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Abstract
Since Lithium-ion (Li-ion) batteries are frequently used for real-time applications, evaluating their State of Health (SoH) 
is crucial to guarantee their effectiveness and safety. Model-based methods with SoH prediction are helpful. However, the 
issues with battery modelling have led to a greater dependence on machine learning (ML). As a significant step in assessing 
the effectiveness of ML techniques, data preprocessing has also drawn much attention. In this work, a new preprocessing 
method using relative State of Charge (SoC) is proposed; further, this paper describes a hybrid learning model (HLM) that 
combines auto-regressive integrated moving average (ARIMA), gated recurrent unit (GRU) and convolutional neural network 
(CNN). Data: proposed HLM uses time-series and SoC domain data; the ARIMA + GRU algorithm trains the time-series 
data, while CNN trains the SoC domain data. Both outputs are mean averaged to get the final output prediction. The proposed 
HLM is evaluated for root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error 
(MAPE) using the National Aeronautics and Space Administration (NASA’s) randomized battery usage data set (RBUDS). 
The results indicate that the recommended HLM is more accurate and has a smaller error margin than existing ML models.

Keywords  Machine learning · CNN · ARIMA · GRU​ · Energy storage devices · Li-ion batteries

1  Introduction

Global Carbonic Dioxide 2 (CO2) and climate improvement 
emissions declined twice as much in the last 20 years as in 
1945. At the end of the 2nd World War, demand for carbon 

fuels fell significantly in the last quarter of 2020 and the 
1st quarter of 2021. Despite this, the climate improvement 
was only temporary, and the rate of increase in greenhouse 
gas emissions (GHG) levels resumed when the worldwide 
economy recovered from the Coronavirus disease (COVID-
19) pandemic [1]. They are concerned about intermittent 
renewable energy (RE) sources, including wind and solar 
energy. The planet progresses toward RE’s growing avail-
ability, efficiency, and economic performance; sustainable 
development goal 7 (SDG-7) is achieved as energy becomes 
more sustainable and available [2].

As a result, energy storage systems (ESS) should be used 
in conjunction with them. As a result, the ESS, which pro-
vides a real-world solution for network control and power 
stability, has grown in importance [3]. On the other hand, 
the current ESS lacks the infrastructure to understand and 
use energy fully. The ESS industry demands, among other 
things, innovations in power loss planning, long life (high 
battery uptime), and better Return on Investment (RoI). 
There has never been a more critical time for businesses to 
act quickly, optimize, and differentiate themselves in space 
or risk falling behind. Innovative technology progresses at 
a breakneck pace. There have been significant advances in 
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machine learning (ML) and deep learning (DL), from chat-
bots to generative modelling. Machines can now process and 
analyse a high volume of data with sophisticated methods 
for these concepts.

Energy storage device (ESD) is categorised as mechani-
cal, electrochemical, chemical, power systems, or heat trans-
fer, depending on the ESS used. Depending on the technol-
ogy and storage capacity, ESD is used for uninterruptible 
power supply (UPS), transmission and distribution system 
support (TDSS), or large-scale generation. The technolo-
gies that have recently received the most attention among 
electrochemical, chemical, and physical ESD are covered by 
UPS and TDSS. Sodium–Sulfur (Na–S), lead and advanced 
lead-acid, super-capacitor, Li-ion, and flywheel batteries are 
all examples of redox flow batteries. They are also examples 
of representative technologies. Lithium-ion (Li-ion) batter-
ies are now widely used. Battery Energy Storage System 
(BESS) is an ESS that includes batteries.

A BESS is an ESS that collects energy from multiple 
sources, stores it in rechargeable batteries, and then uses it 
later. The battery’s electrochemical energy is discharged and 
distributed to homes, electric vehicles (EV), and industrial 
and commercial resources if necessary. BESS is a hybrid 
system that includes hardware and lower and higher-end 
software. BESS is divided into (a) a battery system (BS), 
which is made up of individual battery cells that convert 
chemicals into electrical energy, and (b) battery manage-
ment system (BMS). The BMS ensures the safety of the 
battery system. It includes two components: (1) a battery 
cell health monitor that measures parameters and states such 
as State of Charge (SoC) and State of Health (SoH), and (2) 
an inverter/power conversion system (PCS) that checks the 
health of battery cells. It converts the direct current (DC) 
generated by batteries into alternating current (AC), which 
is distributed to facilities, and (3) an Energy Management 
System (EMS). EMS coordinates the work of a BMS, a PCS, 
and other BESS components. Within ESS, it is in charge of 
energy flow monitoring and control.

Depending on the application, the complexity of a BMS 
varies greatly. A simple fuel gauge integrated circuit (IC), 
such as those that can suffice in simple cases, such as single-
cell batteries in smartphones or e-book readers [4], using 
rudimentary methods, these ICs predict the battery’s cur-
rent SoC by measuring voltage, temperature, and current. 
The BMS must perform more sophisticated tasks in complex 
devices like EV cars. Advanced algorithms are yet required, 
for example, to find how far a ship can cruise without run-
ning out of energy. Measurement of basic parameters such 
as cell voltage, temperature, and current are needed.

Battery intelligence tools help diagnose problems by pro-
viding up-to-the-minute real-world information [5, 6]. All 
batteries can be checked remotely for battery life and reasons 
for downtime, if any, using real-time geo-tagging and data 

visualization tools. The battery intelligence platform per-
forms ‘Standard Cycling Tests’ for BMS benchmark meas-
ures and implements novel methods to improve the grid’s 
SoC accuracy in different states. Because of their versatility, 
Li-ion batteries have sparked interest among battery types. 
Electronic devices, EVs, and aircraft use environmentally 
friendly Li-ion batteries. A few benefits are energy, stabil-
ity, high energy density, long lifetimes, and environmental 
protection. Because these battery packs are part of a power 
supply device, their system performance declines and causes 
accidents if not checked. Because of this, computing how 
healthy a battery is in a way that is accurate and useful has 
become a pressing and significant issue.

Even though Li-ion batteries have few benefits, one of 
the main drawbacks is that their capacity fades over time. In 
addition, accurate monitoring and ability prediction is criti-
cal, as incorrect capacity predictions can result in permanent 
battery damage due to overcharging or over-discharging [7]. 
The BMS, on the other hand, is still a challenging problem 
worth investigating [8]; SoH, State of Function (SoF), and 
thermal management [9] are examples of typical BMS. One 
of the most analytical methods used during battery electrode 
clean production and manufacturing operation is the BMS 
prediction of SoH [10]. Its capacity and charge figure out a 
battery’s SoH and internal resistance, with the SoH defini-
tion derived from the following factors: [11–13]. The SoH 
battery is essential for deciding how quickly a battery’s abil-
ity fades. Therefore, finding the SoH of Li-ion batteries is 
essential to ensure their safety and reliability [14]. On the 
other hand, Li-ion batteries are composed of complex chemi-
cal systems influenced by the environment, such as ambient 
temperature, resulting in complicated SoH calculations [15]. 
Also, because battery capacity decreases in a way that is not 
linear, it is harder to predict SoH and RUL [16].

Many research studies have been investigated to arrive 
at an accurate prediction of SoH. The types of studies are 
model-based methods (MBM) and data-driven methods 
(DDM) [17]. By simulating the battery and accounting for 
core degradation, MBM calculates the SoH of a battery. 
Autor [18] presents a stochastic model for predicting bat-
tery cell deterioration. The suggested model is inspired by 
a Markov chain-based method, although it cannot be com-
pared to a Markov process because the transition probabili-
ties change depending on how many cycles a cell has com-
pleted. The proposed model can simulate the cell’s sudden 
loss of capability as they approach its end-of-life condition. 
Author [19] offers a SoC prediction method based on an 
Improved Extended Kalman Filter (IEKF) that is accurate 
and robust. An analogous circuit model is developed for 
offline parameter identification, and the Simulated Anneal-
ing-Particle Swarm Optimization (SA-PSO) algorithm is 
applied. Furthermore, noise adaptation, fading, and linear-
nonlinear filtering based on the standard EKF method have 
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been improved, and the mathematical model has been con-
ducted correspondingly. To deal with a model mismatch, 
a dual Kalman Filter (KF) is used for online parameter 
detection.

A study [20] used a state-space model; a method for 
predicting the battery SoH based on the discharge rate was 
proposed. A single advanced process with electrode material 
physics was used to assess a battery’s SoH, which decided to 
consider internal mechanical and chemical battery drain. The 
study proposes a cell-level lack of consistency evaluation 
system based on real-world EV operation data. Although 
this MBM helps predict battery SoH, due to the battery’s 
complex chemical reactions, designing a correct old model 
for Li-ion batteries is difficult. The state of Li-ion batteries is 
affected by working temperatures, anode materials, cathode 
materials, and other environmental factors. As a result, it’s 
hard to make an exact old model for Li-ion batteries [21].

DDM has proven excellent merits in engineering appli-
cations in recent years compared to the above-mentioned 
traditional dependency analysis methods [22]. Modified 
algorithms are based on KF. Particle filters, support vec-
tor regression (SVR) [23], neural networks (NN) [24], and 
fuzzy logic (FL) were used in the SoH analysis of battery 
cells. In recent years, NN has been the most rapidly emerg-
ing of these methods and has several benefits. For illustra-
tion, [25] created a new predictive model for the Li-ion bat-
tery lifespan using a feed-forward neural network (FFNN). 
A neural network was used by [26] to predict a battery’s 
short-term energy consumption. The most challenging part 
of expressing interactive degradation within battery packs 
is using multi-degradation data for system description. The 
most significant issue is high-dimensional (HD) data pro-
cessing. In this regard, DL has several benefits [27, 28]. For 
example, the recurrent neural network (RNN) is a traditional 
time-series model that efficiently and successfully deploys 
time-dependent relationship models. The ability to screen 
and support data about the degradation of long-term datasets 
can be used by an RNN’s historical data memory and ability 
to analyze relationships. This network [29] should achieve a 
model projection of the multi-degradation and an accurate 
SoH prediction with the support of DL. NN is being used 
increasingly to predict and measure the SoH of batteries.

Furthermore, [30] suggested a method for predict-
ing SoH using a type of RNN known as long short-term 
memory (LSTM). The proposed work predicts the remain-
ing useful life (RUL) of Li-ion batteries with only fewer 
data points. A dual extended Kalman filter (EKF) and 
fractional-order model (FOM)-based combined SoC and 
SoH prediction approach for Li-ion batteries is provided 
in [31]. An adaptive evolutionary method is used in their 
model to create a fractional 2nd-order RC model and to 
identify model limits offline. The SoC and SoH are both 
predicted using one of the dual filters, and the model 

parameters are updated in real-time using the other dual 
filter. A DNN-based RUL prediction method for multi-
battery RUL prediction is suggested in a systematic review 
[32]. The model is validated using data from Li-ion bat-
teries. For Li-ion battery RUL prediction, [33] proposes a 
hybrid Elman + LSTM method. The RUL of the battery is 
predicted using the hybrid Elman + LSTM method based 
on the battery’s capacity, cycle number, and discharge. 
They say that a simple way to figure out how much power 
a battery has is to use III-layer BNNs to figure out how 
much power it has.

Ohmic resistance, polarisation resistance, polarization 
capacity, and SoC are all inputs to the NN model. The SoH 
prediction is derived from the NN model’s output. Batter-
ies (LiFePo4s) were used to assess the model. The SoH 
prediction of the technique-based Artificial Neural Net-
work (ANN) pattern recognition structure was presented 
by [23]. The system is assumed to have voltage, tempera-
ture, capacity, energy, and an estimated SoC. When similar 
patterns appear, the ANN’s output predicts the SoH for 
Li-ion batteries.

Despite this impressive development, most research 
has improved classification accuracy by incorporating a 
detailed model and added parameters. As a result, even if a 
battery’s electrochemical factors are unknown, these meth-
ods are simple to implement. Since models do not consider 
battery features, their primary restrictions are their ineffi-
ciency and inaccuracy in predicting SoH. [34], researchers 
propose an improved pre-processing method for improv-
ing the effectiveness and precision of SoH prediction in 
ML models, considering how the Battery’s Energy Level 
(BEL) impacts the battery’s features. The proposed pre-
processing transforms time-domain data into SoC-domain 
data using a relative SoC conversion. This simple pre-pro-
cessing improves accuracy and efficiency using the same 
ML model. But even such systems have excellent room 
for improvement. The proposed paper presents a hybrid 
learning model (HLM) in this purview that integrates 
auto-regressive integrated moving average (ARIMA) with 
convolutional neural network (CNN) and Gated Recur-
rent Unit GRU to predict SoH from time series and SoC 
re-engineered data. The idea is to infuse the advantages 
of temporal attributes and battery features. The model is 
being experimented with using NASA’s RBUDS for per-
formance metrics such as root mean square error (RMSE), 
mean absolute error (MAE), and Mean Absolute Percent-
age Error (MAPE).

Furthermore, the proposed work is more accurate than the 
other models. The comparison models included SoC-based 
and Time-series-based [35]; The results show that the pro-
posed model performs better than the other models.

The main contributions of the proposed work are pre-
sented below:
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Contribution #1  Make a practical pre-processing method to 
enhance the accuracy and speed of SoH prediction in ML 
models, considering that the battery’s energy level affects 
the battery’s properties.

Contribution #2  Build a prediction method to make monitor-
ing platforms with limited computing power more accurate.

Contribution #3  To present a HLM that integrates 
ARIMA + CNN + GRU to predict SoH from time-series and 
SoC re-engineered data. The idea is to infuse the advantages 
of temporal attributes and battery features.

The organization of this article is as follows: Sect. 2 
presents the methodologies involved with a problem state-
ment and basic concepts. Section 3 discusses the proposed 
ARIMA + GRU + CNN + HLM. Section 4 describes the 
results and discussion of the tests, and Sect. 5 concludes 
this research.

2 � Methodologies

2.1 � Problem Definition

In the samples, ML aims to find the most suitable 
model.

{(
xi, yi

)}N

i=1
 , To determine the mapping from data 

to target output ‘y’, where ‘x’ represents the charging volt-
age curves, N represents the test and training sets, and ‘y’ 
represents the Li-ion battery’s output SoH; as a result, the 
Non-Linear Mapping (NLM) f(•) found as follows, Eq. (1):

All NN systems extract relevant data and derive long-
term relationships from time-series data. The time series 
prediction problem has been challenged using GRU, 
LSTM, and CNN. Using the network learning model 
(ARIMA + GRU + CNN), as shown in Fig. 1, a new hybrid 
NN is proposed in this article. The model is based on time 
series and SoC data streams. The model employs extensive 
pre-processing, DL, and accurate prediction. The following 
section presents the dataset, explains each phase of the pro-
posed model, and presents the evaluation summary.

2.2 � Battery Test Dataset

The randomized battery usage repository (RBUR) provided 
the battery training dataset (BTD) used in this investiga-
tion at NASA’s Ames Prognostics Center of Excellence. The 
data in this repository was first used to investigate when 
load profiles are randomized and capacity fades [36]. The 
LiFePo4 battery dataset was used in this study. An III-layer 

(1)yi = f
(
xi
)

BPNN is proposed as a simple approach to predicting the 
SoH of a battery. The ohmic resistance, polarization resist-
ance, polarization capacity, and SoC are inputting into the 
neural network (NN) model.

The SoH prediction is generated by the model’s output. 
The model is evaluated using LiFePo4 batteries as the power 
source. Table 1 below summarizes the battery dataset. A 
trade-off exists between the higher energy density and the 
cells’ limited life span. The task of cycling and character-
izing is described further below. The batteries were divided 
into 7 groups of 4, each starting a distinct randomized 
cycling operation. Groups 5–1 were cycled at ambient tem-
perature throughout the experiment results, while groups 
2–3 were cycled at 40 °C. Discharge curves were used to 
carefully consider capacity as a predictor of cell health in all 

Fig. 1   Battery data smoothed histograms demonstration times, charge 
throughput, currents, voltages, and temperatures

Table 1   A summary of the dataset

Manufacturer LG chem

Factor of from 18,650
Chemistry Comparing lithium 

cobalt oxide and 
graphite

# Cells 26
#Q Trials 950
Q Array (Ah) 2.100.80
Period 7 regime-specific groups
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case scenarios during the regular interval tests performed, 
and a 2A charge–discharge cycle was implemented (Roughly 
1 °C) between the cell voltage levels. All cells had 950 dis-
charge curves, 30 per cell. We chose group 3 for this study 
experiment, including #RW9, #RW10, #RW11, and #RW12.

The column labeled “#Q-samples” denotes the estimated 
number of health transitions and capacity scales. Values for 
the maximum nominal and minimum final capacities are 
displayed in a row ‘Q-range’.

Four 18,650 Li-ion batteries (#RW9, #RW10, #RW11, 
and #RW12) were used indefinitely in their experiment, with 
charging and discharging currents ranging from − 4.5 to 4.5 
A. The Random Walk (RW) function is given to this charg-
ing and discharge method. After about 1500 charging and 
discharging cycles (5 days), this work did a scale charging 
and discharging cycle sequence to determine how the bat-
tery was doing.

As shown in Fig. 2, batteries had varying initial capaci-
ties, which led to SoH being used to evaluate their lives. The 
SoH is analysed using a mixture of methods, but the most 
common impedance and the battery’s usable capacity decide 
the battery’s usability [37]. Because it generally requires 
devices such as energy dispersive spectroscopy, online tests 
were performed using the described battery’s load resist-
ance. As a result, this research study used the SoH of a bat-
tery based on its usable capacity [38]. Describes this as fol-
lows, Eq. (2):

Typically, Cusable is its maximum releasable capacity 
when fully charged, whereas Crated, the capacity rating speci-
fied by the manufacturer, is the capacity used over time.

2.3 � Preprocessing

Because batteries are measured at regular intervals, they are 
among the most often used methods for predicting SoH. In 

(2)SoH =
CUsable

CRated

terms of the internal energy of the battery rather than time 
intervals, SoC decides the battery’s characteristics. Data 
from the time domain to the SoC domain was changed with 
the help of a new pre-processing method that used relative 
SoC.

2.3.1 � The Relative SoC

Calculating SoC is based on the battery’s design capacity 
and how much energy it has stored [39], Eq. (3).

C(t) is the current capacity at the time ‘t’, where Crated is 
the design size. However, complicated sizes were needed 
to accurately predict the typical SoC by taking advantage 
of the correlation between battery features and BEL and 
data preprocessing to improve ML models for SoH predic-
tion. This work didn’t need indicators for the BEL (or to 
use a standard SoC). As a result, this research developed 
a relative SoC, known as SoC, that was linked to the BEL. 
The usable capacity during the charging method was used 
to compute the relative SoC, Eq. (4)

‘t0’ is the starting time, ‘t’ is the lifetime, and ‘Ck’ usable 
Ic’ is the current charging at the ‘k’ cycle and the usable 
computation capacity. It is possible to compute the usable 
capacity by integrating the current as follows, Eq. (5) [40]:

where t0 is the discharging start time, tcutoff occurs when the 
voltage drops in the battery below the cut-off voltage, ID is 
the discharge current from the battery at the ‘k’ cycle, and 
‘C0’ usable is set to ‘Crated’. The virtual SoC was formulated 
simply by charging between 0 and 100%, even if the battery 
was degraded. As a result, this research paper examined how 
to process information based on weighted SoC.

2.3.2 � Time‑Based Data Testing

Researchers have used time-based data testing to collect data 
over set periods. Because most equipment measures data at 
a constant time interval, their approach seemed reasonable. 
Based on time-based data testing, generated data using the 
same elements to compare with the proposed SoC-based 
method. tkm, Vkm, Ikm, Tkm are the time, voltage, current, and 
temperature variance testing points at the ‘k’ cycle in the 

(3)SoCtypical (t) =
C(t)

CRated

(4)SoCk(t) = SoCk
(
t0
)
+

1

Ck
Usable

∫
t

t0

Icdt

(5)Ck
Usable

= ∫
tcut - off

t0

Iddt

Fig. 2   Cell capacity measurement for group 3



590	 Journal of Electrical Engineering & Technology (2024) 19:585–600

1 3

‘n’ BTD. ‘s’ is the count of the m testing points during a 
charge cycle, and ‘k’ is the testing points for time, voltage, 
current, and temperature variance at the ‘k’ cycle in the ‘n’ 
BTD. The temperature change was determined as follows: 
Eq. (6) and Eq. (7)

The cycle count is ‘k’, the ‘m’ testing points are ‘m’, and 
the temperature at the ‘k’ testing point is ‘Tk’.

During a single charge cycle of battery #RW12, 20 volt-
age, current, and temperature testing points were collected. 
Figure 3a shows that the older battery reached 4.2 v faster 
than the newer one. The battery’s voltage remained constant 
at 4.2 v after 9000 s, regardless of their health. As a result, 
nearly 66% of the voltage data had identical values. In less 
than 4000 s. or more than 14,000 s, there was no discern-
ible change in the current value. The temperature variance 
between battery #RW12 after 3000 s was also slightly dif-
ferent. Based on this study’s results, time-domain features 
were not enough to help us figure out how long the batteries 
would last.

2.3.3 � SoC‑Based Data Testing

SoC-based trained data testing is a method that considers 
the BEL and collects data at a fixed relative SoC interval. 
The relative SoC is figured out by the battery’s energy level 
and changes the battery’s features. As a result, this work 
implemented training data testing based on SoC. A constant 

(6)Dk
Timebase m

=

⎛
⎜⎜⎜⎜⎜⎝

tk
1

tk
2

… tk
s

Vk
1

Vk
1

… Vk
s

Ik
1

Ik
2

… Ik
s

ΔTk
1

ΔTk
2

… ΔTk
s

k k +
1

s−1
… k + 1

⎞
⎟⎟⎟⎟⎟⎠

(7)ΔTk
m
= Tk

m
−Min

(
Tk
)

relative SoC interval has experimented with variables such 
as temperature difference, current, voltage, and cyclic rela-
tive SoC, Eq. (8):

where SoCKM, Vkm, Ikm, and Tkm are the relative SoC, volt-
age, current, and temperature differences at the kth cycle of 
the ‘n’ BTD. ‘M’ points stand for them, and the number of 
facts during one cycle is given by ‘s’.

Figure 4 shows the data from battery #RW12 collected 
throughout a single charge cycle with a constant relative 
SoC interval and 20 testing points. The data for old and 
new batteries pre-processed by SoC differed from Fig. 3. For 
example, the voltage testing values of the battery varied sig-
nificantly, ranging from 0 to 100%. Compared to time-based 
pre-processing, which reported a 45% electrical potential 
difference between old and new battery systems, it showed 
a 60% variation. Dissimilarities in pre-processing currents 
and battery temperatures were found to be linked. It was also 
true for SoC values.

Because unlabeled SoC series are raw, clustering meth-
ods divide them into two groups, each labeled  ‘1/0’. As a 
result, SoC is clustered offline using the k-means algorithm 
to generate the labeled dataset required for supervised clas-
sification methods for online cell health checks. The criteria 
for aging and normal battery are measured using SoH. The 
SoH can be analysed using a mixture of methods, but the 
most common impedance and the battery’s usable capacity 
determine the battery’s usability. Because it requires devices 
such as energy dispersive spectroscopy, online tests were 
performed using the method described by the battery’s load 
resistance. As a result, this research study used the SoH of a 

(8)Dk
SoC_Base kn

=

⎛
⎜⎜⎜⎜⎜⎝

SoCk
1

SoCk
2

… SoCk
s

Vk
1

Vk
2

… Vk
s

Ik
1

Ik
2

… Ik
s

ΔTk
1

ΔTk
2

… ΔTk
s

k k +
1

s−1
… k + 1

⎞
⎟⎟⎟⎟⎟⎠

Fig. 3   Battery #RW12 charging data sampled in a constant time inter-
val Fig. 4   Battery #RW12 charging data in constant SoC interval
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battery based on its usable capacity. The SoH less than 50% 
is considered as old batteries. The work opted for k-means 
clustering for dividing.

On the other hand, a large volume of historical data can 
be objectively categorized by SoC series clustering, but this 
approach is computationally costly and unsuitable for online 
screening. In addition, the number of discharge voltage time 
series with a label of ‘0’ is much less than those with a label 
of ‘1’ when comparing real-time engineering processes. 
When a time series dataset is subjected to SoC-based data 
testing, this results in a class imbalance due to random over-
sampling issues. It’s challenging to train classification algo-
rithms from such unbalanced data, and a minority class of 
tests could be mistaken for the majority, lowering classifica-
tion accuracy. An imbalanced SoC data hybrid resampling 
method is described below.

2.4 � Synthetic Minority Oversampling Technique 
(SMOTE)

SMOTE is a method of oversampling that creates synthetic 
tests for minimum classes. The method focuses on the com-
plete set of features to create tests by interpolating positive 
and closer instances. The method helps to overcome the 
‘overfit’ problem caused by random oversampling.

2.4.1 � Procedure

First, calculate the number of observations required for over-
sampling ‘N’. It is usually chosen to ensure a 1:1 binary 
class distribution, but it can be scaled back if necessary. 
Iteration starts with a selection of positive classes at ran-
dom instances. In this case, the k-Nearest Neighbor (k-NN) 
value, which is 5 by default, is found. Finally, to create syn-
thetic instances, the ‘N’ of the K occurrences was chosen 
for interpolation. The difference distance metric calculates 
the distance between the feature vector (FV) and its neigh-
bours. It is then multiplied by any number between 0 and 1 
before being added to the earlier FV. It can be visualized as 
shown below. Even though the method described above is 
beneficial, it has shortcomings.

(a)	 An artificial line connecting the diagonal and pointing 
in the same direction connects the synthetic examples. 
Few classifier algorithms produce a more complicated 
decision surface as a result

(b)	 SMOTE generates noisy data points in the feature space 
(FS).

2.5 � Hybridized SMOTE

Hybridization methods combine undersampling and over-
sampling techniques. A classifier model was made to predict 
better how well it would do in tests made by these methods.

2.5.1 � SMOTE + ENN

SMOTE + ENN, an alternative hybrid method used in this 
research study, removes different investigations from the test 
space. A majority class instance is eliminated if its nearest 
neighbors incorrectly label it. In this test case, an under-
sampling method called ENN is used to find the majority 
class’s nearest neighbours.

2.5.1.1  Edited Nearest Neighbor (ENN)  The ENN method 
defines each observation’s KNN and checks if its standard 
class matches its class. By default, the number of nearest 
neighbors in ENN is set to K = 3.

The algorithm for the ENN is as follows:

(a)	 Assuming a set of N studies, calculate the number of 
closest neighbors K. K is assumed to be 3 if K cannot 
be determined

(b)	 Compute k-NN for the observation class in the remain-
ing dataset study and return the standard class from 
k-NN

(c)	 If the study class and standard k-NN differ, the observa-
tions and k-NN are taken from the dataset

(d)	 Repeat Step 2 and Step 3 until every class’s required 
part has been matched.

When the observation class and the observation’s k-NNs 
differ, ENN eliminates the observation and its k-NN rather 
than just the observation and its nearest neighbor, as Tomek 
Links [41–43] does. As a result, ENN is expected to clean 
the data more thoroughly than Tomek Links.

Fig. 5   SMOTE model
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When used with SMOTE’s oversampled data, the above 
method produces significant data cleaning. Due to NN’s 
samples, the above two classes are free of misclassifications. 
As a result, the distinction between classes is more visible 
and briefer (Fig. 5).

The SMOTE + ENN process is explained as follows:

(a)	 The class selects random minority data
(b)	 Compute random data and k-NN distance
(c)	 The minority class’s synthetic sample’s variance is mul-

tiplied by the random ranges of 0–1
(d)	 Repeat Steps 2–3 until minority class proportion is 

desired
(e)	 K is the closest neighbour. K = 3 if K cannot be com-

puted
(f)	 Compute k-NN for the observation class and return to 

the majority class
(g)	 The dataset prevents findings and k-NN with different 

classes
(h)	 Repeat steps 2 and 3 until every class achieves the pro-

portion.

2.6 � Feature Extraction Model

2.6.1 � Kernel Principal Component Analysis (KPCA) 
Nonlinear Feature Extraction Theory

After the dataset has been rebalanced, the subsequent step 
is to extract features from it. Principal component analysis 
(PCA) is a technique used to extract features from HD data 
while performing linear dimensional reduction. It converts 
the input data from the primary HD space to the typical sub-
space, extracts the major FV from the input, and completes 
the data exploration destination. A set of data represented 
by second-order linearly varying correlations (or) generated 
using a Gaussian Distribution (GD) can usually be PCA’ 
quickly. Real-world data variations, on the other hand, are 
well-known to be non-linear and Gaussian, and second-order 
correlations cannot represent most data. As a result, using 
PCA will yield poor results. This work proposes ‘KPCA’, a 
non-linear modified PCA method based on kernel functions. 
It achieves a linear PCA in FS-F by inherently constructing 
nonlinear transformations() to map input space to nonlinear 
FS-F. Use the KF to calculate the dot products in the FS 
given below. It is possible to avoid NLM between the two 
input samples in the primary universe, say ‘x, y’, Eq. (9):

Figure 6 proves the KPCA discussion structural model. 
KFs come in a type of shapes and sizes. According to Mer-
cer’s functional analysis theorem, a mapping exists between 
Φ () and a dot product space (F) if the KF is a positive 

(9)k(x, y) = Φ(x) ⋅Φ(y)

integral operator’s continuous kernel. If the KF satisfies 
Mercer’s Theorem and the best KF is selected, this can have 
a significant impact on dimensionality reduction.

Few examples of KF, Eq. (10) to (12): Polynomial kernel

Sigmoid kernel

Radial Basis Kernel Function (RBKF)

where d, �0, �1 and c have been previously defined by the 
user.

The sigmoid kernel is only satisfied for specific β0 and 
β1 values, but Mercer’s theorem always satisfies the poly-
nomial and RBKF. In many cases, RBKF is used as the KF 
of KPCA because of its superior performance; thus, RBKF 
is used as the KPCA-KF in this research study.

A linear FS-F is better than a non-linear input space 
because it has a ‘0’ mean X(x1…,xN) ∈ Rm. This is because 
PCA and KPCA covariances, computed using input and the 
covariances determined using the PCA and KPCA algo-
rithms, are better than the non-linear covariances, assessed 
using input and the non-linear covariances, Eq. (13–15).

where it is implicit that

(10)k(x, y) = ⟨x, y⟩d

(11)k(x, y) = tanh
�
�0⟨x, y⟩ + �1

�

(12)k(xy) = Exp

(
∥ x − y ∥2

c

)

(13)C =
1

N
xix

T
i
=

1

N
XXT

(14)CF =
1

N

N∑
j=1

Φj(x)Φj(x)
T

Fig. 6   KPCA framework
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Φ(⋅) is an NLM function that maps input vectors from 
input space to F. It is noted that the dimension of the FS is 
high, if not infinite. In the FS, the ‘λ’ value problem is solved 
to compute the Covariance Matrix (CM), Eq. (16)

Here, λ-values ≥ 0 ; λ-vector v ∈ F ; λ vector ‘v’ for any 
� ≠ 0 can be expressed linearly by Eq. (17)

Equation (18) is rewritten as the kernel ‘λ’ value problem:

where a N ∗ N  matr ix K  is  a kernel matr ix, 
K = kij =

(
Φ
(
xi
)
⋅Φ

(
xj
))

= k
(
xi, xj

)
 , and � is the FV of the 

kernel matrix. When reconstructing input data from FS, use 
Eq. (19):

(15)
N∑
k=1

Φ
(
xk
)
= 0,

(16)�v = CFv

(17)Φ
(
xi
)
∶ v =

N∑
i=1

a(i)Φ
(
xi
)

(18)N�a = Ka,

(19)yk = vk,Φ(x) =

N∑
i

ak
i

⟨
Φ
(
xi
)
,Φ(x)

⟩

2.7 � Gated Recurrent Unit (GRU)

The proposed RU method captures sequence dependencies 
on a time-scale-varying basis for each recurrent unit. GRU’s 
gating model (Fig. 7) regulates its data flow.

The current input is denoted by ‘xt’, and the previous 
step’s output is denoted by ht-1, Eq. (20)

•	 Update Gate (UG): The UG ′zt′ is projected by

The unit uses UG ‘zj, t’ to determine how much data it 
must update.

•	 Reset Gate (RG): This Eq. (21) asses the

The last stage is j data. RG determines the data that must 
be overlooked at the last moment. A value close to 0 is 
ignored in the memory content state, but a value close to 
1 is retained in the memory content state when the value is 
close to 1. On the other hand, the Weight Matrix (WM) is 
not the same.

2.8 � Determine the Current Memory Content

As in the previous gates, the Hadamard product is meas-
ured by multiplying the corresponding elements of rt and 
ht-1 along with the WM. Because rt is composed of vectors 
from 0 to 1, it is vital to use the Hadamard product to deter-
mine how much data is lost in the current memory content 
when rt is used. During the RG, it was explained that a value 
close to 0 indicates lost information, while a value close to 1 
indicates remembered information. To scale down the results 
to a scale of -1 to 1, the 2 bits of data are combined with the 
tanh activation function, Eq. (22)

where there is multiplication on an elemental basis and rt is a 
set of RG. In effect, the RG causes the unit to read the initial 
symbol in input order when it is turned off ( rjt , close to 0), 
thus agreeing to forget the earlier computed state.

2.9 � Determine the Information Retained 
by the Hidden Layer at the Current SoC Cycle

To conclude, the network estimates the ht vector, which 
maintains data from the current state and passes it to the 
next cell. When the 1st item of the formula is the UG, for 

(20)z
j

t = �(Wzxt + Uzht−1)
j

(21)RGj ∗ t ∶ r
j

t = �(Wrxt + Urht−1)
j

(22)h̃
j

t = tanh(Whxt + U
(
rt ⋅ ht−1

)
)j

Fig. 7   GRU structure
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example, it determines how much information from the pre-
vious moment is included in the formula ht−1 requirements 
to be stored in the remote unit ht at this time. Likewise, 
information that ought to be forgotten can be summarized by 
(1–zt*j) and updated by the current memory content as the 
2nd portion of the formula. Because of this, the restructured 
door found what content to put in the current memory and 
hide the layer, Eq. (23)

The CNN module is now operational. CNN is an ANN 
that excels at processing data in multiple dimensions. Its 
applications include image and text recognition and text 
classification. In the ESS, there are many AI-embedded sen-
sors and devices. The SM was created to preserve the spatial 
information of data collected in the ESS by smart sensors 
and devices, and the SM data is based on sensor location and 
time sequence. The SM is shown in the following format, 
Eq. (24)

where ‘k’ stands for the ‘k’ smart sensor, ‘n’ stands for the 
‘n’ time sequence, and Xk(n) stands for the data collected by 
the ‘k’ smart sensor at ‘n’ time. However, because the NASA 
dataset was reengineered to represent SoC-based data fea-
tures, this model reconstructed the matrix using SoC reen-
gineered dataset, Eq. (25)

To extract the SoH, CNN was used to develop the SoC 
Matrix (SCM). The model of CNN is depicted in Fig. 8. 
Many 2-D SCM were first stacked into 3-D matrix blocks 
and then used in convolution. The pooling operation com-
bines the outputs of the convolution operation, which are 
used to create a highly abstract feature. As a result of the 
pooling operation, the depth of the input matrix does not 
change; however, the size of the matrices and the number of 

(23)h
j

t =

(
1 − z

j

t

)
h
j

t−1
+ z

j

th̃
j

t

(24)X =

⎡⎢⎢⎢⎣

X1(1) X1(2) ⋯ X1(n)

X2(1) X2(2) ⋯ X2(n)

⋮ ⋮ ⋱ ⋮

Xk(1) Xk(2) ⋯ Xk(n)

⎤⎥⎥⎥⎦

(25)XSoC =

⎡⎢⎢⎢⎣

XSoC1(1) XSoC1(2) ⋯ XSoC1(n)

XSoC2(1) XSoC2(2) ⋯ XSoC2(n)

⋮ ⋮ ⋱ ⋮

XSoCk(1) XSoCk(2) ⋯ XSoCk(n)

⎤⎥⎥⎥⎦

nodes in the NN are reduced, lowering the parameters. After 
recurring convolution and pooling functions, the highly 
abstract feature was derived and flattened to a 1-D vector 
linked to the Fully Connected Layer (FCL). The weight and 
bias parameters of the FCL can then be computed iteratively. 
Finally, the activation function’s output is used to generate 
prediction results.

2.9.1 � ARIMA Model

Box and Jenkins first introduced ARIMA in 1976 in a book 
that drew much interest from researchers working on pre-
diction-related research at the time. As a result, this method 
is still one of the most reliable data processing and opera-
tional prediction models in many fields. ARIMA divides 
time series into three categories based on three key charac-
teristics: using Auto-Regressive (AR) terms to model past 
process data. The differences that must be modelled for the 
process to be stationary are represented by integrated (I) 
terms. In the process, the Moving Average (MA) is a tool for 
controlling past noise information. The term AR provides a 
representation of the series based on its ‘p’ existing studies, 
Eq. (26):

where (φj)j denotes the AR coefficients, and ‘p’ denotes the 
number of observations made previously required to predict 
the current value of the series. It’s not about looking back 
at what happened before. The MA component in a regres-
sion model (innovation processes) shows a rolling average 
of previous errors, Eq. (27)

where (θj)j denotes MA coefficients, (εt−j)j denotes previ-
ous innovation processes at a time ‘t’, and ‘q’ denotes the 
number of times the MA has increased, used to forecast 
the current value of the series. The integrated part (the I in 
ARIMA) is defined by the parameter ‘d’, which is the order 
of differentiation, Eq. (28)

In most cases, using d = 1 is sufficient. The ARMA pro-
cess, for which d = 0, is a specific method class. An ARIMA 
model is written using the ‘Backward’ operator BXt = Xt−1, 
Eq. (29)

(26)Xt = �1Xt−1 + �2Xt−2 +⋯ + �pXt−p =

p∑
j=1

�jXt−j

(27)Xt = �1�t−1 + �2�t−2 +⋯ + �q�t−q =

q∑
j=1

�j�t−j

(28)X∗
t
= Xt − Xt−1 −⋯ − Xt−d

(29)

(
I −

p∑
j=1

�jB
j

)
(I − B)dXt =

(
I +

p∑
j=1

�jB
j

)
�t

Fig. 8   CNN framework
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3 � Machine Learning Process

The proposed method for predicting a battery’s SoH is 
depicted in Fig. 9, which includes three stages: preproc-
essing of data, training of models, and evaluation of per-
formance. The raw data of the batteries was normalised to 
eliminate missing and abnormal results. The time series and 
SoC-engineered data are subjected to the proposed ML. 
After the time-based data was cleaned, the current battery 
properties were extracted and transformed into SoC-based 
statistical information. The feature data was used to create 
training datasets. The data set for training was split into data 
for training and data for validation during the model stage.

Linear relationships (LR) and non-linear relationships 
(NLR) exist in different time-series models. In time series 
paradigms, the ARIMA model is beneficial when model-
ling LR. It is, however, insufficient to model NLR. The GRU 
model, on the other hand, can model LR and NLR, though 
not all datasets yield the same result. In order to overcome 
these challenges and reach the highest level of predictive 
accuracy, the HLM was invented, which relies on the dif-
ferential modelling principle of the NLR and LR elements 
of the system.

Over time, multiple hybrid data time series assessment 
procedures have been presented and have made signifi-
cant progress. Multiple-HLM algorithms are believed to 
provide better prediction and performance than creative 
learning algorithms. The concept of supervised learn-
ing algorithms is used to create these hybrid models. The 
main goal of this HLM is to increase the model’s diver-
sity while improving prediction results. In numerous stud-
ies, many hybrid models have been reported. But there are 
no available sources to predict time-series data with SoC 

data. Based on this motivation, this work has created the 
ARIMA + GRU + CNN + HLM for predicting the SoH of a 
battery using time series and SoC parameters. Our recom-
mended ARIMA + GRU + CNN + HLM process has been 
outlined. GRU and LSTM are RNNs designed to capture 
long-term dependencies in sequential data. However, GRUs 
have a simpler architecture than LSTMs, with fewer param-
eters and less computational complexity.

In some cases, GRUs have been shown to perform simi-
larly to LSTMs while requiring less training time and mem-
ory. In the context of the ARIMA + GRU + CNN + HLM 
for battery SoH prediction, this work used GRUs instead of 
LSTMs due to the simpler architecture and computational 
efficiency. Using GRUs instead of LSTMs, the model 
could process more data and achieve higher accuracy with 
less training time and resources. The trained model has 
been evaluated using the data set in the performance evalu-
ation phase, and its output was determined by measuring 
the MAE, MAPE, and MSE. The validation data was used 
to fine-tune the hyperparameters of the model.

3.1 � Data Preprocessing

To obtain relevant data for DL, data preprocessing had 
to be done. In these cases, the data was preprocessed to 
make it suitable for DL cleaning. After data cleaning, 
the input data was presented to the learning model in 
two formats: the actual time series dataset and the SoC-
based data transformed from the actual time series data. 
The SMOTE + ENN + HLM addresses the class imbal-
ance problem in the time series data. The application of 
MIN–MAX is flawed for time series data normalisation. 
Time series prediction using the MIN–MAX normalisa-
tion method is flawed because out-of-sample data sets 
have unclear MIN and MAX values. This research uses 
the z-score normalization model to get around this. They 
are normalizing all values in a dataset so that the mean 
is 0 and the standard deviation is done with the Z-score.

From Eq. (30) to perform z-score normalization on each 
value in a dataset:

XNew = The new value from the normalized results; 
X = Old value; μ = Population mean; σ = Standard devia-
tion value.

After data cleaning, SoC-based data was transformed 
into raw data based on time series, and data from SoC 
automatically extracted features. Equation (31) is used 
to express the feature format. The scale of the SoC-
based dataset is not the same. As a result, this work used 

(30)XNew =
X − �

�
=

X −Mean(X)

SD(X)

Fig. 9   Proposed ARIMA + GRU + CNN Deep Learning Model
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MIN–MAX normalization to normalize the SoC-based 
dataset:

Here, xn is a collection of all charging cycles’ n rows in 
Eq. (31), where ‘k’ is the cycle count, and ‘m’ is the m test-
ing point. As shown below in Eq. (32), used MIN–MAX 
normalization to normalize the capacity:

where ‘k’ stands for the number of cycles, and ‘C’ stands for 
the number of cycles—charging cycle capacities. After the 
data was normalized, it was split into two groups: a dataset 
for fitting model parameters and a test dataset for assessing 
the models that came out of it.

3.2 � ARIMA + GRU + CNN

The ARIMA + GRU + CNN model is a HLM that com-
bines the linear ARIMA, GRU, and CNN models into 
one. Researchers originally predicted CO2 emission costs 
using the ARIMA model and determined them by calcu-
lating the ARIMA model’s residual. The ARIMA model’s 
residuals are then assumed to be spatially and temporar-
ily dependent between observations. This paper extracts 
Spatio-temporal features from the ARIMA model’s residu-
als using the GRU model and CNN layers’ unique spatial 
and temporal modelling capabilities. It was proposed that 
the ARIMA + GRU + CNN modules, which are good at 
processing time-sequence and SoC data, be combined to 
make the hybrid NN.

The ARIMA + GRU + CNN modules comprise the pro-
posed ARIMA + GRU + CNN + HLM (Fig. 4). Time series 
data and SoC data from NASA’s battery dataset are input 
variables, and the output signals are predictions of SoH. 
The CNN module is particularly adept at handling the SoC 
data format. The CNN module extracts local features from 
SoC data using shared weights and local connections, then 

(31)

zk
nm

=
xk
nm

−Min
(
xn
)

Max
(
xn
)
−Min

(
xn
)n ∈ {1,… , 5},m ∈ {1,… , s}

(32)ck =
Ck −Min(�)

Max(�) −Min(�)

uses convolution and pooling layers to achieve adequate 
representation. Each CNN module convolution layer has 
convolution and a pooling function. After the pooling 
function, the SoC-HD data is converted to 1D data, and 
the CNN module’s output signals are linked to the FCL.

On the other hand, the ARIMA + GRU module primar-
ily aims to capture long-term dependency, and it can use 
the memory cell to know and understand good data from 
historical information for an extended time, while the for-
get gate will forget the irrelevant information. The inputs 
to the ARIMA + GRU module are time-classification data; 
the ARIMA + GRU module includes many gated recurrent 
units, and their results are all connected with FCL. Finally, 
load predictions are determined by averaging the mean 
values of all neurons in the FCL. Figure 10 depicts the 
GRU + CNN method’s flow chart.

4 � Experimental Analysis

The training and test validation data outnumber the valida-
tion data by two. The simulation was created with PyTorch 
1.7 and then run on a GeForce GTX 1080Ti. The data used 
included voltage, current, and SoC values. All attained data 
is normalised to reduce training variability and test speed. 
The Bayesian optimization algorithm was implemented 
to optimize this proposed HLM, and the primary learning 
degree was set at 10–4.

4.1 � Performance Metrics

This paper must compare the predicted SoH to the actual 
SoH results from the experiment to assess the predicted SoH 
results for the adopted models. As a result, performance met-
rics are evaluated using various metrics.

4.1.1 � RMSE

This is the square root of all errors’ square meaning. How-
ever, RMSE is a good measure of precision. However, it is 
used for comparing model predictions to real-world data, not 
between variables, Eq. (33)

4.1.2 � MAPE

It normalises absolute error across data scales. MAPE is the 
absolute error/actual value. Equation (34).

(33)RMSE =

√√√√ 1

N

N∑
i=1

(
SoHPredict − SoHTrue

)2

Fig. 10   GRU-CNN connection architecture
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4.1.3 � MAE

Simple error measure MAE is standard. The MAE corre-
lates with the results. Comparing data from different scales, 
Eq. (35).

4.2 � Result and Discussion

The proposed model’s SoH prediction results for battery 
group 3 (RW #9 to #12) are compared against those of the 
proposed models (Table 2).

The HLM is trained for 50 cycles, and each battery data-
set’s resultant SoH prediction accuracy is presented. The 
proposed HLM’s prediction accuracy for battery RW#9 is 
presented in Fig. 11a; the proposed ARIMA + CNN + GRU-
HLM, which is based on SoC and Timeseries, has a consist-
ent prediction accuracy after 50 cycles of training, while the 
Model#1 and Model#2 have equal accuracy rates. However, 
Model#1 outperforms Model#2 after 80 cycles. For the next 
battery, RW#10, the prediction accuracy of the proposed 
model is way better than the other two models: out of the 

(34)MAPE =
1

N

N∑
i=1

||||
SoHPredict − SoHTrue

SoHTrue

||||

(35)MAE =
1

N

N∑
i=1

|| SoHPredict − SoHTrue
||

two models, Model#1 fares well against Model#1 right after 
70 cycles of training (Figs. 11b, c).

This work assessed the MAE, RMSE, and MAPE based 
on the SoH prediction for a more straightforward compari-
son. Results proved that the proposed model was better at 
predicting SoH than Models #1 and #2, as shown in the 
following graphs. The proposed models with SoC + time-
series-based processing had fewer prediction errors than 
other variants. According to these study results, the proposed 
ARIMA + CNN + GRU + HLM with SoC and time-series-
based processing significantly outperforms complicated 
systems like CNNs (Model #1) and LSTMs (Model #2) in 
limited data. Figure 11 shows the MAPE performance of 
the proposed model against the other two models. The HLM 
based on SoC and Timeseries processing has the lowest 
MAPE score among other models, with the lowest score of 
2.803 recorded for the battery 11 dataset. The CNN-trained 
SoC-based model (Model#1) had the next lowest MAPE of 
all battery data, with a minor average MAPE of 3.197. The 
LSTM (Model #2) using Timeseries-based sets had a mini-
mum MAPE of 4.013.

Results of RMSE for all three models for the four batter-
ies. The proposed HLM has the lowest RMSE in all batter-
ies, with the lowest of 1025.46 for battery 12 and the highest 
of 1203.25 for battery 9. The CNN has the lowest value of 
1398.35 for battery 11 and the highest value of 1492.34 for 
battery 9. The LSTM has the lowest score of 1658.21 for 
battery 9 and the highest RMSE score of 1946.76 for battery 
10—the MAE results of all three models for the four battery 
datasets. The results show that the proposed model has a bet-
ter MAE value for all the battery data, with the lowest score 
of 1.586 for battery 12. Model#1 has the lowest MAE of 
1.673 for battery 12 and the highest of 2.601 for battery 10. 
Finally, Model#2 has the lowest MAE of 1.943 for battery 
12 and 2.123 for battery 11. This research study revealed 
that compared with learning models like CNN and LSTM, 
a HLM with a SoC and time series-based data preprocessing 
phase could reliably predict the SOH.

5 � Conclusion

This study proposes a novel learning model for fore-
casting the SoH of Li-ion batteries that integrates 
ARIMA + GRU + CNN. Numerous previous studies have 
concentrated on forecasting SoH using time series data. 
However, the limitation of such models is that they do not 
consider the battery’s inherent qualities. However, incorpo-
rating such attributes while ignoring the time attribute will 
result in inaccurate prediction. The proposed model can also 
bring time series and data from the SoC domain to the table 
for processing. The proposed preprocessing was based on 

Table 2   Benchmark Models

Model Processing type Network Reference

#1 SoC CNN [36]
#2 Time series LSTM [37]

Fig. 11   a SoH prediction accuracy for batteries #RW9 to #RW12; b 
MAPE to compare a proposed model to other models; c RMSE com-
pares the proposed model to other models
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time series and the relative state of charge, which was com-
puted using the current integration method during charg-
ing. The correlation coefficient among datasets and useable 
capacities was calculated to compare the proposed method 
to the typical preprocessing method based on consistent time 
intervals. The advantage of the proposed HLM is evident 
when compared to generic time-based datasets, SoC-based 
datasets processed using the suggested method showed a 
stronger connection with usable capacity, according to the 
results of the correlation analysis.

Additionally, this work compared the proposed mod-
el’s efficiency to that of other developed models based on 
CNN + LSTM. The results indicate that the recommended 
model has a higher predictive accuracy with minor fever 
errors as measured by MAPE, RSME, and MAE compared 
to previous models. Based on our research findings, the pro-
posed method might be used to increase the accuracy of 
devices with constrained computational power. Thus, SoH 
prediction on hardware platforms with limited resources can 
be made using the findings from this research study.
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