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Abstract
This paper extends downlink multi-user massive multiple-input-multiple-output (MIMO) with maximum ratio transmis-
sion (MRT) precoding for rapidly movable railway and maritime terminal in multi-cell environment and analyzes its outage 
probability. In a railway & maritime adjacent multi-cell environment, especially for users (regarded as railway train or ship 
terminal) at the cell edge, inter-cell interference (ICI) causes the performance degradation of communication quality. There-
fore, it is necessary to establish an analytical model to consider the above-mentioned problem. In this paper, we analyze the 
signal-to-interference and noise ratio (SINR) distribution of downlink multi-user massive MIMO with MRT precoding in a 
movable railway & maritime adjacent multi-cell environment and derive a new mathematical formula for the outage prob-
ability. We also compare the derived results with simulation results to confirm their consistency.

Keywords Railway and Maritime adjacent multi-cell · Massive MIMO · Precoding · Probability

1 Introduction

Massive MIMO has emerged as a critical technology for 
next-generation wireless communication systems. It enables 
users to share the same frequency resources simultaneously 
using large-scale array antennas at the base station [1] [2]. 
Precoding is crucial in massive MIMO as it suppresses inter-
user interference and improves antenna gain. MRT precod-
ing has received much attention among various precoding 
techniques due to its simplicity in signal processing [3] [4]. 
For example, it was shown that MRT outperforms ZF in low 
SNR regions and when the ratio of the number of BS anten-
nas to the number of users is small.

The performance of a massive MIMO system is often 
evaluated using metrics such as achievable data rate and sig-
nal-to-interference-plus-noise ratio (SINR) [3, 4, 7]. Addi-
tionally, the outage probability, representing the probability 
of SINR falling below a statistical threshold, is a critical 
indicator for assessing communication stability. Although 
simulation approaches are practical, performance evaluation 
of massive MIMO systems using them requires extensive 
time due to the system's increasing complexity with the 
number of antennas. To perform accurate and efficient per-
formance analysis of Massive MIMO, it is necessary to for-
mulate the analysis considering inter-cell interference (ICI), 
which significantly affects communication quality at cell 
boundaries. This enables more precise and comprehensive 
analysis, contributing to developing next-generation wireless 
communication systems. Recently, LTE-railway and LTE-
maritime are also considered the cell-edge performance for 
achieving the broadband data transmission [8]-[13]. How-
ever, in this system, down link signals are directly transmit-
ted from overlapping multi-cells to users, trains & ships, 
thus although ICI is very severe, statistical modeling or anal-
ysis is still insufficient situation. While existing analytical 
models of traditional massive MIMO-OFDM with MRT pre-
coding have been proposed [14] [15], they are also mainly 
limited to a single-cell environment and need to consider 
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ICI adequately. To address this issue, this paper presents a 
new mathematical model for the outage probability of MRT 
precoding in a movable railway & maritime terminal adja-
cent multi-cell environment that considers ICI. Additionally, 
we analyze the SINR distribution of MRT precoding in the 
same environment to comprehensively understand system 
performance. By utilizing this analytical approach, we can 
simplify the performance analysis and improve the accuracy 
of our evaluations, providing valuable insights for devel-
oping next-generation railway & maritime based wireless 
communication systems.

2  System Model

Precoding is a technique that exploits transmit diversity 
by weighting the transmitted data. It enables IUI suppres-
sion and user (regarded as railway train or ship terminal) 
multiplexing for simultaneous connections. In a multi-user 
MIMO, linear precoding techniques include MRT, ZF, and 
transmit Wiener precoding. However, MRT precoding is 
famous for its ability to maximize the signal-to-noise ratio 
(SNR) with simple signal processing. In this paper, we ana-
lyze a massive MIMO system with MRT precoding. Also, 
we assume a downlink multi-user massive MIMO system 
in a movable Railway & maritime terminal adjacent multi-
cell environment, where the number of base station (BS) 
antennas is Mi(Mi ≥ 100) , the number of users is Ki , and the 
number of antennas per user is Ni in the i-th cell as shown 
in Fig. 1.

At railway and marine terminals, there are numerous mul-
tipaths due to sea level, cargo, and other factors. Therefore, 
Rayleigh flat-fading channel is considered. hi,j(u, r) ∈ ℂ

1×Mi 
denotes the channel vector from the BS of the j-th cell to 
the r-th antenna of the u-th user in the i-th cell. Each entry 
of the channel vector is independent and identically distrib-
uted (i.i.d) following CN(0, 1) , which means the symmetric 
complex Gaussian distribution with zero-mean and unit-var-
iance. We also assume the estimated channel state informa-
tion (CSI) is perfect. The channel matrix Hi,j is expressed as

In this model, different signals are transmitted to each 
user's antenna so that the data symbol vector Xi is repre-
sented as

Signal power is normalized to �
(||xi(u, r)||2

)
= 1 , where 

� means the expectation operation. Since MRT precoding is 
a method of multiplying the Hermitian transpose of the 
channel matrix H by the data symbol vector X , the received 
signal matrix Yi becomes

where Pi is the average total transmit power of the BS 
in the i-th cell, (∙)H denotes the matrix Hermitian trans-
pose, the second term is the inter-cell interference (ICI) 
received from the other L − 1 cells and the third term 
Zi =

[
zi(1, 1),⋯ , zi(Ki,Ni)

]T
∈ ℂ

KiNi×1 is the additive white 
Gaussian noise (AWGN) vector, each element follows 
CN(0, 1) . In this model, the $u$-th user is assumed to be at 
the cell edge and each cell has the same number of users. 
In this case, since ICI distribution has the same distribution 
of IUI, the total interference can be expressed as the form 
of ICI and IUI multiplication. Here, we define the � as the 
power ratio of ICI and IUI. Therefore, the received signal at 
the r-th antenna of the u-th user is expressed as
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Fig.1  System model
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where the first term is the desired signal, the second term is 
the interference signal and the third term is noise. From (4) , 
the SINR for the r-th antenna of the u-th user is

3  Outage Probability Analysis

3.1  Interference Signal Distribution

The interference signal power of the r-th antenna of the u-th 
user is as follows,

Equation (6) is the sum of KiNi − 1 streams, each stream 
follows a gamma distribution �(x;1, 1) . The gamma distribu-
tion is the following distribution as

where k is called the shape parameter and � is called the 
scale parameter. Taking into account the distribution and 
correlation of each stream from [16], the probability density 
function (PDF) in (6) can be expressed as

where

From (8) , the expectation and variance of Ui(u, r) are cal-
culated as

Equation (8) is an addition of infinite terms, however in 
practice, it can only be computed with finite terms. Therefore, 
using the Taylor expansion, the PDF of Ui(u, r) can be rewrit-
ten as follows,

(5)
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Mi√
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3.2  Desired Signal Distribution

Next, we consider the desired signal. The amplitude of the 
desired signal 

√
Di(u, r) for the r-th antenna of the u-th user 

is normalized as

Observing (12) , this equation follows a gamma distribu-

tion �
(
x;Mi,

1

Mi

)
 . The power is obtained by squaring the 

amplitude. Therefore, the expectation and variance of the 
desired signal power Di(u, r) are as follows,

3.3  SINR Distribution and Outage Probability

Substituting (11) and (12) into (13) , SINR is expressed as

Consider the distribution of Equation (15) . Di(u, r) has 
zero-variance when Mi → ∞ from (14) , meaning that the 
desired signal power becomes deterministic in a massive 
MIMO system with a very large number of transmit anten-
nas. On the other hand, for 1 + (1+�)Pi

KiNi

Ui(u, r) = Ii(u, r) , the 
variance is calculated from (10) , as follows

Observing (16), Var
(
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)
 is non negligible value 

when Pi,Ki,Ni take reasonable values, and is significantly 
larger than the variance of the desired signal power when 
(1 + 𝜉)
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i
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Therefore, it can be seen that the distribution of (15) is 
highly dependent on the distribution of the interference 
signal power. Moreover, Di(u, r) is assigned the expected 
value, and Ui(u, r) is treated as a random variable following 
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the PDF in (11) . Outage probability is defined as the prob-
ability that the SINR is less than the threshold SINR �th . Let 
�th is the threshold SINR, and the outage probability Pout is 
expressed as

where ℙ means the probability and � =
Mi+1

�th(1+�)
−

KiNi

Pi(1+�)
. 

Using (11) , the outage probability can be formulated as

4  Performance Comparison

The simulation parameters are listed in Table 1. Figure 2 
shows the PDF of the interference signal power for simula-
tion and theoretical results. Observing Fig. 2, the PDF of 
the simulation and theoretical results is tightly matched.
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Figure 3 shows the outage probability per users. Out-
age probability is getting worse as the number of users 
increases. On the other hand, the system sum rate increases 
monotonically with the number of users. This shows the 
importance of outage probability analysis.

Figure  4 shows the outage probability for various 
number of BS antennas. The outage probability rapidly 
improves with increasing the number of BS antenna. It 
can be also seen that the outage probability differs signifi-
cantly depending on the amount of ICI power. For achiev-
ing the outage probability of 10−2 the required number of 
BS antennas for ICI power of 0 dB, −10 dB, −20 dB is 
890 , 510 and 460 , respectively. This indicates the need for 

a mathematical model that takes ICI into account.
Figure 5 shows the outage probability per SNR when 

Mi = 500 . We can see that outage probability improves 
with increasing transmit power. However, it does not 
decrease to zero. This is because the interference power 
increases as the transmit power increases. Therefore, it is 
found that increasing the number of transmit antennas is 
the most effective way to improve the outage probability.

Table 1  Simulation parameters

Parameters Values

Number of BS antennas M 256

Number of users K 15

Number of antennas per users N 2

Average total transmit power P 10dB

Threshold �
th

10dB

Fig. 2  Interference power distribution

Fig. 3  Outage probability per number of users for various ICI power 
of 0 dB, −10 dB, −20 dB
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5  Conclusion

In this paper, we have analyzed a downlink multi-user mas-
sive MIMO system with MRT precoding for railway and 
maritime terminal in multi-cell environment and derived the 
mathematical formula for the outage probability. From the 
simulation result, we confirm that the derived mathematical 
formula is well matched. We also confirmed that increas-
ing the number of BS antennas is the most effective way 
to improve the outage probability for MRT precoding. We 
were able to demonstrate the need for an analytical model 
that takes ICI into account, which is a novelty of this paper. 
By using the derived formula, the number of transmit anten-
nas, the number of receive antennas, and the transmitting 

power can be determined when designing a system or fore-
seeing the movable Railway & maritime communication 
environment.
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