0.6738 −15.9035
0.0731 1.1158 28.6405

]

K16 =
[
0.8039 −0.2641 −5.4255

−0.1122 1.3003 32.7024

]
.

(i) Reference velocities are set as

[
vr
ωr

]
=
[
5(1 − 0.5e−0.1t )

2(1 − 0.5e−0.1t )

]

to generate the reference trajectory (dash-red) for Eq. 2 with
qr(0) = (5, 0, 0) shown in the lower-right subfigure of Fig. 2.

Fig. 4 Time responses of firing strengths: θi (dashed-red), [ρθi , ρθi ] (filled-light red), θki (solid-blue)
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Fig. 5 Event-triggered aperiodic sampled-data control inputs

It is also shown that the controlled trajectory (solid-blue)with
q(0) = (5.1.0.1, 0) is accurately directed to the reference tra-
jectory. The other subfigures in Fig. 2 depict the closed-loop
time responses of Eqs. 5, 8, 9, where all the error posture vari-
ables are well bounded in the presence of the L2 disturbance
and parametric uncertainties. As shown in Fig. 3, ‖z‖∞ is
smaller than

√
eT(0)Pe(0)+γ ‖w‖2 for all t f ∈ R�0, imply-

ing the proposed controller satisfies the L2–L∞ disturbance
attenuation performance in Eq. 10 over the entire simulation
time horizon. It is visible from Fig. 4 that every θik (solid-
blue) is present between the interval [ρθi , ρθi ] (filled-light
red). Hence, Eq. 12 holds.

(ii) Figure 5 illustrates the ETC inputs for Eq. 8, where the
control inputs are piecewise-constant but their time intervals
are uneven. Figure 6 depicts the event-triggering interval
versus the event-triggering instant. The discrete-time sig-
nal does not converge to zero, indicating that the proposed
controller operateswell in a sampled-datamannerwithout the
Zeno behavior affecting the sampling process. Thus, the pro-
posed controller is implementable. In summary, Problem 1
is solved.

5 Conclusions

Leveraging the T–S fuzzy technique, this paper tackled the
sampled-data nonlinear tracking control problem in WMRs.
It is stressed that (i) the energy-to-peak disturbance attenua-
tion was taken into consideration; and (ii) the ETC technique
was adopted to overcome the unavailability of the exact
discrete-time model of a WMR dynamics. The numerical

Fig. 6 Event-triggering instants and intervals

example demonstrated the efficacy of the proposed method,
highlighting its potential to enhance the performance of
autonomous agricultural vehicles and contributing valuable
insights to the field of agroforestry automation.
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