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Abstract
With a high death rate, oral cancer is a major worldwide health problem, particularly in low- and middle-income nations. 
Timely detection and diagnosis are crucial for effective prevention and treatment. To address this challenge, there is a growing 
need for automated detection systems to aid healthcare professionals. Regular dental examinations play a vital role in early 
detection. Transfer learning, which leverages knowledge from related domains, can enhance performance in target categories. 
This study presents a unique approach to the early detection and diagnosis of oral cancer that makes use of the exceptional 
sensory capabilities of the mouth. Deep neural networks, particularly those based on automated systems, are employed to 
identify intricate patterns associated with the disease. By combining various transfer learning approaches and conducting 
comparative analyses, an optimal learning rate is achieved. The categorization analysis of the reference results is presented 
in detail. Our preliminary findings demonstrate that deep learning effectively addresses this challenging problem, with the 
Inception-V3 algorithm exhibiting superior accuracy compared to other algorithms.
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1  Introduction

Oral cancer is a severe global health issue, with a high 
mortality rate, particularly in lower- and medium-income 
nations. Early detection and diagnosis are crucial for 

improving survival rates. Automated detection systems uti-
lizing deep neural networks have shown promise in identi-
fying patterns associated with oral cancer. Transfer learn-
ing, which leverages knowledge from related domains, can 
enhance the performance of such systems.
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An inability to treat oral cancer has indeed been proven 
[1]. In the initial phases of mouth cancer, known as ulcers, 
sterile cells can be found in the oral tissue. Dead cells are 
found in remote areas or within the body whenever it comes 
to metabolic activities. 90% of crab cells are categorized as 
oral cancer, one of many forms of cancer [2]. The attrac-
tiveness designs and preconceptions that do not necessitate 
discoloration can be used to detect physiological models, 
and also clinical forms of linked and lesion-free tumor 
types. Machine learning algorithms were used to anticipate 
numerous physiological concepts for oral cancer, which were 
used to categorize non-cancerous and cancerous specimens, 
which were then evaluated for the oral cancer stage [3]. To 
determine the validity of the connection, the causal factor 
will use three rationalization screening tests and different 
stages of cancer. The early identification of oral cancer is 
aided by the ability to use sample reasoning to assess tumor 
parts and the emergence of lesions in the tissues [4].

One does not require any specialized equipment to per-
ceive the oral cavity. The graphic representations of can-
cerous tumors are used by experts in medical care to make 
suspicious diagnoses and treatments of oral cancer [5–7]. 
Generally, oral cancer tumors are white spots accompanied 
by red patches or mixed white spots in a few instances. 
Often, the mucous membrane surface becomes increasingly 
uneven, granular, and inflamed. Other types of oral mucus 
diseases may be mistakenly interpreted by non-specialist 
medical personnel, however [8]. There is no founded eye-
sight method for detecting oral cancer. Even in developed 
nations, general practitioners and community-based settings 
may not have access to oral biopsy, which can take a very 
long time but is not always available [9]. To put it another 
way, many people with Oral Cancer are unable to get timely 
diagnoses and referrals. These findings suggest that deep 
learning may be able to catch perfectly alright facets of oral 
cancer lesions, which could be helpful in the early detection 
of the disease.

In the theory of transfer learning, understanding or details 
from a related discipline can be transmitted to enhance an 
idea in a different domain, which is the basis of the concept. 
Think about 2 different people who want to learn the flute 
[10]. When it comes to music, one of the people involved 
is completely a novice while the other is an accomplished 
satirist. Learning to play the flute will be easier for some-
one who has previously studied music because of their prior 
musical training. We determined by calculating computa-
tional efficiency and especially in comparing the prototype 
to the expected mean of six oral cancer experts on clinical 
test data on both internal and external validation datasets. 

Using a deep learning model, we were able to identify dis-
tinct visual patterns in oral cancer lesions. Oral cancer can 
now be detected at the point of service in a less invasive, less 
expensive, and more effective way.

The transfer learning improves histopathologic predic-
tion of oral cancer based on oral squamous cell carcinoma 
biopsies. The study's limitation lies in its reliance on a spe-
cific type of cancer biopsy, potentially limiting the generaliz-
ability of the findings. Additionally, the performance of the 
transfer learning approach should be validated on larger and 
more diverse datasets to assess its robustness [11]. The lack 
of real-time data integration, the small sample size, and the 
lack of external validation in the deep transfers learning-
driven approach to oral cancer detection and classification 
research all have an impact on how generalizable the find-
ings are [12].

1.1 � Organization of the Paper

The remaining paragraphs are organised as follows: The out-
line of several traditional strategies is provided in Sect. 2 
[13–17]. A thorough discussion of the suggested technique 
is given in Sect. 3. The outcomes of the approach are shown 
in Sect. 4. Section 5 provides a conclusion to the technique 
that has been provided.

2 � Relevant Work

The image-based computer-controlled prognosis of oral 
cancer has been dominated by unique imaging techniques 
including computed tomography, multispectral imaging, and 
fluorescence intensity imaging. According to a few studies 
as shown in Table 1, the majority of which are focused on 
oral lesions, white-light photography can be used to identify 
them. Initially used methods and resources for cancer detec-
tion, classification, and machine learning approach evalua-
tion are largely covered in the associated analysis. Conse-
quently, finding oral cancer is critical to the diagnosis of the 
disease. Deep Learning approaches are now being used to 
better understand how oral cancer progresses at each stage.

3 � Methodology

For the categorization of oral cancer patients, this patient 
was pressed into service in an algorithm that generated two 
terms of enhancement ranging from 0 to 1.
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To create reliable identification and categorization net-
works, it was required to employ models that were previ-
ously trained on the ImageNet dataset, which contains tens 
of millions of photos, and then adjusted on the creation 
of the dataset. TensorFlow is a multi-purpose, large-scale 
machine learning system. To define processing, shared 
states, and the operations which modify that states, Ten-
sorFlow employs stream processing graphs. We used all of 
TensorFlow's packages to categorize Oral Cancer in this 
analysis as listed in Table 2.

Oral cancer images were separated from non-oral cancer 
images for this paper. Scaling, horizontal flipping, saturation 
changes, and exposure modifications were all part of the 
image's preliminary processing. There were no validation 
datasets that went through this procedure. Reduced network 
training time and reduced overfitting are two advantages of 
our deep learning method based on transfer learning. All of a 
picture's pixels must be classified by semantic segmentation, 
which includes the background. Lesion limits and pixel-by-
pixel segmentation of skeletal anatomy can be delineated 
with advanced automation diagnostic systems thanks to this 
feature. Although semantic segmentation can be effective 
for finding lesions in pictures of the oral cavity, it cannot 

distinguish between the many lesions that could be shown 
in a picture.

3.1 � Proposed System for Detection of Oral Cancer 
Using CNN

Data mining is the process of discovering patterns in huge 
datasets through computation. This approach combines 
machine learning, database management systems, deep 
learning, and statistical data. For data mining to be useful, 
it must be possible to extract data from large datasets and 
then apply transformations to create a memorable struc-
ture. The main contenders for this classification algorithm 
are large medical data sets. To accurately diagnose and 
predict oral cancer in a patient, a variety of data mining 
methods are employed simultaneously.

The purpose of data mining is to identify the most 
efficient technologies and methodologies for classifying 
data. Categorization is ultimately accomplished through 
the use of a machine-learning approach known as CNN. 
The participant's diagnosis helps determine whether or not 
the disease can be successfully treated as shown in the 
figure. Figure 1 illustrates the block diagram of oral cancer 
detection using Convolutional Neural Networks (CNN). 

Table 1   Relative approach Si. No Author Approach

1 FatihahMohd et al. [18] Naïve Bayes, Multilayer perceptron, KNN & SVM
2 Ahmad LG et al. [19] ANN & SVM
3 HarikumarRajaguru and Sunil Kumar 

Prabhakar [20]
Multilayer perceptron & Gaussian mixture model

4 Marc Aubreville et al. [21] Convolutional neural network
5 Shreyansh A et al. [22] Convolutional neural network [Accuracy- 88.46%]
6 Martin Halicek et al. [23] Convolutional neural network [Accuracy- 80%]
7 Wafaa K. Shams and Zaw Z. Htike [24] Machine learning [SVM & MLP]

Table 2   Basic TensorFlow 
packages

Si. No Packages

1 Import tenserflow as tf
2 From tensorflow.keras import models, layers
3 From tensorflow import keras
4 From tensorflow.keras import preprocessing
5 From tensorflow.keras import layers
6 From tensorflow.keras.models import sequential
7 From keras.layers import dense, dropout, flatten, conv 2D, maxpool 2D
8 From tensorflow.keras.optimizers import RMSprop
9 From tensorflow keras.layers import dense, dropout, flatten, conv 2D, maxpool 2D
10 From tensorflow.keras.callbacks import earlystopping
11 From tensorflow.python.ops.numpy_ops import np_utils
12 From tensorflow.keras.layers.experimental import preprocessing
13 From tensorflow.keras.preprocessing.image import load_img
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The diagram shows the overall workflow of the detection 
process, starting from input data to the final prediction. 
The input images are processed through multiple layers of 
convolution and pooling, followed by fully connected lay-
ers for classification. The output represents the prediction 
of oral cancer presence or absence.

3.2 � Dataset

This dataset is divided into two parts. People with cancer 
with oral cancer are included in the first data set, which 
includes samples from both healthy and cancerous indi-
viduals. Test results of healthy individuals and test results 
of healthy oral cavities in cancer patients are included in 
the second data set. This division provides a sense of how 
things are progressing. Tolerable highlights for cancer of the 
mouth are included in this index. This information includes 
the usual high points. The data on oral cancer is gathered 
from a single clinic or a variety of disease organizations as 
listed in Table 3. Several different types of oral cancer data 
are involved, including those from the brain, mouth, and 
throat. Using UTI medical data sets, medical data relating 
to oral cancers can be acquired.

Each of the three describes a range of classifications, 
mild, moderate, and severe, which is represented by a total 
of 30 photos in the oral data source, which is evaluated in 
the same way for all 30 individuals. Each patient's anomalies 

Fig. 1   Block diagram of oral 
cancer detection using CNN

Table 3   Attributes of input

Demographic features Age
Gender
Ethnicity
Quid chewing
Tobacco chewing
Alcohol drinking

Clinical features Bleeding
Mouth burning sensation
Difficulty in swallowing
Loosening of teeth
Hoarseness invoice

Histopathological features Squamous cell carcinoma
Benign
Predisposing factor

Table 4   The number of instances and the area of interest (ROI) for 
both normal and suspicious cases

Number of ROI Number 
of cases

Normal 45 30
Suspicious 56 30
Total 101 60
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and normal mucosal regions are shown in Table 4 (RoI: 
Region of Interest) (54 patients in total in both datasets).

3.3 � Pre‑processing

When data mining methods are employed in the pre-pro-
cessing stage, they can help to find target data by analyzing 
a large data set. Cleaning data, integration, transformation, 
reduction, and discretization are all processes that fall under 
the purview of the pre-processing step. Noise is removed 
from the data during the data cleaning stage, and the data 
is made consistent and coherent. This method includes the 
detection of absent values as well as the detection of outliers.

•	 Data integration: This is accomplished through the use 
of data boxes or folders, as well as numerous distinct 
databases.

•	 Data transformation: This refers to the process of stand-
ardizing and consolidating data.

•	 Data reduction: As a result, the volume is significantly 
reduced yet the quality of the analytical data obtained is 
unaffected.

•	 Data discretization: As a consequence, statistical quali-
ties and numerical features of a collection of data are 
substituted for each other.

In the actual world, data is scarce, untrustworthy, and 
cluttered, to name just a few drawbacks of the data available. 
Pre-processing in data analysis is a regular effort to fill in 
the gaps and level out the noise where there is a paucity of 
data. Anomalies and mistakes in data are found at this phase. 
A global constant can be used to replace all of the missing 
data, or it can be used to replace them all separately.

3.4 � Fuzzy C‑Means Clustering

Cascading refers to the process of grouping objects based 
on similarity. In terms of exploratory data mining, there is 
no more important task than this. Clustering is one of the 
most typical descriptive jobs, in which a limited number of 
clusters are used to describe data. The process of clustering 
includes putting things together that share similar features. 
The approach uses the mean of each cluster. In a cluster, 
similar data points are gathered together. A fuzzy clustering 
method known as C-Means is employed in the current analy-
sis. Fuzzy Partitioning is a feature of FCM, which stands 

for Fuzzy Clustering. In this situation, particular informa-
tion can be included in any groups that have various grades 
of involvement ranging from 0 to 1. Incremental design is 
inherent in FCM. Its goal is to locate centroid or cluster 
centers to reduce the effect of the measure of differentiation.

3.5 � Feature Selection

To increase classification accuracy, just a subset of the char-
acteristics in a dataset is considered for inclusion in a fea-
ture selection model. Feature selection is important before 
investigations including medical data related to oral cancer. 
The method of feature selection identifies characteristics that 
are relevant and improve the classifier's performance. Fea-
ture extraction can be used to uncover patterns in data and 
emphasize the commonalities and differences in the data. 
Contrast this with strategies that use information from a 
variety of classes.

3.6 � Neural Networks

Image categorization is improved by employing a variety of 
neural network topologies. VGG16, VGG19, DenseNET121 
and DenseNET169 are used, as are EfficientNetB0, Effi-
cientNetB1 and EfficientNetB2 as well as InceptionV3 and 
ResNet101. These include ResNetV3, Mobilenet, Exception, 
and Dense neural networks.

In the long run layer, DenseNet combines the output from 
previous layers. One can choose from several Dense Net edi-
tions to meet your specific needs. It is the number of layers 
employed in each version that differentiates between them 
as shown in Fig. 2. It is necessary to use a combination of 
several DenseNet layers to get the best results.

After the success of ResNet, the idea for InceptionResNet 
was born. As a result, a hybrid model of origination was 
born. InceptionResNetv1 is the first version, Inception-
ResNetv2 is the second, and Inception ResNetv3 is the final. 
Inception ResNetv3 before our analysis.

ResNet: More layers are added in Convolutional Neural 
Networks to enhance quality and precision. Incorporating 
these layers is done so that the result will be more accu-
rate and the loss will be decreased. According to Fig. 3 and 
4, which uses picture identification as an example, the first 
layer recognizes edges, the second layer recognizes textures, 
the third layer recognizes objects, and so on. Rather, the 
standard deep neural networks model has been found to have 
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Fig. 2   CNN Architecture

Fig. 3   Architecture of Incep-
tionResNet
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a good depth threshold. ResNet's Skip associations feature 
resolves the problem of DNN gradients fading by providing 
a fast route for the slope to travel through.

The first convolution is divided into depth-wise and point-
wise convolutions by Energy Channels to reduce the cost 
of computation and ensure maximum accuracy. It then uti-
lizes sequential initiation in the final layers of all blocks to 
eliminate Relu losses before expanding and then constrict-
ing channel lengths to bypass levels with fewer channels as 
shown in Fig. 5. From B0 to B7, the Efficient Net model 
family includes eight models, each with a different number 
of parameters and degree of accuracy. Models from B0 to 
B7 were used for this analysis. Using the InceptionV3 frame-
work, CNNs can be built with 48 layers. Pre-trained with 
images from ImageNet, it was able to quickly and accurately 
classify creatures in our images.

VGG Network: Convolutional neural networks, in which 
integrated pictures smartly quantify the convolution layer, 
flattening, pooling, and fully-linked layers before removing 
the CNN images are trying to separate the picture will be 
used first as shown in Fig. 6. It is necessary to use the image-
adding process if Convolutional networks were built from 
the ground up. Consequently, VGG-16, one of the model 
variables, is often used in our analysis to detach the picture 
and evaluate training and validation information's accuracy.

In this type of factorization, depth-wise separate and 
distinct convolution is used. Mobile Net is unique in that 

it requires less computational power to run and apply to 
learn than traditional networks. It's for this reason that 
machines without GPUs or with limited calculation effi-
ciency are ideal candidates for this algorithm as shown 
in Fig.  7. There are three versions of the Mobile Net 
architectural style: MobileNet-V3, MobileNet-V1, and 
MobileNet-V2. MobileNet-V2 and MobileNet-V1 use 53 
layers of classification for classifications. Contrasted to 
MobileNet-V2, and MobileNet-V1 is particularly faster.

3.7 � Performance Evaluation Metrics

By determining and analyzing some metrics, the consistency 
of the system is measured and evaluated. Table 1 mentions a 
few of these variables. A small percentage of all oral lesions, 
like mouth sores or tongue lesions, have been studied in the 
available literature.

Sensitivity, precision, specificity, and likelihood of mis-
classification are used to evaluate the proposed system's 
performance. Mean square error, accuracy, and overall 
performance are all calculated using Eqs in the following 
Table 5. In the world of medicine, true negatives are people 
who have not been diagnosed with any disease (TN). False 
Negative patients, on the other hand, are predicted to be 
non-disease patients who have a disease (FN). True Positives 
are those who have the disease and have been diagnosed 
with it (TP). Finally, the False Positives are those patients 
who were expected to have the disease but were found to be 
healthy (FP).

4 � Result

The analysis of medical image analysis encompasses a wide 
range of application domains, including object recognition 
as one of several. Automated robotic navigation and decep-
tion, comprehension of geographic position, and many more 
applications have great potential. The Deep Learning Exper-
tise is a collection of courses designed to assist students to 
learn about the capabilities, problems, and repercussions of 
transfer learning and to get them ready to contribute to the 

Fig. 4   Basic ResNet50 Architecture

Fig. 5   Architecture of Incep-
tionV3
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advancement of cutting-edge AI technology. AI has boosted 
the medical sector's main strengths and technologies. Fig-
ure 8 displays the distinguishing feature between Oral Can-
cer & Normal.

After additional training on two datasets, we equated 
the accuracy and F1-score of the pre-trained CNN models, 
such as Inception Res-NetV2, Inception-V3, VGG-16, and 
ResNet-101. Table 6 presents the F1-Score, Recall, and Pre-
cision for Patches, Patients, and Roi. Datasets for the oral 
dataset are dominated by Inception-V3 and MobileNet F1. 
Even though MobileNet has the highest ROI, Inception-V3 
has the most patients. The finding from the Inception-V3 
test is the most accurate since the numbers of regions may 
vary from one person to the next. Recall and accuracy for 
patches, patients, and ROI are shown in Figs. 9, 10, 11 and  
12 for ResNet50, Inception-V3, VGG-16, and MobileNet.

The study presents a comparative analysis of different DL 
techniques for the predictions and diagnosis of oral cancer. 
The results indicate that Inception-V3 outperforms ResNet 
50, VGG-16, and MobileNet as regards F1-Score, Sensitiv-
ity, and Precision across various categories (patches, patient-
level, and region of interest). These findings demonstrate the 
advancement of the proposed work in improving the state-
of-the-art in automated oral cancer detection.

5 � Conclusion

It is always said that “happiness is the highest form of 
health” and one should always take care of his/her health 
in every way possible. Healthcare is one of the foremost 
domains in the current scenario which was needed to focus 
and development into the sector is the leading task. Out of 
these diseases, Cancer is one of the major diseases which are 
affecting human society rapidly. Oral cancer is a sensitive 

Fig. 6   Basic VGG Architecture

Fig. 7   Architecture of MobileNet
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disease and it needs to be prevented and cared for by early 
diagnosis. We have attempted to explore a technique that 
uses Deep Transfer Learning to automate the detection 
of oral cancer during the course of the research. Among 
the range of algorithms explored, including the sequential 
approach [convolutional neural network], ResNet-50, VGG-
19, and others, the prominent trends in the field of oral can-
cer detection involve the utilization of Inception-V3 and 
MobileNet architectures. Notably, the oral dataset exhibits 
impressive F1 scores. While MobileNet demonstrates the 
highest return on investment (ROI), Inception-V3 boasts a 

Table 5   Performance metrics of CNN classifier

Parameters Formula’s

Accuracy ACC = TP + TNTP + TN + FP + FN × 100%
Sensitivity Sensitivity = TPTP + TN × 100%
Specificity Specificity = TNTN + FP × 100%
Precision Precision = TPTP + FP × 100%
F-Score F = 2*Precision*Sensitivity Precision + Sensitiv-

ity × 100% respectively, G is the total number of 
variables

Cancer Non-cancer

Fig. 8   Segregation between Cancer & Non-Cancer

Table 6   Describe the F1-score, recall, and precision for patches, 
patients, and RoI

F1-Score Sensitivity Precision

ResNet 50
Patches 75.8 72.5 89.9
Patient 87.6 97.9 83.8
RoI 87.9 77.9 97.9
Inception-V3
Patches 86.9 79.7 92.9
Patient 96.8 98.7 94.9
RoI 94.9 84.8 97.8
VGG-16
Patches 85.0 65.8 83.8
Patient 93.0 94.7 92.9
RoI 93.8 85.3 93.2
MobileNet
Patches 86.8 78.5 84.3
Patient 95.3 93.8 91.4
RoI 96.8 87.9 98.8

Fig. 9   ResNet 50's performance measures for three parameters are 
displayed

Fig. 10   Inception-V3 performance measures for three parameters are 
displayed
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larger patient population. The accuracy of the Inception-V3 
test scores is particularly notable due to the variability in the 
number of regions across individuals.
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